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Introduction - model problems

Our model problems are:

Problem 1 – Elliptic setting .

F (D2u) = f (x) in B1;

Problem 2 – Parabolic setting .

ut − F (D2u) = g(x , t) in B1 × (−1, 0) =: Q1.
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Introduction some assumptions

We work under the following assumptions:

1. The operator F is assumed to be (λ,Λ)−elliptic

, i.e.,

λ ‖N‖ ≤ F (M + N) − F (M) ≤ Λ ‖N‖ ,

for any M, N ∈ S(d), N ≥ 0;

2. The function f : B1 → R is continuous.

3. The function g : B1 × (−1, 0) → R is continuous.

Continuity of the source term: in line with the theory of
continuous viscosity solutions; however, our results depend on f or
g through their norms in appropriate Lebesgue spaces.
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Previous developments - elliptic setting

Krylov and Safonov (79, 80): linear elliptic equations in
nondivergence form;

Harnack inequality and regularity C1,α, for some
α ∈ (0, 1), unknown;

Linearization argument: fully nonlinear case;

Sharpness: best regularity in the absence of further
structures.

Evans (82) and Krylov (83, 84): convexity assumptions on F ;

Solutions to F (D2u) = 0 are locally a priori C2,α, for
some α ∈ (0, 1), unknown;

Theory of classical solutions;
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Elliptic setting - W 2,p-estimates

Caffarelli (89): launches the foundations of the W 2,p regularity
theory for

F (x ,D2u) = f (x) in B1

;

1. F (x0,M) is convex (concave) with respect to M, for every x0;

2. For x0 ∈ B1 fixed, F (x0,M) and F (x ,M) are close:

βF (x0, x) := sup
M∈BS(d)1

|F (x0,M)− F (x ,M)|
‖M‖

is such that
‖βF (x0, ·)‖Lp(B1)

� 1.
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Elliptic setting - W 2,p-estimates

Swiech (97): studies regularity of solutions in W 1,p

;

Builds upon W 2,p regularity for

F (x ,D2u) = f (x) in B1

to produce W 2,p estimates for the solutions of

F (x , u,Du,D2u) = f (x) in B1;

Uniqueness of solutions.

Winter (09): Sobolev regularity up to the boundary.
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Parabolic case - former advances

Krylov and Safonov (79, 80): regularity in C1+α, 1+α2
The exponent α ∈ (0, 1) is universal

;

Scaling (renormalization) affects the regularity.

Krylov (84): regularity in C2+α, 2+α2 ;

Convexity assumption on the operator.

Tso (90): produces an ABP estimate;

Wang (92, 92a, 92b): extends Caffarelli’s perspective to the
parabolic setting;

Harnack inequality, regularity in Hölder spaces;

Assumes g ∈ Lp(B1) and proves estimates in
W 2,1;p

loc (B1).
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Assumes g ∈ Lp(B1) and proves estimates in
W 2,1;p

loc (B1).



Parabolic case - former advances

Krylov and Safonov (79, 80): regularity in C1+α, 1+α2
The exponent α ∈ (0, 1) is universal;

Scaling (renormalization) affects the regularity.

Krylov (84): regularity in C2+α, 2+α2 ;

Convexity assumption on the operator.

Tso (90): produces an ABP estimate;

Wang (92, 92a, 92b): extends Caffarelli’s perspective to the
parabolic setting;

Harnack inequality, regularity in Hölder spaces
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Regularity of solutions - counterexamples

Nadirashivili & Vlăduţ (07, 08, 11): solutions may exhibit
unbounded Hessians, failing to be of class C1,1

;

Even more surprising : fix 0 < τ < 1;

Fτ , (λ,Λ)− elliptic,

whose solutions fail to be of class C1,τ ;

Dong & Kim (14): examples of linear elliptic operators, with
piecewise constant coefficients, for which W 2,p estimates are not
available;

Caffarelli & Stefanelli (08): parabolic case – solutions may fail to
be of class C2,1.
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Nadirashivili & Vlăduţ (07, 08, 11): solutions may exhibit
unbounded Hessians, failing to be of class C1,1;

Even more surprising : fix 0 < τ < 1;

Fτ , (λ,Λ)− elliptic,

whose solutions fail to be of class C1,τ ;

Dong & Kim (14): examples of linear elliptic operators, with
piecewise constant coefficients, for which W 2,p estimates are not
available;

Caffarelli & Stefanelli (08): parabolic case – solutions may fail to
be of class C2,1.



Approximation argument



Approximation argument: the recession function

Aims at relating a given problem to an auxiliary one, through a
genuinely geometric structure

;

Caffarelli’s argument relating F (x ,D2u) to F (x0,D
2u);

At the core: to build a path touching the original problem and
connecting it to an auxiliary, model-problem;

Various manners to design such a path: we focus on the idea of
recession function.
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The recession function - definition

Let
F : S(d)→ R

be a fully nonlinear elliptic operator

;

The recession function associated with F , denoted by F ∗, is
defined by the limit

F ∗(M) := lim
µ→0

Fµ(M) = lim
µ→0

µF
(
µ−1M

)
;

From the heuristic viewpoint, F ∗ encodes the behavior of F at the
ends of S(d).
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A graphical representation
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Example 1 - Eigenvalue q-momentum operator

Let q ∈ 2N + 1 and consider:

Fq(M) = Fq(λ1, ..., λd) :=
d∑

i=1

(
1 + λqi

)1/q − d

.

Easily one computes:

F ∗q (M) = lim
µ→0

d∑
i=1

(
µq + λqi

)1/q − µd =
d∑

i=1

λi ;

Hence: F ∗q is the Laplacian operator.
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Example 2 - Perturbation of the special Lagrangian
equation

Let 0 < α1, ...., αd < +∞ and consider:

F (M) :=
d∑

i=1

(αiλi + arctanλi )

.

As before, one computes:

F ∗(M) =
d∑

i=1

(1 + αi )λi ;

Therefore: F ∗ is a perturbation of the Laplacian operator.
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Main results and a few
consequences



Regularity in W 2,p
loc (B1) – elliptic setting

Theorem (P. & Teixeira, J. Math. Pures Appl., 16)

Let u ∈ C(B1) be a viscosity solution to

F (D2u) = f (x) in B1.

Suppose that f ∈ Lp(B1), for p > d and F ∗ has C1,1loc (B1)
estimates.

Then, u ∈W 2,p
loc (B1) and

‖u‖W 2,p(B1/2)
≤ C

(
‖u‖L∞(B1)

+ ‖f ‖Lp(B1)

)
,

where C > 0 is a universal constant.
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A few remarks

1. The constraint p > d can be slightly relaxed

;

There exists ε > 0 so that one may require p > d − ε
Escauriaza’s exponent;

2. Variable coefficients, provided

βF∗(x0, x) := sup
M∈S(d)

|F ∗(M, x) − F ∗(M, x0)|
1 + M

satisfies
‖βF∗(x0, ·)‖Lp(B1)
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Main ideas behind the proof

Standard results in harmonic analysis and measure theory

;

Control norms in W 2,p by the decay rates of certain sets;

Universal estimates in W 2,δ
loc (B1);

Finer decay rates: regime-switching from δ to p;

1. C 1,1-estimates: competing inequality;

2. Made rigorous by means of an Approximation Lemma
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Approximation Lemma

Proposition

Let u ∈ C(B1) be a viscosity solution to

Fµ(D2u) = f (x) in B1.

Suppose that f ∈ Lp(B1), for p > d and F ∗ has C1,1loc (B1)
estimates.

Given δ > 0, there exists ε > 0 such that, if

µ + ‖f ‖Lp(B1)
≤ ε,

there exists h ∈ C1,1loc (B1), solution to

F ∗(D2u) = 0 in B3/4,

satisfying
‖u − h‖L∞(B3/4)

≤ δ.



Approximation Lemma

Proposition

Let u ∈ C(B1) be a viscosity solution to

Fµ(D2u) = f (x) in B1.

Suppose that f ∈ Lp(B1), for p > d and F ∗ has C1,1loc (B1)
estimates.
Given δ > 0, there exists ε > 0 such that, if

µ + ‖f ‖Lp(B1)
≤ ε

,

there exists h ∈ C1,1loc (B1), solution to

F ∗(D2u) = 0 in B3/4,

satisfying
‖u − h‖L∞(B3/4)

≤ δ.



Approximation Lemma

Proposition

Let u ∈ C(B1) be a viscosity solution to

Fµ(D2u) = f (x) in B1.

Suppose that f ∈ Lp(B1), for p > d and F ∗ has C1,1loc (B1)
estimates.
Given δ > 0, there exists ε > 0 such that, if

µ + ‖f ‖Lp(B1)
≤ ε,

there exists h ∈ C1,1loc (B1), solution to

F ∗(D2u) = 0 in B3/4,

satisfying
‖u − h‖L∞(B3/4)

≤ δ.



Improved regularity

Corollary

Let u ∈ C(B1) be a viscosity solution to

F (D2u) = f (x) in B1.

Suppose that f ∈ p − BMO(B1), for p > d and F ∗ is convex.

Then, u ∈ q − BMO(B1) and there exists a universal constant
C > 0, so that

‖u‖q−BMO(B1/2)
≤ C

(
‖u‖L∞(B1)

+ ‖f ‖q−BMO(B1)

)
,

for q > 1.
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Density result

Corollary
Let u ∈ C(B1) be a viscosity solution to

F (D2u) = f (x) in B1.

Suppose that f ∈ Lp(B1), for p > d . Given δ > 0, there exists a
sequence (un)n∈N ∈W 2,p

loc (B1) ∩ S(λ− δ,Λ + δ, f ), converging
locally uniformly to u.

Main idea of the proof: the sequence (un)n∈N solve

F n(D2un) = f (x) in B1,

where
F n(M) := max {F (M), Lδ(M)− Cn}

with
Lδ(M) := (Λ + δ)

∑
ei>0

ei + (λ− δ)
∑
ei<0

ei .
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Sobolev regularity in the parabolic setting

Theorem (Castillo & P.)

Let u ∈ C(Q1) be a viscosity solution to

ut − F (D2u) = g(x , t) in Q1.

Suppose that g ∈ Lp(Q1), for p > d + 1 and F ∗ has C1,0;1loc (Q1)
estimates.

Then, ut and D2u are in Lploc(Q1) and

‖ut‖Lp(Q1/2)
+
∥∥D2u

∥∥
Lp(Q1/2)

≤ C
(
‖u‖L∞(Q1)

+ ‖g‖Lp(Q1)

)
,

where C > 0 is a universal constant.
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Regularity in q-BMO spaces: the parabolic setting

Corollary (Castillo & P.)

Let u ∈ C(Q1) be a viscosity solution to
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Escauriaza’s parabolic exponent

Proposition

Let u ∈ C(Q1) be a nonnegative viscosity solution to

ut − F (D2u) = g(x , t) in Qr ,

for r > 0. Then, there exists C > 0 and εp > 0 such that

sup
Qr/2

u ≤ C

[
inf
Qr/2

u + r2−
d+1
q ‖f ‖Ld+1−εp (Qr )

]
.

Corollary

Sobolev regularity follows under the condition p > d + 1− εp.
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Universal modulus of continuity

Theorem (Castillo & P.)

Let u ∈ C(Q1) be a viscosity solution to

ut − F (D2u) = g(x , t) in Q1.

Then, we have u ∈ Cα
∗,α
∗
2

loc (Q1) and the following estimate is
satisfied:

‖u‖
Cα∗,

α∗
2 (Q1/2)

≤ C
[
‖u‖L∞(Q1)

+ ‖f ‖Ld+1−εp (Q1)

]
,

where

α∗ = α∗(d , εp) =
d − 2εp

d + 1 − εp
.



Main ingredients of the proof

Step 1 It suffices to verify the existence of a sequence (ξn)n∈N such
that

sup
Q
ρk

|u − ξn| ≤ ρ
k

d−2εP
d+1−εP

;

Step 2 The case k = 1: approximation lemma;

Step 3 Suppose the case k = m has been verified; introduce

vm(x , t) :=
u(ρm/2x , ρmt) − ξm

ρ
m

d−2εP
d+1−εP

;

Step 4 Study the equation vm satisfies and conclude the case
k = m + 1.
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Concluding remarks

1. Recession strategy produces an approximation strategy

;

2. Allows us to modify the operator outside of a large ball:
density results;

3. Recession strategy preserves ellipticity;

4. Further insights into ellipticity-invariant objects;

5. Concrete example: Escauriaza’s exponent.
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Thank you very much


