QUESTION 2: NO TOUCHDOWN AT POINTS WHERE V IS SMALL ?

Typical situation: **M-shaped** (or 2-bump) functions V(x)

Theorem. [Esteve-S., 2017] Assume n = 1, $f(u) = (1 - u)^{-p}$, p > 0, d > 0,

 $V \ge \mu > 0$ on $I_1 \cup I_2$,

$$V \leq \rho \mu$$
 on $J_0 \cup J_1 \cup J_2$,

where $\rho \in (0, 1)$ is the solution of an **explicit 3-parameter optimization (sup-inf) problem.** Then no touchdown occurs on $J_0 \cup J_1 \cup J_2$. MEMS (p = 2), $|I_1| = |I_2| = 2$, $|J_1|, |J_2| \ge 4$

μ	$\ V\ _{\infty}$	d	ho
1	1.1	0.1	0.2138
1.25	1.3	0.1	0.2166
2	2.25	0.1	0.2005
2	2.25	0.05	0.2300
3	3.5	0.01	0.2523
4	4.1	0.05	0.2289
4	4.1	0.01	0.2650

d = 0.1

IDEA: PARAMETRIZED VERSION OF THE AUXILIARY FUNCTION J

3 parameters: K, β, τ

$$J = u_t - \varepsilon a(x)g(u) \quad \text{in } (\tau, T) \times \Omega_\beta$$
$$g(u) = (1 - u)^{-p} + K(1 - u)$$

 $a(x) = a_{K,\beta}(x)$ solution of suitable piecewise (optimal) ODE $\longleftrightarrow \mathcal{L}J \leq 0$

$$a_{\beta,K}(x) = \begin{cases} D_1, & x \in [0, \infty_0], \\ D_1 \cos^{\alpha}(c_1 x + \theta_1), & x \in [x_0, x_1], \\ D_2 \cos^{p+1}(c_2 x + \theta_2), & x \in [x_1, 1], \\ \left(\frac{1+\beta-x}{\beta}\right)^{p+1}, & x \in [1, 1+\beta] \end{cases}$$

OPTIMIZATION PROBLEM

$$\rho = \sup_{(K,\beta,\tau)\in\mathcal{A}} \left[\phi(K,\beta,\tau;d,R) \inf_{x\in\Omega_{\beta}} \frac{(G_{\tau} * \chi_{I_1})(x)}{a_{\beta,K}(x)} \right]$$

- G_{τ} : Gaussian heat kernel
- $\phi(K, \beta, \tau; d, R)$: explicit nonlinear function
- \mathcal{A} : admissible set

$$(K, \beta, \tau) \in \mathcal{A} \quad \longleftrightarrow \quad \mathcal{P}J \ge 0$$

Pseudo-optimum computed with help of Matlab

- \rightarrow rigorous lower estimate for inf by monotone discretization
- \rightarrow usual functions + erf

QUESTION 3: DOES TOUCHDOWN CONCENTRATE NEAR POINTS OF MAXIMUM OF V ?

1- Positive results [Y. Guo, 2008] $\Omega = B_R \subset \mathbb{R}^n$

Touchdown at the origin only, for symmetric monotone profile.

 \rightarrow Idea: moving planes

2- Negative results [Esteve-S., 2017] $\Omega = B_R \subset \mathbb{R}^n$

Touchdown at the origin only, for nonmonotone profile with $h_1 - h_0$ small.

Touchdown set does not contain 0, but concentrated near the origin and far from the maxima of V

- \rightarrow Idea: continuity estimates w.r.t. V in L^q for the touchdown time and touchdown set
- \rightarrow Rem: confirms numerical predictions of [Esposito-Ghoussoub-Y.Guo, 2010]

Touchdown set has at least 2 connected components and contains at least two spheres.

Open questions:

- finer structure of touchdown set ?
- Can it contain an interval ? (cf. numerical predictions of [Esposito-Ghoussoub-Y.Guo, 2010])