Aleksandrov-Bakelman-Pucci maximum principles for a class of uniformly elliptic and parabolic integro-PDE

Andrzej Święch
(joint work with C. Mou)
Banff, 04/02-04-07/2017

Classical ABP Maximum Principle

- Aleksandrov-Bakelman-Pucci Maximum Principle: If Ω be a bounded domain in \mathbb{R}^{n} and $u \in W_{\text {loc }}^{2, n}(\Omega) \cap C(\bar{\Omega})$ is a strong subsolution of the Pucci extremal PDE

$$
\mathcal{P}^{-}\left(D^{2} u\right)-\gamma|D u| \leq f(x) \quad \text { in } \Omega,
$$

where $\mathcal{P}^{-}\left(D^{2} u\right)$ is the Pucci extremal operator, $\gamma \geq 0$ and $f \in L^{n}(\Omega)$, then

$$
\sup _{\Omega} u \leq \sup _{\partial \Omega} u+C(\operatorname{diam}(\Omega))\left\|f^{+}\right\|_{L^{n}\left(\Gamma_{\Omega}^{+}\right)},
$$

where C is a constant depending only on $n, \lambda, \gamma \operatorname{diam}(\Omega)$ and Γ_{Ω}^{+}is the so-called upper contact set of u.

Classical Generalized ABP Maximum Principle

- Generalized Aleksandrov-Bakelman-Pucci Maximum Principle: (introduced by Fabes-Stroock)

There exists an exponent $p_{0}=p_{0}(n, \Lambda / \lambda)$ such that if $u \in W_{\text {loc }}^{2, p}(\Omega) \cap C(\bar{\Omega})$ for $p_{0}<p<n$ is a strong subsolution of

$$
\mathcal{P}^{-}\left(D^{2} u\right)-\gamma|D u| \leq f(x) \quad \text { in } \Omega,
$$

then

$$
\sup _{\Omega} u \leq \sup _{\partial \Omega} u+C(\operatorname{diam}(\Omega))^{2-\frac{n}{p}}\left\|f^{+}\right\|_{L^{p}(\Omega)},
$$

for some constant $C=C(n, p, \gamma \operatorname{diam}(\Omega), \lambda, \Lambda)$.
Here the L^{n} norm of f^{+}over the upper contact set is replaced by the L^{p} norm of f^{+}over Ω.

Classical ABP Maximum Principle

Versions and Generalizations:

- Semiconvex subsolutions, viscosity subsolutions and L^{p}-viscosity subsolutions.
- Pointwise versions of ABP maximum principle: for $W^{2, n}$ functions Bony maximum principle; for semiconvex functions - Jensen's lemma; for L^{p}-viscosity solutions; pointwise maximum principle for classical viscosity solutions - "maximum principle for semicontinuous functions".
- Degenerate/singular equations.
- Unbounded domains.

Classical Parabolic ABP Maximum Principle

- Aleksandrov-Bakelman-Pucci-Krylov-Tso Maximum Principle: If $Q=(-T, 0] \times \Omega$ and $u \in W_{\mathrm{loc}}^{1,2, n+1}(Q) \cap C(\bar{Q})$ is a strong subsolution of the Pucci extremal PDE

$$
u_{t}+\mathcal{P}^{-}\left(D^{2} u\right)-\gamma|D u| \leq f(t, x) \quad \text { in } Q
$$

where $\gamma \geq 0$ and $f \in L^{n+1}(Q)$, then

$$
\sup _{Q} u \leq \sup _{\partial_{p} Q} u+C(\operatorname{diam}(\Omega))^{\frac{n}{n+1}}\left\|f^{+}\right\|_{L^{n+1}\left(\Gamma_{Q}^{+}\right)}
$$

where C is a constant depending only on $n, \lambda, \gamma^{n+1}|Q| / \operatorname{diam}(\Omega)$ and Γ_{Q}^{+} is the so-called parabolic upper contact set of u.

Classical Parabolic ABP Maximum Principle

Versions and Generalizations:

- Generalized ABP-Krylov-Tso Maximum Principle:
$u \in W_{\text {loc }}^{1,2, p}(Q) \cap C(\bar{Q}), f \in L^{p}(Q)$ for $p_{1}<p<n+1$ for some $p_{1}=p_{1}(n, \Lambda / \lambda)$, then estimate holds with L^{n+1} norm of f^{+}over the upper contact set replaced by the L^{p} norm of f^{+}over Q.
- More general (not necessarily cylindrical) domains.
- L^{p}-viscosity solutions.
- Pointwise versions: for $W^{1,2, n+1}$ functions (Tso), for L^{p}-viscosity solutions, parabolic version of a maximum principle for semicontinuous functions.

Nonlocal Maximum Principles

Nonlocal Maximum Principles:

- Maximum principle estimates for classical and strong subsolutions of elliptic Integro-PDE giving estimates with $\left\|f^{+}\right\|_{L^{n}(\Omega)}$ replaced by $\left\|f^{+}\right\|_{L^{\infty}(\Omega)}$: Garroni-Menaldi, Gimbert-P.L. Lions. It was mentioned in that arguments to prove the classical ABP maximum principle for elliptic PDE can be adapted to obtain such estimate for elliptic integro-PDE but precise result was never stated and no proof was given.
- A nonlocal Bony maximum principle for elliptic integro-PDE:

Gimbert-P.L. Lions.

- Versions of maximum principles for semicontinuous functions for integro-differential equations: Barles-Imbert, Jakobsen-Karlsen.
- Estimates of ABP type for purely nonlocal equations of elliptic and parabolic types: Caffarelli-Silvestre, Chang Lara-Dávila, More quantitative results and detailed study of the ABP maximum principle for uniformly elliptic nonlocal equations was done by Guillen-Schwab. Purely nonlocal case is very challenging and the area is still largely open.

Nonlocal ABP Maximum Principles

GOAL: Prove versions of ABP maximum principles for elliptic/parabolic integro-PDE where ellipticity comes from the PDE part of the equation. Elliptic Case: We consider a strong subsolution $u \in W_{\text {loc }}^{2, p}(\Omega) \cap C_{b}\left(\mathbb{R}^{n}\right)$ of the following extremal integro-PDE

$$
\begin{aligned}
\mathcal{P}^{-}\left(D^{2} u\right) & -\gamma|D u|-\sup _{\alpha \in \mathcal{A}}\left\{\int_{\mathbb{R}^{n}}[u(x+z)-u(x)\right. \\
& \left.\left.-\langle D u(x), z\rangle \mathbf{1}_{\{|z|<1\}}(z)\right] N_{\alpha}(x, z) d z\right\} \leq f(x) \quad \text { in } \Omega
\end{aligned}
$$

where $\gamma \geq 0, f \in L^{p}(\Omega), \mathcal{A}$ is countable and the functions $N_{\alpha}: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow[0,+\infty), \alpha \in \mathcal{A}$, are measurable and there exists a measurable function $K: \mathbb{R}^{n} \rightarrow[0,+\infty)$ such that for every $\alpha \in \mathcal{A}, x \in \Omega$, $N_{\alpha}(x, \cdot) \leq K(\cdot)$ and K satisfies

$$
\int_{\mathbb{R}^{n}} \min \left(|z|^{2}, 1\right) K(z) d z<+\infty
$$

Nonlocal ABP Maximum Principles: Elliptic Case

Nonlocal Upper Contact Set: For a function $w: \mathbb{R}^{n} \rightarrow \mathbb{R}$ we define the nonlocal upper contact set

$$
\begin{aligned}
\Gamma_{\Omega}^{n,+}(w):=\left\{x \in \Omega: w(x)>\sup _{\Omega^{c}} w, \exists p\right. \text { such that } \\
\left.w(y) \leq w(x)+\langle p, y-x\rangle \text { for } y \in \Omega_{d}\right\},
\end{aligned}
$$

where $\Omega_{d}:=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}(x, \Omega)<d\right\}, d:=\operatorname{diam}(\Omega)$.
Difference compared to the usual upper contact set: Inequality is required to hold on the larger set Ω_{d} and the whole Ω^{c} plays the role of the boundary.

Non-local Classical ABP Maximum Principle

Theorem (Non-local Classical ABP)
Let Ω be a bounded domain in $\mathbb{R}^{n}, f \in L^{n}(\Omega)$ and let R be a number such that $\operatorname{diam}(\Omega) \leq R$. Then there exists a constant
$C=C(n, \lambda, \gamma, R, K(\cdot))$ such that if $u \in W_{\mathrm{loc}}^{2, n}(\Omega) \cap C_{b}\left(\mathbb{R}^{n}\right)$ is a strong subsolution of the extremal integro-PDE then

$$
\sup _{\Omega} u \leq \sup _{\Omega^{c}} u+C \operatorname{diam}(\Omega)\left\|f^{+}\right\|_{L^{n}\left(\Gamma_{\Omega}^{n,+}(u)\right)}
$$

The proof is an adaptation of the classical proof (e.g. from Gilbarg-Trudinger), using some technical estimates of the non-local terms.

Non-local Generalized ABP Maximum Principle

Theorem (Non-local Generalized ABP)

Let Ω be a bounded domain in \mathbb{R}^{n} and let $p_{0}<p<n$, where $p_{0}=p_{0}(n, \Lambda / \lambda)$ is the exponent from the Classical Generalized ABP Maximum Principle. Suppose that $f \in L^{p}(\Omega)$ and R is a number such that $\operatorname{diam}(\Omega) \leq R$. Then there exists a constant $C=C(n, p, \lambda, \Lambda, \gamma, R, K(\cdot))$, such that if $u \in W_{\mathrm{loc}}^{2, p}(\Omega) \cap C_{b}\left(\mathbb{R}^{n}\right)$ is a strong subsolution of the extremal integro-PDE, then

$$
\sup _{\Omega} u \leq \sup _{\Omega^{c}} u+C(\operatorname{diam}(\Omega))^{2-\frac{n}{p}}\left\|f^{+}\right\|_{L^{p}(\Omega)}
$$

Non-local Generalized ABP Maximum Principle

IDEA OF PROOF: Perform infinite sequence of perturbations of the subsolution u by solutions of Pucci extremal equations to obtain a subsolution of similar equation with right hand side g in L^{q} for $q>n$, with L^{q} norm of g controlled by the L^{p} norm of the original f^{+}. Then use the first non-local ABP maximum principle.

- Scaling and Smoothing: By rescaling $v(x):=u(r x), r=\operatorname{diam}(\Omega)$ and approximation of v by mollification we reduce the problem to a problem where v is smooth, Ω is contained in the unit ball, the new kernels $M_{\alpha}(x, z):=r^{n+2} N_{\alpha}(r x, r z)$, the new $K_{1}(z):=r^{n+2} K(r z)$, and the new right hand side function f (which is an approximation of $\left.f(x):=r^{2} f^{+}(r x)\right)$ is in L^{q} for every $q<\infty$. We only control the L^{p} norms of f, the L^{q} norms of the approximations may blow up. This requires careful estimates for the approximations for the non-local terms.
We set

$$
q=p^{*}=n p /(n-p)
$$

Non-local Generalized ABP Maximum Principle

- Iteration: Take $u_{1} \in W_{\mathrm{loc}}^{2, q}\left(B_{2}\right) \cap C\left(\bar{B}_{2}\right)$ to be the solution of

$$
\left\{\begin{array}{l}
\mathcal{P}^{+}\left(D^{2} u_{1}\right)+\gamma R\left|D u_{1}\right|=-f(x) \text { in } B_{2} \\
u_{1}=0 \text { on } \partial B_{2}
\end{array}\right.
$$

where we extended f by 0 outside of Ω. We have

$$
\begin{gathered}
\left\|u_{1}\right\|_{W^{2, p}\left(B_{\frac{3}{2}}\right)} \leq C_{1}\|f\|_{L^{p}(\Omega)} \\
\left\|u_{1}\right\|_{W^{2, q}\left(B_{\frac{3}{2}}\right)} \leq C_{1}\|f\|_{L^{q}(\Omega)} \\
\sup _{B_{2}}\left|u_{1}\right| \leq C_{2}\|f\|_{L^{p}(\Omega)}
\end{gathered}
$$

Extend u_{1} to \mathbb{R}^{n} by setting $u_{1}=0$ on B_{2}^{c}. Then the function $v_{1}=v+u_{1} \in W^{2, q}\left(B_{\frac{3}{2}}\right) \cap C_{b}\left(\mathbb{R}^{n}\right)$ satisfies

Non-local Generalized ABP Maximum Principle

$$
\begin{aligned}
& \mathcal{P}^{-}\left(D^{2} v_{1}(x)\right)-\gamma R\left|D v_{1}(x)\right| \\
& -\sup _{\alpha \in \mathcal{A}}\left\{\int_{\mathbb{R}^{n}}\left[v_{1}(x+z)-v_{1}(x)-\left\langle D v_{1}(x), z\right\rangle \mathbf{1}_{\{|z|<1 / r\}}(z)\right] M_{\alpha}(x, z) d z\right\} \\
& \leq \int_{\mathbb{R}^{n}}\left|u_{1}(x+z)-u_{1}(x)-\left\langle D u_{1}(x), z\right\rangle \mathbf{1}_{\{|z|<1 / r\}}(z)\right| K_{1}(z) d z \\
& =\int_{B_{\delta}}+\int_{B_{\delta}^{c}}=: g_{1}(x)+h_{1}(x),
\end{aligned}
$$

where $\delta>0$ depends on constants C_{1}, C_{2} above and other absolute quantities and is chosen so that we can get

$$
\begin{gathered}
\left\|g_{1}\right\|_{L^{p}(\Omega)} \leq \frac{1}{2}\|f\|_{L^{p}(\Omega)}, \quad\left\|g_{1}\right\|_{L^{q}(\Omega)} \leq \frac{1}{2}\|f\|_{L^{q}(\Omega)} \\
\left\|h_{1}\right\|_{L^{q}(\Omega)} \leq C_{3}\|f\|_{L^{p}(\Omega)} .
\end{gathered}
$$

Non-local Generalized ABP Maximum Principle

We extend g_{1} by 0 outside of Ω and take $u_{2} \in W_{\text {loc }}^{2, q}\left(B_{2}\right) \cap C\left(\bar{B}_{2}\right)$ to be the unique solution of

$$
\left\{\begin{array}{l}
\mathcal{P}^{+}\left(D^{2} u_{2}\right)+\gamma R\left|D u_{2}\right|=-g_{1}(x) \quad \text { in } B_{2} \\
u_{2}=0 \text { on } \partial B_{2}
\end{array}\right.
$$

We have

$$
\sup _{B_{2}}\left|u_{2}\right| \leq C_{2}\left\|g_{1}\right\|_{L^{p}(\Omega)} \leq \frac{C_{2}}{2}\|f\|_{L^{p}(\Omega)}
$$

We extend u_{1} to \mathbb{R}^{n} by $u_{1}=0$ on B_{2}^{c}. Then $v_{2}=v_{1}+u_{2}$ is a subsolution of

$$
\begin{aligned}
& \mathcal{P}^{-}\left(D^{2} v_{2}(x)\right)-\gamma R\left|D v_{2}(x)\right| \\
& -\sup _{\alpha \in \mathcal{A}}\left\{\int_{\mathbb{R}^{n}}\left[v_{2}(x+z)-v_{2}(x)-\left\langle D v_{2}(x), z\right\rangle \mathbf{1}_{\{|z|<1 / r\}}(z)\right] M_{\alpha}(x, z) d z\right\} \\
& \leq g_{2}(x)+h_{2}(x)
\end{aligned}
$$

in Ω, where

Non-local Generalized ABP Maximum Principle

$$
\begin{gathered}
\left\|g_{2}\right\|_{L^{p}(\Omega)} \leq \frac{1}{2}\left\|g_{1}\right\|_{L^{p}(\Omega)} \leq \frac{1}{4}\|f\|_{L^{p}(\Omega)} \\
\left\|g_{2}\right\|_{L^{q}(\Omega)} \leq \frac{1}{2}\left\|g_{1}\right\|_{L^{q}(\Omega)} \leq \frac{1}{4}\|f\|_{L^{q}(\Omega)} \\
\left\|h_{2}\right\|_{L^{q}(\Omega)} \leq C_{3}\left(1+\frac{1}{2}\right)\|f\|_{L^{p}(\Omega)}, \quad\left\|h_{1}-h_{2}\right\|_{L^{q}(\Omega)} \leq \frac{C_{3}}{2}\|f\|_{L^{p}(\Omega)}
\end{gathered}
$$

We continue the process. This way we construct a sequence $u_{m} \in W_{\mathrm{loc}}^{2, q}\left(B_{2}\right) \cap C\left(\bar{B}_{2}\right)$ of solutions of

$$
\left\{\begin{array}{l}
\mathcal{P}^{+}\left(D^{2} u_{m}\right)+\gamma R\left|D u_{m}\right|=-g_{m-1}(x) \text { in } B_{2}, \\
u_{m}=0 \text { on } \partial B_{2}, \\
\left\|u_{m}\right\|_{W^{2, q}\left(B_{\frac{3}{3}}\right)} \leq \frac{C_{1}}{2^{m-1}}\|f\|_{L^{q}(\Omega)}, \\
\quad \sup _{B_{2}}\left|u_{m}\right| \leq \frac{C_{2}}{2^{m-1}}\|f\|_{L^{p}(\Omega)}
\end{array}\right.
$$

Non-local Generalized ABP Maximum Principle

 such that $v_{m}=v_{m-1}+u_{m}$ is a subsolution of$$
\begin{aligned}
& \mathcal{P}^{-}\left(D^{2} v_{m}(x)\right)-\gamma R\left|D v_{m}(x)\right|-\sup _{\alpha \in \mathcal{A}}\left\{\int _ { \mathbb { R } ^ { n } } \left[v_{m}(x+z)-v_{m}(x)\right.\right. \\
& \left.\left.-\left\langle D v_{m}(x), z\right\rangle \mathbf{1}_{\{|z|<1 / r\}}(z)\right] M_{\alpha}(x, z) d z\right\} \leq g_{m}(x)+h_{m}(x)
\end{aligned}
$$

in Ω, where

$$
\begin{gathered}
\left\|g_{m}\right\|_{L^{p}(\Omega)} \leq \frac{1}{2^{m}}\|f\|_{L^{p}(\Omega)} \\
\left\|g_{m}\right\|_{L^{q}(\Omega)} \leq \frac{1}{2^{m}}\|f\|_{L^{q}(\Omega)} \\
\left\|h_{m}\right\|_{L^{q}(\Omega)} \leq C_{3}\left(1+\frac{1}{2}+\ldots+\frac{1}{2^{m-1}}\right)\|f\|_{L^{p}(\Omega)} \\
\left\|h_{m}-h_{m-1}\right\|_{L^{q}(\Omega)} \leq \frac{C_{3}}{2^{m-1}}\|f\|_{L^{p}(\Omega)} .
\end{gathered}
$$

Non-local Generalized ABP Maximum Principle

- Passage to the limit: There exists $w \in W^{2, q}\left(B_{\frac{3}{2}}\right) \cap C_{b}\left(\mathbb{R}^{n}\right), w=v$ on B_{2}^{c}, such that $v_{m} \rightarrow w$ uniformly in \mathbb{R}^{n} and $\left\|v_{m}-w\right\|_{W^{2, q}\left(B_{\frac{3}{2}}\right)} \rightarrow 0$ as $m \rightarrow+\infty$. We prove that w is a subsolution of

$$
\begin{aligned}
& \mathcal{P}^{-}\left(D^{2} w(x)\right)-\gamma R|D w(x)| \\
& -\sup _{\alpha \in \mathcal{A}}\left\{\int_{\mathbb{R}^{n}}\left[w(x+z)-w(x)-\langle D w(x), z\rangle \mathbf{1}_{\{|z|<1 / r\}}(z)\right] M_{\alpha}(x, z) d z\right\} \\
& \quad \leq h(x) \quad \text { in } \Omega .
\end{aligned}
$$

for some $h \in L^{q}(\Omega)$ such that

$$
\|h\|_{L^{q}(\Omega)} \leq 2 C_{3}\|f\|_{L^{p}(\Omega)}
$$

Non-local Generalized ABP Maximum Principle

- Conclusion: Applying the first non-local ABP maximum principle we obtain

$$
\sup _{\Omega} w \leq \sup _{\Omega^{c}} w+C\|h\|_{L^{q}(\Omega)} \leq \sup _{\Omega^{c}} w+2 C C_{3}\|f\|_{L^{p}(\Omega)} .
$$

It remains to use the L^{∞} estimates for the functions u_{m} to conclude

$$
\sup _{\Omega} v \leq \sup _{\Omega^{c}} v+2 C_{2}\|f\|_{L^{p}(\Omega)} \sum_{m=1}^{\infty} \frac{1}{2^{m-1}}+2 C C_{4}\|f\|_{L^{p}(\Omega)}
$$

Non-local ABP Maximum Principle: Parabolic Case

$Q=(-T, 0] \times \Omega$ for some $T>0$. The non-local parabolic boundary of Q is defined by

$$
\partial_{p n} Q:=\left(\{-T\} \times \mathbb{R}^{n}\right) \cup\left([-T, 0] \times \Omega^{c}\right) .
$$

Parabolic Non-local Upper Contact Set: For a function
$v:[-T, 0] \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ we define the non-local parabolic upper contact set

$$
\begin{aligned}
& \Gamma_{Q}^{n,+}(v):=\left\{(t, x) \in Q: v(t, x)>\sup _{\partial_{p n} Q} v,\right. \\
& \left.\quad \exists p \text { such that } v(s, y) \leq v(t, x)+\langle p, y-x\rangle \text { for }(s, y) \in[-T, t] \times \Omega_{d}\right\} .
\end{aligned}
$$

Compared to the usual parabolic upper contact set, inequality is required to hold on the larger set $[-T, t] \times \Omega_{d}$ and the standard parabolic boundary $\partial_{p} Q$ is replaced by $\partial_{p n} Q$.

Non-local ABP Maximum Principle: Parabolic Case

Theorem (Parabolic Non-local Classical ABP)

Let Ω be a bounded domain in $\mathbb{R}^{n}, T>0, f \in L^{n+1}(Q)$ and let R be a number such that $\operatorname{diam}(Q) \leq R$. Then there exists a constant $C=C(n, \lambda, \gamma, R, K(\cdot))$ such that if $u \in W_{\mathrm{loc}}^{1,2, n+1}(Q) \cap C_{b}\left([-T, 0] \times \mathbb{R}^{n}\right)$ is a strong subsolution of the extremal integro-PDE

$$
\begin{aligned}
u_{t}+ & \mathcal{P}^{-}\left(D^{2} u\right)-\gamma|D u|-\sup _{\alpha \in \mathcal{A}}\left\{\int_{\mathbb{R}^{n}}[u(t, x+z)-u(t, x)\right. \\
& \left.\left.-\langle D u(t, x), z\rangle \mathbf{1}_{\{|z|<1\}}(z)\right] N_{\alpha}(t, x, z) d z\right\} \leq f(t, x) \quad \text { in } Q
\end{aligned}
$$

then

$$
\sup _{Q} u \leq \sup _{\partial_{p n} Q} u+C \operatorname{diam}(\Omega)^{\frac{n}{n+1}}\left\|f^{+}\right\|_{L^{n+1}\left(\Gamma_{Q}^{n,+}(u)\right)}
$$

Non-local ABP Maximum Principle: Parabolic Case

Theorem (Parabolic Non-local Generalized ABP)

Let Ω be a bounded domain in $\mathbb{R}^{n}, T>0$ and let $p_{1}<p<n+1$, where p_{1} is the exponent from the Classical Generalized ABP Maximum Principle. Suppose that $f \in L^{p}(Q)$. and R is a number such that $\operatorname{diam}(Q) \leq R$. Then there exists a constant $C=C(n, p, T, \lambda, \Lambda, \gamma, R, K(\cdot))$ such that if $u \in W_{\text {loc }}^{1,2, p}(Q) \cap C_{b}\left([-T, 0] \times \mathbb{R}^{n}\right)$ is a strong subsolution of the extremal integro-PDE then

$$
\sup _{Q} u \leq \sup _{\partial_{p n} Q} u+C(\operatorname{diam}(Q))^{2-\frac{n+2}{p}}\left\|f^{+}\right\|_{L^{p}(Q)}
$$

