Existence and concentration of solutions of some fully nonlinear equations

Filomena Pacella

Sapienza Università di Roma

BIRS Workshop: Mostly Maximum Principle

April 2-7, 2017

Consider fully nonlinear elliptic equations of the type

$$\begin{cases} -F(x, D^2 u) = |u|^{p-1} u & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(FNE)

where

Ω smooth bounded domain in ℝ^N, N ≥ 2, p > 1 (other nonlinearities f(x, u) with growth controlled by some power)

Consider fully nonlinear elliptic equations of the type

$$\begin{cases} -F(x, D^2 u) = |u|^{p-1} u & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(FNE)

where

- Ω smooth bounded domain in ℝ^N, N ≥ 2, p > 1 (other nonlinearities f(x, u) with growth controlled by some power)
- F = F(x, M), $M \in S_N$ = space of $N \times N$ symmetric matrices, $x \in \Omega$, is uniformly elliptic, i.e.

$$\lambda Tr(P) \leq F(x, M + P) - F(x, M) \leq \Lambda Tr(P)$$

for some constants $0 < \lambda \leq \Lambda$ and any $x \in \Omega$, $M, P \in \mathcal{S}_N$, $P \geq 0$

The uniform ellipticity is equivalent to

$$\mathcal{M}^{-}_{\lambda,\Lambda}(M-P) \leq F(x,M) - F(x,P) \leq \mathcal{M}^{+}_{\lambda,\Lambda}(M-P)$$

for any $x \in \Omega$, $M, P \in \mathcal{S}_N$.

 $\mathcal{M}_{\lambda,\Lambda}^{-}$ and $\mathcal{M}_{\lambda,\Lambda}^{+}$ are the Pucci's extremal operators with ellipticity constants $0 < \lambda \leq \Lambda$, i.e.

The uniform ellipticity is equivalent to

$$\mathcal{M}^{-}_{\lambda,\Lambda}(M-P) \leq F(x,M) - F(x,P) \leq \mathcal{M}^{+}_{\lambda,\Lambda}(M-P)$$

for any $x \in \Omega$, $M, P \in \mathcal{S}_N$.

 $\mathcal{M}_{\lambda,\Lambda}^{-}$ and $\mathcal{M}_{\lambda,\Lambda}^{+}$ are the Pucci's extremal operators with ellipticity constants $0 < \lambda \leq \Lambda$, i.e.

$$\mathcal{M}^{-}_{\lambda,\Lambda}(M) = \inf_{A \in \mathcal{A}_{\lambda,\Lambda}} Tr(AM) = \lambda \sum_{\mu_i > 0} \mu_i + \Lambda \sum_{\mu_i < 0} \mu_i$$

$$\mathcal{M}^+_{\lambda,\Lambda}(M) = \sup_{A \in \mathcal{A}_{\lambda,\Lambda}} Tr(AM) = \Lambda \sum_{\mu_i > 0} \mu_i + \lambda \sum_{\mu_i < 0} \mu_i$$

where $A_{\lambda,\Lambda} = \{A \in S_N : \lambda I_N \le A \le \Lambda I_N\}$, (I_N identity matrix), and μ_1, \ldots, μ_N are the eigenvalues of the matrix $M \in S_N$

- Pucci's extremal operators act as barriers for the whole class of uniformly elliptic operators
- They play a crucial role in the regularity theory for fully nonlinear elliptic equations [Caffarelli-Cabré, AMS book 1995]
- Pucci's extremal operators appear in the context of stochastic control [Bensoussan-Lions, book 1982]

- Pucci's extremal operators act as barriers for the whole class of uniformly elliptic operators
- They play a crucial role in the regularity theory for fully nonlinear elliptic equations [Caffarelli-Cabré, AMS book 1995]
- Pucci's extremal operators appear in the context of stochastic control [Bensoussan-Lions, book 1982]
- They can be seen as a generalization of the Laplace operator

$$\Delta(\cdot) = Tr(D^2 \cdot)$$

In particular we could consider the problem

$$\begin{cases} -\mathcal{M}^+_{\lambda,\Lambda}(D^2 u) = |u|^{p-1} u & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(PE)

(as well as $\mathcal{M}^-_{\lambda,\Lambda})$

In particular we could consider the problem

$$\begin{cases} -\mathcal{M}^+_{\lambda,\Lambda}(D^2 u) = |u|^{p-1} u & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(PE)

(as well as $\mathcal{M}^{-}_{\lambda,\Lambda}$)

Comparison with the extensively studied Lane-Emden problem

$$\begin{cases} -\Delta u = |u|^{p-1}u & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
(LE)

… Crucial differences but also some similarities !

• In (LE) linear second order variational operator while in (PE) nonvariational fully nonlinear

- In (LE) linear second order variational operator while in (PE) nonvariational fully nonlinear
- What do they have in common?

- In (LE) linear second order variational operator while in (PE) nonvariational fully nonlinear
- What do they have in common?

Mostly Maximum Principle

which allows to prove properties of solutions of (FNE)

- In (LE) linear second order variational operator while in (PE) nonvariational fully nonlinear
- What do they have in common?

Mostly Maximum Principle

which allows to prove properties of solutions of (FNE)

Moving plane method (Alexandrov; Serrin; Gidas-Ni-Nirenberg), which relies on maximum principles, used to get symmetry results works also for solutions of (FNE) ([Da Lio-Sirakov 2007], [Birindelli-Demengel 2013]).

- In (LE) linear second order variational operator while in (PE) nonvariational fully nonlinear
- What do they have in common?

Mostly Maximum Principle

which allows to prove properties of solutions of (FNE)

Moving plane method (Alexandrov; Serrin; Gidas-Ni-Nirenberg), which relies on maximum principles, used to get symmetry results works also for solutions of (FNE) ([Da Lio-Sirakov 2007], [Birindelli-Demengel 2013]).

Also other kind of symmetry results in the same spirit of those obtained in [P. 2002] and [P.-Weth 2007] via *Morse index* can be proved for solutions of (FNE) ([Birindelli-Leoni-P. 2015]) because they rely on maximum principles.

Existence of solutions of (FNE)

If *F* is $\mathcal{M}_{\lambda,\Lambda}^{\pm}$, an existence result for positive/negative solutions in general smooth bounded domains [Quaas-Sirakov 2011] holds under the "subcritical" assumption

$$p \leq p^{+} = \frac{N_{+}}{\tilde{N}_{+} - 2}, \quad \tilde{N}_{+} = \frac{\lambda}{\Lambda}(N - 1) + 1 \quad \left(\text{for } \mathcal{M}_{\lambda,\Lambda}^{+}\right)$$
$$p \leq p^{-} = \frac{\tilde{N}_{-}}{\tilde{N}_{-} - 2}, \quad \tilde{N}_{-} = \frac{\Lambda}{\lambda}(N - 1) + 1 \quad \left(\text{for } \mathcal{M}_{\lambda,\Lambda}^{-}\right)$$

Existence of solutions of (FNE)

If F is $\mathcal{M}_{\lambda,\Lambda}^{\pm}$, an existence result for positive/negative solutions in general smooth bounded domains [Quaas-Sirakov 2011] holds under the "subcritical" assumption

$$p \leq p^{+} = \frac{\tilde{N}_{+}}{\tilde{N}_{+} - 2}, \quad \tilde{N}_{+} = \frac{\lambda}{\Lambda}(N - 1) + 1 \quad \left(\text{for } \mathcal{M}_{\lambda,\Lambda}^{+}\right)$$
$$p \leq p^{-} = \frac{\tilde{N}_{-}}{\tilde{N}_{-} - 2}, \quad \tilde{N}_{-} = \frac{\Lambda}{\lambda}(N - 1) + 1 \quad \left(\text{for } \mathcal{M}_{\lambda,\Lambda}^{-}\right)$$

Note that when $\lambda = \Lambda$ then $p^+ = p^- = \frac{N}{N-2}$ is the so-called *Serrin* exponent.

Proof based on a fixed point theorem and relies on a-priori estimates which, in turn, derive from Cauchy-Liouville type nonexistence results in \mathbb{R}^N or in the half space \mathbb{R}^N_+ through a blow-up procedure ([Cutrì-Leoni 2000], [Quaas-Sirakov 2011]).

It can be extended to more general uniformly elliptic fully nonlinear equation ([Armstrong-Sirakov 2011]).

A more precise result has been obtained in the *radial case* [Felmer-Quaas 2003] in the ball. They prove the existence of a critical exponent p_{+}^{*} (resp. p_{-}^{*}) such that

It can be extended to more general uniformly elliptic fully nonlinear equation ([Armstrong-Sirakov 2011]).

A more precise result has been obtained in the *radial case* [Felmer-Quaas 2003] in the ball. They prove the existence of a critical exponent p_{+}^{*} (resp. p_{-}^{*}) such that

- for $p < p^*_+$ (resp. p^*_-) (PE) has a positive radial solution
- for p ≥ p^{*}₊ (resp. p^{*}_−) (PE) does not have any positive radial solution

It can be extended to more general uniformly elliptic fully nonlinear equation ([Armstrong-Sirakov 2011]).

A more precise result has been obtained in the *radial case* [Felmer-Quaas 2003] in the ball. They prove the existence of a critical exponent p_{+}^{*} (resp. p_{-}^{*}) such that

- for $p < p^*_+$ (resp. p^*_-) (PE) has a positive radial solution
- for p ≥ p^{*}₊ (resp. p^{*}_−) (PE) does not have any positive radial solution
- p_+^* (resp. p_-^*) is not explicitly known but:

$$\frac{N+2}{N-2} < p_{+}^{*} < \frac{\tilde{N}_{+}+2}{\tilde{N}_{+}-2}$$
$$\frac{\tilde{N}_{-}+2}{\tilde{N}_{-}-2} < p_{-}^{*} < \frac{N+2}{N-2}$$

 $(p^*_+$ related to $\mathcal{M}^+_{\lambda,\Lambda}$ and p^*_- related to $\mathcal{M}^-_{\lambda,\Lambda})$

 p^*_+ and p^*_- can be characterized as the only exponents p > 1 for which the analogous of (PE) in the whole \mathbb{R}^N admits a positive fast decaying radial solution U^+ (resp. U^-), i.e.

$$U^{\pm} \stackrel{r o \infty}{\longrightarrow} 0$$
 as $rac{1}{r^{ ilde{N}_{\pm}-2}}$

 p^*_+ and p^*_- can be characterized as the only exponents p > 1 for which the analogous of (PE) in the whole \mathbb{R}^N admits a positive fast decaying radial solution U^+ (resp. U^-), i.e.

$$U^{\pm} \stackrel{r
ightarrow \infty}{\longrightarrow} 0$$
 as $rac{1}{r^{ ilde{N}_{\pm}-2}}$

Concerning *sign changing solutions*, essentially no result except [Quaas-Allendes 2011] for other nonlinear terms through bifurcation from radial eigenvalues for extremal operators of Pucci type.

 p^*_+ and p^*_- can be characterized as the only exponents p > 1 for which the analogous of (PE) in the whole \mathbb{R}^N admits a positive fast decaying radial solution U^+ (resp. U^-), i.e.

$$U^{\pm} \stackrel{r
ightarrow \infty}{\longrightarrow} 0$$
 as $rac{1}{r^{ ilde{N}_{\pm}-2}}$

Concerning *sign changing solutions*, essentially no result except [Quaas-Allendes 2011] for other nonlinear terms through bifurcation from radial eigenvalues for extremal operators of Pucci type.

Remark

Note that sign changing solutions cannot be treated in the same way as the one-sign solutions. This is observed also at eigenvalues level.

THE SEMILINEAR CASE

$$\begin{cases} -\Delta u = |u|^{p-1}u & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$

(S)

 $\rho>1,\,\Omega\subset\mathbb{R}^N$ bounded smooth domain.

THE SEMILINEAR CASE

$$\begin{cases} -\Delta u = |u|^{p-1}u & \text{in } \Omega\\ u = 0 & \text{on } \partial \Omega \end{cases}$$

(S)

 $p>1,\,\Omega\subset\mathbb{R}^N$ bounded smooth domain.

No solutions (neither positive/negative or sign changing) if

$$p \geq rac{N+2}{N-2} \;, \;\; N \geq 3 \;, \;\; \Omega \; \textit{star-shaped (Pohozaev)}.$$

THE SEMILINEAR CASE

$$\begin{cases} -\Delta u = |u|^{p-1}u & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

(S)

p > 1, $\Omega \subset \mathbb{R}^N$ bounded smooth domain.

No solutions (neither positive/negative or sign changing) if

$$p \geq \frac{N+2}{N-2}$$
, $N \geq 3$, Ω star-shaped (Pohozaev).

Existence of solutions in any bounded domains if

$$p < \frac{N+2}{N-2}$$
 (N \ge 3), $p > 1$ (N = 2)

or

$$p = \frac{N+2}{N-2}$$
, Ω nontrivial topology
 $p > \frac{N+2}{N-2}$, some domains (holes)

Semilinear problem is variational so the bound on the exponent is related to the *lack of compactness for the Sobolev embedding*

$$H^1_0(\Omega) \hookrightarrow L^{2^*}(\Omega) \ , \quad 2^* = rac{2N}{N-2}$$

which does not allow to use standard variational methods to produce solutions.

Semilinear problem is variational so the bound on the exponent is related to the *lack of compactness for the Sobolev embedding*

$$\mathcal{H}^1_0(\Omega) \hookrightarrow \mathcal{L}^{2^*}(\Omega) \ , \quad 2^* = rac{2N}{N-2}$$

which does not allow to use standard variational methods to produce solutions.

However topological or geometrical conditions on Ω can change the situation (fundamental contribution by Bahri-Coron). In domains with nontrivial topology there exists at least a positive solution even if

$$p = \frac{N+2}{N-2} = 2^* - 1$$

Then many other contributions also for supercritical nonlinearities.

Then many other contributions also for supercritical nonlinearities. In particular if

$$\Omega = A_{a,b} = \left\{ x \in \mathbb{R}^N : \ 0 < a < |x| < b \right\}$$

the compact embedding of the space

$$\mathit{H}^{1}_{0,\mathsf{rad}}(\mathit{A}_{\mathsf{a},b}) = \left\{\mathit{u} \in \mathit{H}^{1}_{0}(\mathit{A}_{\mathsf{a},b}) \, : \, \mathit{u} ext{ is radial}
ight\}$$

into $L_{rad}^{p}(A_{a,b})$ for any p > 1 implies the existence of a positive/negative solution for every p > 1.

And also the existence of ∞ many sign changing radial solutions can be proved $\forall p > 1$.

Filomena Pacella - Sapienza Università di Roma April 5, 2017 - Mostly Maximum Principle

Q1 Are there (positive/negative) solutions beyond the "critical" exponents p_{+}^{*} or p_{-}^{*} ?

- Q1 Are there (positive/negative) solutions beyond the "critical" exponents p_{+}^{*} or p_{-}^{*} ?
- Q2 Existence of sign changing solutions? Multiplicity? Infinitely many? (Also in the subcritical case)

- Q1 Are there (positive/negative) solutions beyond the "critical" exponents p_{+}^{*} or p_{-}^{*} ?
- Q2 Existence of sign changing solutions? Multiplicity? Infinitely many? (Also in the subcritical case)
- Q3 Does the topology or geometry of Ω have any relation with existence or nonexistence of solutions of (FNE)?

- Q1 Are there (positive/negative) solutions beyond the "critical" exponents p_{+}^{*} or p_{-}^{*} ?
- Q2 Existence of sign changing solutions? Multiplicity? Infinitely many? (Also in the subcritical case)
- Q3 Does the topology or geometry of Ω have any relation with existence or nonexistence of solutions of (FNE)?
- Q4 Does a concentration phenomenum appear in approaching the "critical exponent"?

Theorem 1 [Galise-Leoni-P. 2016-2017]

If *F* is radially symmetric and $F(x, 0) \equiv 0$ then in any annulus $A_{a,b}$ the fully nonlinear problem

$$\begin{cases} -F(x, D^2 u) = |u|^{p-1} u & \text{in } A_{a,b} \\ u = 0 & \text{on } \partial A_{a,b} \end{cases}$$

has a positive and a negative radial solution for any p > 1.

Theorem 1 [Galise-Leoni-P. 2016-2017]

If *F* is radially symmetric and $F(x, 0) \equiv 0$ then in any annulus $A_{a,b}$ the fully nonlinear problem

$$\begin{cases} -F(x, D^2 u) = |u|^{p-1} u & \text{in } A_{a,b} \\ u = 0 & \text{on } \partial A_{a,b} \end{cases}$$

has a positive and a negative radial solution for any p > 1.

 \diamond Proof relies on careful study of the associated ODE problem (easier if *p* subcritical, but not obvious if *p* \geq critical) and the maximum principle.

In our case by the uniform ellipticity condition we reduce to study the following differential inequalities :

$$\begin{cases} -\mathcal{M}_{\lambda,\Lambda}^+\left(\frac{u'(r)}{r}I_N+\left(u''(r)-\frac{u'(r)}{r}\right)e_1\otimes e_1\right)\leq u^p(r)\\ -\mathcal{M}_{\lambda,\Lambda}^-\left(\frac{u'(r)}{r}I_N+\left(u''(r)-\frac{u'(r)}{r}\right)e_1\otimes e_1\right)\geq u^p(r)\end{cases}$$

(eigenvalues of the Hessian matrix are u''(r) which is simple and $\frac{u'(r)}{r}$ which has multiplicity N-1).

In our case by the uniform ellipticity condition we reduce to study the following differential inequalities :

$$\begin{cases} -\mathcal{M}_{\lambda,\Lambda}^+\left(\frac{u'(r)}{r}I_N+\left(u''(r)-\frac{u'(r)}{r}\right)e_1\otimes e_1\right)\leq u^p(r)\\ -\mathcal{M}_{\lambda,\Lambda}^-\left(\frac{u'(r)}{r}I_N+\left(u''(r)-\frac{u'(r)}{r}\right)e_1\otimes e_1\right)\geq u^p(r)\end{cases}$$

(eigenvalues of the Hessian matrix are u''(r) which is simple and $\frac{u'(r)}{r}$ which has multiplicity N-1).

So, according to the monotonicity and the convexity of u we can distinguish three different cases:

 C_1 : $u'(r) \ge 0$ and $u''(r) \le 0$, so that u satisfies

$$\begin{cases} -\lambda u''(r) - \Lambda(n-1)\frac{u'(r)}{r} \le u^p(r) \\ -\Lambda u''(r) - \lambda(n-1)\frac{u'(r)}{r} \ge u^p(r) \end{cases}$$

 C_1 : $u'(r) \ge 0$ and $u''(r) \le 0$, so that u satisfies

$$\begin{cases} -\lambda u''(r) - \Lambda(n-1)\frac{u'(r)}{r} \le u^p(r) \\ -\Lambda u''(r) - \lambda(n-1)\frac{u'(r)}{r} \ge u^p(r) \end{cases}$$

C₂: $u'(r) \leq 0$ and $u''(r) \leq 0$, so that u satisfies

$$\begin{cases} -\lambda \left(u''(r) + (n-1)\frac{u'(r)}{r} \right) \leq u^p(r) \\ -\Lambda \left(u''(r) + (n-1)\frac{u'(r)}{r} \right) \geq u^p(r) \end{cases}$$

 C_1 : $u'(r) \ge 0$ and $u''(r) \le 0$, so that u satisfies

$$\begin{cases} -\lambda u''(r) - \Lambda(n-1)\frac{u'(r)}{r} \le u^p(r) \\ -\Lambda u''(r) - \lambda(n-1)\frac{u'(r)}{r} \ge u^p(r) \end{cases}$$

 C_2 : $u'(r) \le 0$ and $u''(r) \le 0$, so that u satisfies

$$\begin{cases} -\lambda \left(u''(r) + (n-1)\frac{u'(r)}{r} \right) \leq u^p(r) \\ -\Lambda \left(u''(r) + (n-1)\frac{u'(r)}{r} \right) \geq u^p(r) \end{cases}$$

C₃: $u'(r) \leq 0$ and $u''(r) \geq 0$, so that u satisfies

$$\begin{cases} -\Lambda u''(r) - \lambda(n-1)\frac{u'(r)}{r} \le u^p(r) \\ -\lambda u''(r) - \Lambda(n-1)\frac{u'(r)}{r} \ge u^p(r) \end{cases}$$

Idea of the proof

As a consequence of the uniform ellipticity the associated ODE can be written in normal form as:

$$\begin{cases} u''(r) = \mathcal{G}\left(r, \frac{u'(r)}{r}, -u^p(r)\right) & \text{if } a < r < b\\ u(r) > 0 & \text{if } a < r < b\\ u(a) = u(b) = 0 \end{cases}$$

with $\mathcal{G}(r, \cdot, \cdot)$ uniformly Lipschitz continuous.

Idea of the proof

As a consequence of the uniform ellipticity the associated ODE can be written in normal form as:

$$\begin{cases} u''(r) = \mathcal{G}\left(r, \frac{u'(r)}{r}, -u^p(r)\right) & \text{if } a < r < b\\ u(r) > 0 & \text{if } a < r < b\\ u(a) = u(b) = 0 \end{cases}$$

with $\mathcal{G}(r, \cdot, \cdot)$ uniformly Lipschitz continuous. Then we consider initial value problem

$$\begin{cases} u''(r) = \mathcal{G}\left(r, \frac{u'(r)}{r}, -u^p(r)\right) & \text{if } r > a\\ u(a) = 0, \quad u'(a) = \alpha \end{cases}$$
(IVP)

 α is the shooting parameter.

(IVP) has a unique positive solution $u(r, \alpha)$ defined on a maximal interval $[a, \varrho(\alpha)), \ \varrho(\alpha) \leq +\infty$.

? Prove that $\forall p > 1$ and for any a, b with 0 < a < b there exists $\alpha > 0$ such that $\varrho(\alpha) = b$?

(IVP) has a unique positive solution $u(r, \alpha)$ defined on a maximal interval $[a, \varrho(\alpha)), \ \varrho(\alpha) \leq +\infty$.

? Prove that $\forall p > 1$ and for any a, b with 0 < a < b there exists $\alpha > 0$ such that $\varrho(\alpha) = b$?

Preliminary question:

? Are there α 's for which $\varrho(\alpha) < +\infty$?

Remark

Note that if $\varrho(\alpha) = +\infty$ it means that there is a positive (super-)solution in the unbounded domain given by the exterior of the ball of radius a > 0, for a problem involving $\mathcal{M}_{\lambda,\Lambda}^-$.

(IVP) has a unique positive solution $u(r, \alpha)$ defined on a maximal interval $[a, \varrho(\alpha)), \ \varrho(\alpha) \leq +\infty$.

? Prove that $\forall p > 1$ and for any a, b with 0 < a < b there exists $\alpha > 0$ such that $\varrho(\alpha) = b$?

Preliminary question:

? Are there α 's for which $\varrho(\alpha) < +\infty$?

Remark

Note that if $\varrho(\alpha) = +\infty$ it means that there is a positive (super-)solution in the unbounded domain given by the exterior of the ball of radius a > 0, for a problem involving $\mathcal{M}^{-}_{\lambda,\Lambda}$. But [Armstrong-Sirakov 2011] proved a nonexistence result if p subcritical. So the subcritical case is easier because at least we know that $\varrho(\alpha) < +\infty \ \forall \alpha > 0$. If p > 1 is any exponent we have to study carefully the function $\varrho(\alpha)$ and also the maximum point $\tau(\alpha)$ and the maximum value $u(\tau(\alpha), \alpha)$, as α varies.

We succeed in proving (maximum principle, principal eigenvalues) that $\forall p > 1$ there exists α^* such that for $\alpha > \alpha^*$ the radius $\varrho(\alpha)$ is finite. So that the set

$$D = \{ \alpha \in (0, +\infty) : \varrho(\alpha) < +\infty \}$$

contains an unbounded connected component $(\alpha^*, +\infty)$ which can be proved to be sent onto the interval $(a, +\infty)$ by the continuous function $\varrho(\alpha)$. Theorem 1 is the key point to get the existence of infinitely many **sign changing solutions** in the annulus or in the ball by a "gluing" technique, inspired by [Ikoma-Ishii, 2015]

Theorem 1 is the key point to get the existence of infinitely many **sign changing solutions** in the annulus or in the ball by a "gluing" technique, inspired by [lkoma-lshii, 2015]

Theorem 2 [Galise-Leoni-P. 2016-2017]

In any annulus $A_{a,b}$, for any p > 1 and for any $k \in \mathbb{N}$ there exist two solutions u_k^+ and u_k^- of (FNE) having precisely k nodal regions $(u_k^+(0) > 0, u_k^-(0) < 0)$.

Theorem 1 is the key point to get the existence of infinitely many **sign changing solutions** in the annulus or in the ball by a "gluing" technique, inspired by [lkoma-lshii, 2015]

Theorem 2 [Galise-Leoni-P. 2016-2017]

In any annulus $A_{a,b}$, for any p > 1 and for any $k \in \mathbb{N}$ there exist two solutions u_k^+ and u_k^- of (FNE) having precisely k nodal regions $(u_k^+(0) > 0, u_k^-(0) < 0)$.

 \diamond The proof of this result is done by induction showing that it is possible to divide the interval [a, b] in k sub-intervals

$$\left[a = r_{k,0}^+, r_{k,1}^+\right], \quad \left[r_{k,1}^+, r_{k,2}^+\right], \quad \dots, \quad \left[r_{k,j-1}^+, r_{k,j}^+ = b\right]_{j=1,\dots,k}$$

in such a way that choosing in each annulus $A_{r_{k,j-1}^+,r_{k,j}^+}$ the positive or negative solution found before (in an alternate way) the resulting function u_k^+ is a classical smooth solution of the fully nonlinear problem (FNE).

The same "gluing" method together with a rescaling argument can be also used in any ball B_R if p is *subcritical*.

Theorem 3 [Galise-Leoni-P. 2016-2017]

If $\Omega = B_R$, F = F(M) is positively homogeneous and radially symmetric, and p subcritical, then for any $k \in \mathbb{N}$ there exist two solutions u_k^+ and u_k^- of (FNE), having exactly k nodal regions $(u_k^+(0) > 0, u_k^-(0) < 0)$.

The same "gluing" method together with a rescaling argument can be also used in any ball B_R if p is *subcritical*.

Theorem 3 [Galise-Leoni-P. 2016-2017]

If $\Omega = B_R$, F = F(M) is positively homogeneous and radially symmetric, and p subcritical, then for any $k \in \mathbb{N}$ there exist two solutions u_k^+ and u_k^- of (FNE), having exactly k nodal regions $(u_k^+(0) > 0, u_k^-(0) < 0)$.

The exponent is *subcritical* because we construct the sign changing solutions gluing the one-sign solution in the ball which exists for p subcritical and the radial solutions in the annuli we have got in Theorem 1.

What about **concentration phenomena** as $p \nearrow p_{\pm}^*$?

What about **concentration phenomena** as $p \nearrow p_{\pm}^*$?

Consider the problem

$$\begin{cases} -\mathcal{M}_{\lambda,\Lambda}^{\pm}(D^2u) = u^{p_{\varepsilon}} & \text{in } B\\ u > 0 & \text{in } B\\ u = 0 & \text{on } \partial B \end{cases}$$

B is the unit ball in \mathbb{R}^N and u_{ε}^{\pm} the unique positive solution for $p_{\varepsilon} = p_{\pm}^* - \varepsilon$.

What about **concentration phenomena** as $p \nearrow p_{\pm}^*$?

Consider the problem

$$\begin{cases} -\mathcal{M}_{\lambda,\Lambda}^{\pm}(D^2u) = u^{p_{\varepsilon}} & \text{in } B\\ u > 0 & \text{in } B\\ u = 0 & \text{on } \partial B \end{cases}$$

B is the unit ball in \mathbb{R}^N and u_{ε}^{\pm} the unique positive solution for $p_{\varepsilon} = p_{\pm}^* - \varepsilon$. We know that u_{ε}^{\pm} is radial and that • $\exists ! r_0(\varepsilon) \in (0, 1)$ such that $u_{\varepsilon}''(r_0(\varepsilon)) = 0$ • $u_{\varepsilon}''(r) < 0$ for $r \in (0, r_0(\varepsilon))$ and $u_{\varepsilon}''(r) > 0$ in $(r_0(\varepsilon), 1)$

What about **concentration phenomena** as $p \nearrow p_{\pm}^*$?

Consider the problem

$$\begin{cases} -\mathcal{M}_{\lambda,\Lambda}^{\pm}(D^2u) = u^{p_{\varepsilon}} & \text{in } B\\ u > 0 & \text{in } B\\ u = 0 & \text{on } \partial B \end{cases}$$

B is the unit ball in \mathbb{R}^N and u_{ε}^{\pm} the unique positive solution for $p_{\varepsilon} = p_{\pm}^* - \varepsilon$. We know that u_{ε}^{\pm} is radial and that • $\exists ! r_0(\varepsilon) \in (0, 1)$ such that $u_{\varepsilon}''(r_0(\varepsilon)) = 0$ • $u_{\varepsilon}''(r) < 0$ for $r \in (0, r_0(\varepsilon))$ and $u_{\varepsilon}''(r) > 0$ in $(r_0(\varepsilon), 1)$ • $u_{\varepsilon}'(r) < 0 \ \forall r \in (0, 1]), u_{\varepsilon}'(0) = 0$ and $u_{\varepsilon}(0) = ||u_{\varepsilon}||_{\infty} = M_{\varepsilon}$ $(u_{\varepsilon} \text{ is } u_{\varepsilon}^+ \text{ or } u_{\varepsilon}^-)$

:

• $M_{\varepsilon} \to \infty$ as $\varepsilon \to 0$ (by maximum principle)

• $M_{\varepsilon} \to \infty$ as $\varepsilon \to 0$ (by maximum principle)

•
$$\tilde{u}_{\varepsilon}(x) = \frac{1}{M_{\varepsilon}} u_{\varepsilon} \left(\frac{x}{M_{\varepsilon}^{\frac{p_{\varepsilon}-1}{2}}} \right) \qquad x \in \tilde{B}_{\varepsilon} = M_{\varepsilon}^{\frac{p_{\varepsilon}-1}{2}} B$$

 $\tilde{u}_{\varepsilon} \to U_{1}^{*} \quad \text{in } C_{\mathsf{loc}}^{2}(\mathbb{R}^{N}) \text{ as } \varepsilon \to 0$

where U_1^* is the only radial fast decaying solution of the analogous problem in \mathbb{R}^N (either with $\mathcal{M}^+_{\lambda,\Lambda}$ or $\mathcal{M}^-_{\lambda,\Lambda}$) with $U_1^*(0) = 1$

• $M_{\varepsilon} \rightarrow \infty$ as $\varepsilon \rightarrow 0$ (by maximum principle)

•
$$\tilde{u}_{\varepsilon}(x) = \frac{1}{M_{\varepsilon}} u_{\varepsilon} \left(\frac{x}{M_{\varepsilon}^{\frac{p_{\varepsilon}-1}{2}}} \right) \qquad x \in \tilde{B}_{\varepsilon} = M_{\varepsilon}^{\frac{p_{\varepsilon}-1}{2}} B$$

 $\tilde{u}_{\varepsilon} \to U_{1}^{*} \quad \text{in } C_{\mathsf{loc}}^{2}(\mathbb{R}^{N}) \text{ as } \varepsilon \to 0$

where U_1^* is the only radial fast decaying solution of the analogous problem in \mathbb{R}^N (either with $\mathcal{M}^+_{\lambda,\Lambda}$ or $\mathcal{M}^-_{\lambda,\Lambda}$) with $U_1^*(0) = 1$

• $r_0(\varepsilon)M_{\varepsilon}^{\frac{\rho_{\varepsilon}-1}{2}} \to R_0^*$ and $(U_1^*)''(R_0^*) = 0$ In particular $r_0(\varepsilon) \to 0$ and $u_{\varepsilon}(r_0(\varepsilon)) \to \infty$ as $\varepsilon \to 0$

• $M_{\varepsilon} \rightarrow \infty$ as $\varepsilon \rightarrow 0$ (by maximum principle)

•
$$\tilde{u}_{\varepsilon}(x) = \frac{1}{M_{\varepsilon}} u_{\varepsilon} \left(\frac{x}{M_{\varepsilon}^{\frac{p_{\varepsilon}-1}{2}}} \right) \qquad x \in \tilde{B}_{\varepsilon} = M_{\varepsilon}^{\frac{p_{\varepsilon}-1}{2}} B$$

 $\tilde{u}_{\varepsilon} \to U_{1}^{*} \quad \text{in } C_{\mathsf{loc}}^{2}(\mathbb{R}^{N}) \text{ as } \varepsilon \to 0$

where U_1^* is the only radial fast decaying solution of the analogous problem in \mathbb{R}^N (either with $\mathcal{M}^+_{\lambda,\Lambda}$ or $\mathcal{M}^-_{\lambda,\Lambda}$) with $U_1^*(0) = 1$

• $r_0(\varepsilon)M_{\varepsilon}^{\frac{p_{\varepsilon}-1}{2}} \to R_0^*$ and $(U_1^*)''(R_0^*) = 0$ In particular $r_0(\varepsilon) \to 0$ and $u_{\varepsilon}(r_0(\varepsilon)) \to \infty$ as $\varepsilon \to 0$

*u*_ε → 0 locally uniformly in *B*\{0} as ε → 0 (for M⁻_{λ,Λ})

Filomena Pacella - Sapienza Università di Roma April 5, 2017 - Mostly Maximum Principle

OQ1 Find the values of $p_{\pm}^*(\lambda, \Lambda)$ or better estimates and also identify a "higher" critical exponent which works in nonradial domains.

- OQ1 Find the values of $p_{\pm}^*(\lambda, \Lambda)$ or better estimates and also identify a "higher" critical exponent which works in nonradial domains.
- OQ2 Understand better the role of p_{\pm}^* , in particular in view of the concentration of solutions.

- OQ1 Find the values of $p_{\pm}^*(\lambda, \Lambda)$ or better estimates and also identify a "higher" critical exponent which works in nonradial domains.
- OQ2 Understand better the role of p_{\pm}^* , in particular in view of the concentration of solutions.
- OQ3 Existence of positive/negative solutions in other domains with a hole for p critical or supercritical.

- OQ1 Find the values of $p_{\pm}^*(\lambda, \Lambda)$ or better estimates and also identify a "higher" critical exponent which works in nonradial domains.
- OQ2 Understand better the role of p_{\pm}^* , in particular in view of the concentration of solutions.
- OQ3 Existence of positive/negative solutions in other domains with a hole for p critical or supercritical.
- OQ4 Understand the role of the geometry/topology of the domain in existence results.

- OQ1 Find the values of $p_{\pm}^*(\lambda, \Lambda)$ or better estimates and also identify a "higher" critical exponent which works in nonradial domains.
- OQ2 Understand better the role of p_{\pm}^* , in particular in view of the concentration of solutions.
- OQ3 Existence of positive/negative solutions in other domains with a hole for p critical or supercritical.
- OQ4 Understand the role of the geometry/topology of the domain in existence results.
- OQ5 Uniqueness of positive/negative radial solution in an annulus (some results by [Birindelli-Galise-Leoni]).