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- (X , 〈 , 〉) Riemannian, u ∈ C2(X ).

- Finite maximum principle: if x0 ∈ X max point of u,

u(x0) = sup
X

u, |∇u(x0)| = 0, ∇2u(x0) ≤ 0

- X noncompact, u bounded above. Look for {xk} ⊂ X satisfying:

(Ekeland) u(xk )→ sup
X

u, |∇u(xk )| → 0

(Omori) u(xk )→ sup
X

u, |∇u(xk )| → 0, ∇2u(xk ) ≤ 1
k
〈 , 〉

(Yau) u(xk )→ sup
X

u, |∇u(xk )| → 0, ∆u(xk ) ≤ 1
k
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- (X , d) metric. Then [Ekeland ’74, Weston ’77, Sullivan ’81]

X complete ⇐⇒ X has the Ekeland principle

Definition
X has the Ekeland principle if ∀u ∈ USC(X ) bounded above, there
exists a sequence {xk} ⊂ X such that:

u(xk )→ sup
X

u, u(y) ≤ u(xk ) +
1
k

dist(xk , y) ∀ y ∈ X .

- Omori (Yau) holds if X complete and, for r(x) = dist(x ,o) ≥ 1

Sect ≥ −B2r2 (Ric ≥ −B2r2);

X → Rn proper with bounded mean curvature.
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An Example [H. Omori ’67, M.-Rigoli ’10]
ϕ : X m → R2m−1 isometric immersion, X complete.

v ∈ S2m. Non-degenerate cone:

Cv ,ε =
{

x ∈ R2m+1 : 〈 x
|x |
, v〉 ≥ ε

}
.

Theorem
If −B2r2 ≤ Sect ≤ 0, for a constant B > 0, then X cannot be contained
into a non-degenerate cone of R2m−1.

Suppose ϕ(X ) ⊂ Cv ,ε. Fix T = 〈ϕ(x0), v〉, a ∈ (0, ε). Define

u(x) =
√

T 2 + a2|ϕ(x)|2 − 〈ϕ(x), v〉

=⇒ u < T on X , ϕ
(
{u > 0}

)
is bounded.
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u(x) =
√

T 2 + a2|ϕ(x)|2 − 〈ϕ(x), v〉, a ∈ (0, ε).

x ∈ {u > 0}, W ∈ TxX , |W | = 1

∇2u(W ,W ) =
a2(1 + 〈II(W ,W ), ϕ〉√

T 2 + a2|ϕ|2
− 〈II(W ,W ), v〉 − a4〈W , ϕ〉2

(T 2 + a2|ϕ|2)3/2

≥ a2T 2

(T 2 + a2|ϕ|2)3/2 + | II(W ,W )|
{
. . .
}
.

[Otsuki]: ∃W : II(W ,W ) = 0

∇2u(W ,W ) ≥ a2T 2

(T 2 + a2|ϕ|2)3/2 ≥ c > 0 on {u > 0}.
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- X Riemannian. Omori (Yau) principle holds if

∃w ∈ C2(X\K ) (K cpt.) with

w ≤ 0 on X\K , w(x)→ −∞ as x diverges,

|∇w | ≤ 1, ∇2w ≥ −〈 , 〉 (∆w ≥ −1), λ > 0.

- [Pigola-Rigoli-Setti ’05 + Kim-Lee, Fontenele-Barreto,
Bessa-Lima-Pessoa]

- Weak maximum principles [Pigola-Rigoli-Setti]. Look for {xk} ⊂ X
satisfying

(weak Hessian) u(xk )→ sup
X

u, ∇2u(xk ) ≤ 1
k
〈 , 〉

(weak Laplacian) u(xk )→ sup
X

u, ∆u(xk ) ≤ 1
k

Weak Laplacian 6≡ Strong Laplacian! [Borbely ’17]
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ADVANTAGES:
- Weak formulation: Weak Laplacian principle holds iff ∀u ∈ C2(X )

bounded above and solving

∆u ≥ f (u) on Ωγ = {u > γ}

for some f ∈ C(R), then f (supX u) ≤ 0.

- Volume growth criteria:

lim inf
r→+∞

log vol(Br )

r2 < +∞ =⇒ ∆ has weak Laplacian principle.

- Generalizations: for

0 < A ∈ C(R+), 0 < b ∈ C(X ), 0 < l ∈ C(R+), f ∈ C(R)

Def: (bl)−1∆A has weak max. principle if

div
(
A(|∇u|)∇u

)
≥ b(x)f (u)l(|∇u|) on Ωγ ⇒ f (sup

X
u) ≤ 0.

[Mitidieri-Pohozaev, Mitidieri-D’Ambrosio ’12, Farina-Serrin ’11]
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RELATION WITH STOCHASTIC ANALYSIS
X Riemannian, p(x , y , t) heat Kernel of X .

Brownian motion
Bt :

(
Ω,Ft ,P

)
→ X

X = X ∪ {∞} Alexandrov compactification.

P
(
Bt ∈ X : B0 = x

) .
=

ˆ
X

p(x , y , t)dy ≤ 1.

If it is 1 for some (any) (x , t), we say that X is stochastically
complete.

Y Martingale on X . If

P
(
Yt ∈ X : Y0 = x

)
= 1 for each (x , t),

we say that X is martingale complete [M. Emery]
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RELATION WITH STOCHASTIC ANALYSIS:

[Khas’minskii, Feller, Grigor’Yan, Pigola-Rigoli-Setti, M.-Valtorta].

Equivalence between

1) X has weak Laplacian principle;

2) X is stochastically complete (Brownian motion has infinite lifetime
a.s.);

3) X has the Khas’minskii property:

∃w ∈ C2(X\K ) (K cpt.) with

w ≤ 0 on X\K , w(x)→ −∞ as x diverges,

∆w ≥ −1.

- X has weak Laplacian principle 6⇒ X (geodesically) complete.

- For martingale completeness?
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Krylov and Harvey-Lawson’s approach
- J2(X )→ X 2-jet bundle, with fibers J2

x (X )

J2(X ) = R⊕ T ∗X ⊕ Sym2(T ∗X )

J 7→ (x , r ,p,A)

- For u ∈ C2(X ), J2u : X → J2(X ),

J2
x u =

(
u(x), du(x),∇2u(x)

)
- u ∈ C2(X )

∆u ≥ f (u) ⇐⇒ J2u ∈ F .
=
{

tr(A) ≥ f (r)
}

- We identify P,N ⊂ J2(X ),

Px
.

=
{

(0,0,A) : A ≥ 0
}
, Nx

.
=
{

(c,0,0) : c ≤ 0
}
,
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- F ⊂ J2(X ) subequation if it satisfies

(P) : F + P ⊂ F , (N) : F + N ⊂ F ,

(T ) : F = IntF , Fx = IntFx , (IntF )x = Int(Fx )

Examples: if f ∈ C0(R) non-decreasing,

I E =
{
|p| ≤ 1

}
(eikonal);

I F =
{

tr(A) ≥ f (r)
}

;

I F =
{
λj (A) ≥ f (r)

}
, λ1(A) ≤ . . . ≤ λm(A) eigenvalues of A;

I F =
{
λ1(A) + . . .+ λk (A) ≥ f (r)

}
(k -subharmonics);

I F =
{

p 6= 0, A(p,p) > 0
}

(∞-Laplacian);

I F =
{

p 6= 0, tr(T (p)A) > f (r)
}

(quasilinear);

I Examples from Gärding hyperbolic polynomials.
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F -Subharmonics and duality
- u ∈ C2(X ) is F -subharmonic if J2

x u ∈ Fx ∀ x ∈ X .

- If u ∈ USC(X ),

a test at x is φ ∈ C2 touching u from above at x .
u is F -subharmonic if

∀ x ∈ X , φ test at x =⇒ J2
xφ ∈ Fx .

- F (X )
.

=
{

u : u is F -subharmonic on X
}

.

- F -superharmonics? DIRICHLET DUAL (Examples)

F̃ = ¬
(
− IntF

)
∼ is a duality: F̃ ∩G = F̃ ∪ G̃, ˜̃F = F .

- u ∈ F̃ (X ) if and only if −u is “F -superharmonic".

- u is F -harmonic if u ∈ F (X ), −u ∈ F̃ (X ).
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Ahlfors and Khas’minskii property
X m Riemannian, F subequation, F0

.
= F ∪

{
r ≤ 0

}
.

Definition
F has the Ahlfors property iff for each U ⊂ X open and u ∈ F0(U)
bounded above,

sup
∂U

u+ = sup
U

u.

- [Ahlfors, Alias-Miranda-Rigoli-Albanese]

- Alhfors for:{
tr(A) ≥ 1

}
⇒ weak Laplacian principle (stochastic completeness){

λm(A) ≥ 1
}
⇒ (viscosity) weak Hessian principle{

tr(A) ≥ 0
}

⇒ parabolicity

(UFC) April 3, 2017 13 / 19



Ahlfors and Khas’minskii property
X m Riemannian, F subequation, F0

.
= F ∪

{
r ≤ 0

}
.

Definition
F has the Ahlfors property iff for each U ⊂ X open and u ∈ F0(U)
bounded above,

sup
∂U

u+ = sup
U

u.

- [Ahlfors, Alias-Miranda-Rigoli-Albanese]

- Alhfors for:{
tr(A) ≥ 1

}
⇒ weak Laplacian principle (stochastic completeness){

λm(A) ≥ 1
}
⇒ (viscosity) weak Hessian principle{

tr(A) ≥ 0
}

⇒ parabolicity

(UFC) April 3, 2017 13 / 19



Ahlfors and Khas’minskii property
X m Riemannian, F subequation, F0

.
= F ∪

{
r ≤ 0

}
.

Definition
F has the Ahlfors property iff for each U ⊂ X open and u ∈ F0(U)
bounded above,

sup
∂U

u+ = sup
U

u.

- [Ahlfors, Alias-Miranda-Rigoli-Albanese]

- Alhfors for:{
tr(A) ≥ 1

}
⇒ weak Laplacian principle (stochastic completeness){

λm(A) ≥ 1
}
⇒ (viscosity) weak Hessian principle{

tr(A) ≥ 0
}

⇒ parabolicity

(UFC) April 3, 2017 13 / 19



Ahlfors and Khas’minskii property
X m Riemannian, F subequation, F0

.
= F ∪

{
r ≤ 0

}
.

Definition
F has the Ahlfors property iff for each U ⊂ X open and u ∈ F0(U)
bounded above,

sup
∂U

u+ = sup
U

u.

- [Ahlfors, Alias-Miranda-Rigoli-Albanese]

- Alhfors for:{
tr(A) ≥ 1

}
⇒ weak Laplacian principle (stochastic completeness){

λm(A) ≥ 1
}
⇒ (viscosity) weak Hessian principle{

tr(A) ≥ 0
}

⇒ parabolicity

(UFC) April 3, 2017 13 / 19



Viscosity Ekeland and Omori-Yau principles:

Ẽ =
{
|p| ≥ 1

}
⇒ (viscosity) Ekeland principle{

tr(A) ≥ 1
}
∪
{
|p| ≥ 1

}
⇒ (viscosity) Yau principle{

λm(A) ≥ 1
}
∪
{
|p| ≥ 1

}
⇒ (viscosity) Omori principle

Linear operators Lu = bijuij + piui

Ahlfors for{
Lu ≥ 1

} ⇐⇒

∀Ω ⊂ M open, c ∈ L∞(Ω),

∀u : Lu + c(x)u ≥ 1 on Ω,
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(K ,h) pair if

K ⊂ X cpt., h ∈ C(X\K ), h < 0,
h(x)→ −∞

as x →∞

Definition
F has the Khas’minskii property iff for each (K ,h) pair, there exists

w ∈ F (X\K ), h ≤ w ≤ 0, w(x)→ −∞ as x →∞.
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Theorem (M. - Pessoa)

Let F ⊂ J2(X ) subequation such that:

- negative constants c are strictly F-subharmonics: J2
x c ∈ IntFx ;

- F satisfies the comparison theorem: whenever Ω b X open, u ∈ F (Ω),
v ∈ F̃ (Ω),

u + v ≤ 0 on ∂Ω =⇒ u + v ≤ 0 on Ω;

- F is locally jet-equivalent to a universal Riemannian subequation F;

- Small balls in Rm are F-convex.

Then,

F̃ has Ahlfors prop. ⇐⇒ F has Khas’minskii prop.

F̃ ∪ Ẽ has Ahlfors prop. ⇐⇒ F ∩ E has Khas’minskii prop.
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Theorem (viscosity Ekeland principle)
X Riemannian. Are equivalent:

- X is complete;

- Ẽ =
{
|p| ≥ 1

}
has the Ahlfors property;

- F∞ =
{

p 6= 0,A(p,p) > 0
}

has the Ahlfors property;

- bounded, non-negative F∞-subharmonics on X are constant.

Theorem (viscosity Yau principle)
X Riemannian. Are equivalent:

- X has the viscosity Yau principle (Ahlfors for
{

tr(A) ≥ 1
}
∪ Ẽ);

-
{

tr(A) ≥ −1
}
∩ E has the Khas’minskii property.

X has viscosity Yau principle ⇒ X complete.

(UFC) April 3, 2017 17 / 19



Theorem (viscosity Ekeland principle)
X Riemannian. Are equivalent:

- X is complete;

- Ẽ =
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- Ẽ =
{
|p| ≥ 1

}
has the Ahlfors property;

- F∞ =
{

p 6= 0,A(p,p) > 0
}

has the Ahlfors property;

- bounded, non-negative F∞-subharmonics on X are constant.

Theorem (viscosity Yau principle)
X Riemannian. Are equivalent:

- X has the viscosity Yau principle (Ahlfors for
{

tr(A) ≥ 1
}
∪ Ẽ);
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∪ Ẽ);

-
{

tr(A) ≥ −1
}
∩ E has the Khas’minskii property.

X has viscosity Yau principle ⇒ X complete.

(UFC) April 3, 2017 17 / 19



Theorem (viscosity Ekeland principle)
X Riemannian. Are equivalent:

- X is complete;

- Ẽ =
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- Ẽ =
{
|p| ≥ 1

}
has the Ahlfors property;

- F∞ =
{

p 6= 0,A(p,p) > 0
}

has the Ahlfors property;

- bounded, non-negative F∞-subharmonics on X are constant.

Theorem (viscosity Yau principle)
X Riemannian. Are equivalent:

- X has the viscosity Yau principle (Ahlfors for
{

tr(A) ≥ 1
}
∪ Ẽ);

-
{

tr(A) ≥ −1
}
∩ E has the Khas’minskii property.

X has viscosity Yau principle ⇒ X complete.

(UFC) April 3, 2017 17 / 19



Uniqueness of the Hessian principle

Theorem
X Riemannian. Are equivalent:

-
{
λm(A) ≥ 1

}
has Ahlfors pr. (viscosity weak Hessian principle);

-
{
λm(A) ≥ 1

}
∪ Ẽ has Ahlfors pr. (viscosity Omori principle);

-
{
λ1(A) ≥ −1

}
∩ E has Khas’minskii pr. with C∞ potentials.

In particular any of the above imply X be martingale complete
(and complete).
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Immersions and submersions
(1) σ : X m → Y n isometric immersion, proper, ‖ II ‖∞ < +∞.

For k ≤ m, consider Fk =
{
λk (A) ≥ f (r)

}
Then,

Fn−k ∪ Ẽ is Ahlfors on Y ⇐⇒ Fm−k ∪ Ẽ is Ahlfors on X

(2) π : X m → Y n Riemannian submersion, compact fibers
Xy = π−1{y}.

IIy second fund. form of Xy , A integrability tensor.

Suppose ‖A‖∞ + ‖ IIy ‖∞ ≤ C for each y . Then{ n∑
j=n−k+1

λj(A) ≥ f (r)
}
∪ Ẽ has Ahlfors on Y ⇐⇒

⇔
{ m∑

j=m−k+1

λj(A) ≥ f (r)
}
∪ Ẽ has Ahlfors on X
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(2) π : X m → Y n Riemannian submersion, compact fibers
Xy = π−1{y}.

IIy second fund. form of Xy , A integrability tensor.

Suppose ‖A‖∞ + ‖ IIy ‖∞ ≤ C for each y . Then{ n∑
j=n−k+1

λj(A) ≥ f (r)
}
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