A class of highly degenerate elliptic operators: maximum principle and unusual phenomena

Based on a joint work with Isabeau Birindelli and Hitoshi Ishii

Giulio Galise

Sapienza Università di Roma

BIRS workshop - Mostly Maximum Principle
April 2-7, 2017
Banff International Research Station for Mathematical Innovation and Discovery

$$
F[u]:=F\left(x, u, D u, D^{2} u\right)=0 \quad \text { in } \Omega \subset \mathbb{R}^{N}
$$

$F: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{S}^{N} \mapsto \mathbb{R}$ continuous and degenerate elliptic, i.e.

$$
F(\cdot, \cdot, \cdot, X) \leq F(\cdot, \cdot, \cdot, Y) \text { whenever } X \leq Y \text { in } \mathbb{S}^{N}
$$

e.g.

$$
F[u]:=F\left(x, u, D u, D^{2} u\right)=0 \quad \text { in } \Omega \subset \mathbb{R}^{N}
$$

$F: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{S}^{N} \mapsto \mathbb{R}$ continuous and degenerate elliptic, i.e.

$$
F(\cdot, \cdot, \cdot, X) \leq F(\cdot, \cdot, \cdot, Y) \text { whenever } X \leq Y \text { in } \mathbb{S}^{N}
$$

e.g. " $+\Delta$ "

$$
F[u]:=F\left(x, u, D u, D^{2} u\right)=0 \quad \text { in } \Omega \subset \mathbb{R}^{N}
$$

$F: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{S}^{N} \mapsto \mathbb{R}$ continuous and degenerate elliptic, i.e.

$$
F(\cdot, \cdot, \cdot, X) \leq F(\cdot, \cdot, \cdot, Y) \text { whenever } X \leq Y \text { in } \mathbb{S}^{N}
$$

e.g. " $+\Delta$ "

Maximum Principle

\triangleright Weak Maximum Principle
$F[u] \geq 0$ in $\Omega, \quad \limsup u(x) \leq 0 \Longrightarrow u \leq 0$ in Ω $x \rightarrow \partial \Omega$

$$
F[u]:=F\left(x, u, D u, D^{2} u\right)=0 \quad \text { in } \Omega \subset \mathbb{R}^{N}
$$

$F: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{S}^{N} \mapsto \mathbb{R}$ continuous and degenerate elliptic, i.e.

$$
F(\cdot, \cdot, \cdot, X) \leq F(\cdot, \cdot, \cdot, Y) \text { whenever } X \leq Y \text { in } \mathbb{S}^{N}
$$

e.g. " $+\Delta$ "

Maximum Principle

\triangleright Weak Maximum Principle
$F[u] \geq 0$ in $\Omega, \quad \limsup u(x) \leq 0 \Longrightarrow u \leq 0$ in Ω

$$
x \rightarrow \partial \Omega
$$

\triangleright Strong Maximum Principle

$$
F[u] \geq 0 \text { in } \Omega, \quad u \leq 0 \text { in } \Omega \Longrightarrow \text { either } u<0 \text { or } u \equiv 0
$$

A class of degenerate operators

For $X \in \mathbb{S}^{N}$ let $\lambda_{1}(X) \leq \ldots \leq \lambda_{N}(X) \in \operatorname{spec}(X)$ and $N \geq k \in \mathbb{N}$. We shall consider

$$
\begin{aligned}
& \mathcal{P}_{k}^{-}(X)=\lambda_{1}(X)+\ldots+\lambda_{k}(X) \\
& \mathcal{P}_{k}^{+}(X)=\lambda_{N-k+1}(X)+\ldots+\lambda_{N}(X)
\end{aligned}
$$

some sort of "truncated Laplacians": $\mathcal{P}_{N}^{ \pm}(X)=\operatorname{Tr}(X)$, arising in:

A class of degenerate operators

For $X \in \mathbb{S}^{N}$ let $\lambda_{1}(X) \leq \ldots \leq \lambda_{N}(X) \in \operatorname{spec}(X)$ and $N \geq k \in \mathbb{N}$. We shall consider

$$
\begin{aligned}
& \mathcal{P}_{k}^{-}(X)=\lambda_{1}(X)+\ldots+\lambda_{k}(X) \\
& \mathcal{P}_{k}^{+}(X)=\lambda_{N-k+1}(X)+\ldots+\lambda_{N}(X)
\end{aligned}
$$

some sort of "truncated Laplacians": $\mathcal{P}_{N}^{ \pm}(X)=\operatorname{Tr}(X)$, arising in: Differential geometry
\triangleright Handlebodies and p-convexity [Sha, J. Differential Geom. 1987]
\triangleright Manifolds of partially positive curvature [Wu, Indiana Univ. Math. J. 1987]
\triangleright Level set approach to mean curvature flow in arbitrary codimension [Ambrosio-Soner,
J. Differential Geom. 1990]

PDEs

\triangleright Dirichlet Duality and the Nonlinear Dirichlet Problem [Harvey-Lawson, Comm. Pure Appl. Math. 2009]
\triangleright Some remarks on singular solutions of nonlinear elliptic equations. I [Caffarelli-LiNirenberg, J. Fixed Point Theory Appl. 2009]

- The Dirichlet problem for the convex envelope [Oberman-Silvestre, Trans. Amer. Math. Soc. 2011]
\triangleright On the inequality $F\left(x, D^{2} u\right) \geq f(u)+g(u)|D u|^{q}$ [Capuzzo Dolcetta-Leoni-Vitolo, Math. Ann. 2016]
\triangleright Removable singularities for degenerate elliptic Pucci operators [G.-Vitolo, Adv. Differential Equations 2017]

A class of degenerate operators

For $X \in \mathbb{S}^{N}$ let $\lambda_{1}(X) \leq \ldots \leq \lambda_{N}(X) \in \operatorname{spec}(X)$ and $N \geq k \in \mathbb{N}$. We shall consider

$$
\begin{aligned}
& \mathcal{P}_{k}^{-}(X)=\lambda_{1}(X)+\ldots+\lambda_{k}(X) \\
& \mathcal{P}_{k}^{+}(X)=\lambda_{N-k+1}(X)+\ldots+\lambda_{N}(X)=-\mathcal{P}_{k}^{-}(-X),
\end{aligned}
$$

some sort of "truncated Laplacians": $\mathcal{P}_{N}^{ \pm}(X)=\operatorname{Tr}(X)$, arising in: Differential geometry
\triangleright Handlebodies and p-convexity [Sha, J. Differential Geom. 1987]
\triangleright Manifolds of partially positive curvature [Wu, Indiana Univ. Math. J. 1987]
\triangleright Level set approach to mean curvature flow in arbitrary codimension [Ambrosio-Soner,
J. Differential Geom. 1990]

PDEs

\triangleright Dirichlet Duality and the Nonlinear Dirichlet Problem [Harvey-Lawson, Comm. Pure Appl. Math. 2009]
\triangleright Some remarks on singular solutions of nonlinear elliptic equations. I [Caffarelli-LiNirenberg, J. Fixed Point Theory Appl. 2009]

- The Dirichlet problem for the convex envelope [Oberman-Silvestre, Trans. Amer. Math. Soc. 2011]
\triangleright On the inequality $F\left(x, D^{2} u\right) \geq f(u)+g(u)|D u|^{q}$ [Capuzzo Dolcetta-Leoni-Vitolo, Math. Ann. 2016]
\triangleright Removable singularities for degenerate elliptic Pucci operators [G.-Vitolo, Adv. Differential Equations 2017]
$\mathcal{P}_{k}^{-}(\cdot)$ is a degenerate elliptic operator

$$
\begin{aligned}
& \lambda_{i}(X)=\min _{\operatorname{dim} V=i} \max _{v \in V} \frac{\langle X v, v\rangle}{\|} \quad i=1, \ldots, N \\
& X \leq Y \Rightarrow \quad \lambda_{i}(X) \leq \quad \lambda_{i}(Y)
\end{aligned}
$$

$\mathcal{P}_{k}^{-}(\cdot)$ is a degenerate elliptic operator

$$
\begin{aligned}
& \lambda_{i}(X)=\min _{\operatorname{dim} V=i} \max _{v \in V} \frac{\langle X v, v\rangle}{|v|^{2}} \quad i=1, \ldots, N \\
& X \leq Y \Rightarrow \quad \sum_{i=1}^{k} \lambda_{i}(X) \leq \sum_{i=1}^{k} \lambda_{i}(Y)
\end{aligned}
$$

$\mathcal{P}_{k}^{-}(\cdot)$ is a degenerate elliptic operator

$$
\begin{aligned}
& \lambda_{i}(X)= \min _{\operatorname{dim} V=i} \max _{v \in V} \frac{\langle X v, v\rangle}{|v|^{2}} \quad i=1, \ldots, N \\
& \Downarrow \\
& X \leq Y \Rightarrow \mathcal{P}_{k}^{-}(X)=\sum_{i=1}^{k} \lambda_{i}(X) \leq \sum_{i=1}^{k} \lambda_{i}(Y)=\mathcal{P}_{k}^{-}(Y)
\end{aligned}
$$

$\mathcal{P}_{k}^{-}(\cdot)$ is a degenerate elliptic operator

$$
\begin{aligned}
& \lambda_{i}(X)= \min _{\operatorname{dim} V=i} \max _{v \in V} \frac{\langle X v, v\rangle}{|v|^{2}} \quad i=1, \ldots, N \\
& \Downarrow \\
& X \leq Y \Rightarrow \mathcal{P}_{k}^{-}(X)=\sum_{i=1}^{k} \lambda_{i}(X) \leq \sum_{i=1}^{k} \lambda_{i}(Y)=\mathcal{P}_{k}^{-}(Y)
\end{aligned}
$$

If $k<N$, it is furthermore degenerate in any direction $v \in \mathbb{R}^{N}$, i.e.

$$
\min _{X \in \mathcal{S}^{N}}\left(\mathcal{P}_{k}^{-}(X+v \otimes v)-\mathcal{P}_{k}^{-}(X)\right)=0
$$

$\mathcal{P}_{k}^{-}(\cdot)$ is a degenerate elliptic operator

$$
\begin{gathered}
\lambda_{i}(X)=\min _{\operatorname{dim} V=i} \max _{v \in V} \frac{\langle X v, v\rangle}{|v|^{2}} \quad i=1, \ldots, N \\
\Downarrow \\
X \leq Y \Rightarrow \mathcal{P}_{k}^{-}(X)=\sum_{i=1}^{k} \lambda_{i}(X) \leq \sum_{i=1}^{k} \lambda_{i}(Y)=\mathcal{P}_{k}^{-}(Y)
\end{gathered}
$$

If $k<N$, it is furthermore degenerate in any direction $v \in \mathbb{R}^{N}$, i.e.

$$
\min _{X \in \mathcal{S}^{N}}\left(\mathcal{P}_{k}^{-}(X+v \otimes v)-\mathcal{P}_{k}^{-}(X)\right)=0
$$

just take $X=0$ and use $\operatorname{spec}(v \otimes v)=\{0, \ldots, 0,1\}$

Consider

$$
\left\{\begin{align*}
\mathcal{P}_{k}^{-}\left(D^{2} u\right)+H(x, D u)+\mu u & =f(x) & & \text { in } \Omega \tag{DP}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $f \in C(\Omega), \mu \in \mathbb{R}$, the Hamiltonian $H \in C\left(\Omega \times \mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
|H(x, \xi)| \leq b|\xi| \quad \forall(x, \xi) \in \Omega \times \mathbb{R}^{N} \tag{SC1}
\end{equation*}
$$

e.g. $H(x, D u)=b(x)|D u|$ or $H(x, D u)=\langle b(x), D u\rangle$ with $b \in L^{\infty}$

Aims

Consider

$$
\left\{\begin{align*}
\mathcal{P}_{k}^{-}\left(D^{2} u\right)+H(x, D u)+\mu u & =f(x) & & \text { in } \Omega \tag{DP}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $f \in C(\Omega), \mu \in \mathbb{R}$, the Hamiltonian $H \in C\left(\Omega \times \mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
|H(x, \xi)| \leq b|\xi| \quad \forall(x, \xi) \in \Omega \times \mathbb{R}^{N} \tag{SC1}
\end{equation*}
$$

e.g. $H(x, D u)=b(x)|D u|$ or $H(x, D u)=\langle b(x), D u\rangle$ with $b \in L^{\infty}$

Aims

- Validity (lack of) of the maximum/minimum principle, be it weak or strong (w.l.o.g. $\mu \geq 0$)

Consider

$$
\left\{\begin{align*}
\mathcal{P}_{k}^{-}\left(D^{2} u\right)+H(x, D u)+\mu u & =f(x) & & \text { in } \Omega \tag{DP}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $f \in C(\Omega), \mu \in \mathbb{R}$, the Hamiltonian $H \in C\left(\Omega \times \mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
|H(x, \xi)| \leq b|\xi| \quad \forall(x, \xi) \in \Omega \times \mathbb{R}^{N} \tag{SC1}
\end{equation*}
$$

e.g. $H(x, D u)=b(x)|D u|$ or $H(x, D u)=\langle b(x), D u\rangle$ with $b \in L^{\infty}$

Aims

- Validity (lack of) of the maximum/minimum principle, be it weak or strong (w.l.o.g. $\mu \geq 0$)
- Regularity of the solutions of (DP)

Consider

$$
\left\{\begin{align*}
\mathcal{P}_{k}^{-}\left(D^{2} u\right)+H(x, D u)+\mu u & =f(x) & & \text { in } \Omega \tag{DP}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $f \in C(\Omega), \mu \in \mathbb{R}$, the Hamiltonian $H \in C\left(\Omega \times \mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
|H(x, \xi)| \leq b|\xi| \quad \forall(x, \xi) \in \Omega \times \mathbb{R}^{N} \tag{SC1}
\end{equation*}
$$

e.g. $H(x, D u)=b(x)|D u|$ or $H(x, D u)=\langle b(x), D u\rangle$ with $b \in L^{\infty}$

Aims

- Validity (lack of) of the maximum/minimum principle, be it weak or strong (w.l.o.g. $\mu \geq 0$)
- Regularity of the solutions of (DP)
- Existence of principal eigenvalues and eigenfunctions

Consider

$$
\left\{\begin{align*}
\mathcal{P}_{k}^{-}\left(D^{2} u\right)+H(x, D u)+\mu u & =f(x) & & \text { in } \Omega \tag{DP}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $f \in C(\Omega), \mu \in \mathbb{R}$, the Hamiltonian $H \in C\left(\Omega \times \mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
|H(x, \xi)| \leq b|\xi| \quad \forall(x, \xi) \in \Omega \times \mathbb{R}^{N} \tag{SC1}
\end{equation*}
$$

e.g. $H(x, D u)=b(x)|D u|$ or $H(x, D u)=\langle b(x), D u\rangle$ with $b \in L^{\infty}$

Aims

- Validity (lack of) of the maximum/minimum principle, be it weak or strong (w.l.o.g. $\mu \geq 0$)
- Regularity of the solutions of (DP)
- Existence of principal eigenvalues and eigenfunctions
- Point out differences with respect to the uniformly elliptic case

Strong minimum principle

The strong minimum principle is closely related to the Hopf lemma and the weak Harnack inequality

Strong minimum principle

The strong minimum principle is closely related to the Hopf lemma and the weak Harnack inequality
Let

$$
w(|x|)=\left(1-|x|^{2}\right)^{\gamma} \quad \gamma>1
$$

The eigenvalues of the Hessian are

Strong minimum principle

The strong minimum principle is closely related to the Hopf lemma and the weak Harnack inequality
Let

$$
w(|x|)=\left(1-|x|^{2}\right)^{\gamma} \quad \gamma>1
$$

The eigenvalues of the Hessian are

$$
\begin{aligned}
& \lambda_{i}\left(D^{2} w\right)=\frac{w^{\prime}(|x|)}{|x|}=-2 \gamma\left(1-|x|^{2}\right)^{\gamma-1} \quad \text { for } i=1, \ldots, N-1 \\
& \lambda_{N}\left(D^{2} w\right)=w^{\prime \prime}(|x|)=\underbrace{-2 \gamma\left(1-|x|^{2}\right)^{\gamma-1}}_{=\lambda_{i}\left(D^{2} w\right)} \\
& +4|x|^{2} \gamma(\gamma-1)\left(1-|x|^{2}\right)^{\gamma-2} \\
& \left\{\begin{aligned}
\mathcal{P}_{k}^{-}\left(D^{2} w\right)<0 & \text { in } B_{1} \\
w>0 & \text { in } B_{1} \\
w=\partial_{\nu} w=0 & \text { on } \partial B_{1}
\end{aligned}\right.
\end{aligned}
$$

Strong minimum principle

The strong minimum principle is closely related to the Hopf lemma and the weak Harnack inequality
Let

$$
w(|x|)=\left(1-|x|^{2}\right)^{\gamma} \quad \gamma>1
$$

The eigenvalues of the Hessian are

$$
\begin{aligned}
\lambda_{i}\left(D^{2} w\right)=\frac{w^{\prime}(|x|)}{|x|} & =-2 \gamma\left(1-|x|^{2}\right)^{\gamma-1} \quad \text { for } i=1, \ldots, N-1 \\
\lambda_{N}\left(D^{2} w\right)=w^{\prime \prime}(|x|) & =\underbrace{-2 \gamma\left(1-|x|^{2}\right)^{\gamma-1}}_{=\lambda_{i}\left(D^{2} w\right)} \\
& +4|x|^{2} \gamma(\gamma-1)\left(1-|x|^{2}\right)^{\gamma-2}
\end{aligned}
$$

Then Hopf lemma does not hold for \mathcal{P}_{k}^{-}if $k<N$:

$$
\left\{\begin{aligned}
\mathcal{P}_{k}^{-}\left(D^{2} w\right)<0 & \text { in } B_{1} \\
w>0 & \text { in } B_{1} \\
w=\partial_{\nu} w=0 & \text { on } \partial B_{1}
\end{aligned}\right.
$$

Likewise for the weak Harnack inequality
Let

$$
u\left(x_{1}, \ldots, x_{N}\right)=\frac{1}{2} x_{N}^{2}
$$

then

$$
D^{2} u=\operatorname{diag}[0, \ldots, 0,1]
$$

and $(k<N)$

$$
\mathcal{P}_{k}^{-}\left(D^{2} u\right)=0 \text { in } B_{2}
$$

Nevertheless for any $p>0$ and any $C>0$

$$
\left(\frac{1}{\left|B_{1}\right|} \int_{B_{1}} u^{p}\right)^{\frac{1}{p}} \not \subset 0=C \inf _{B_{1}} u
$$

Maximum and Minimum Principle

Under the assumption (SC 1) and for any $k<N$, the operator

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)
$$

does not satisfy the strong minimum principle in any bounded domain Ω.
On the other hand the weak minimum principle holds true in

$$
\Omega \subseteq B_{R} \quad \text { if } \quad b R \leq k
$$

and the condition $b R \leq k$ is sharp (remember $H(x, D u) \approx b|D u|)$. The strong maximum principle holds true in any bounded domain since the boundary Hopf lemma applies to negative solutions u of

$$
\mathcal{P}_{k}^{-}\left(D^{2} u\right)+H(x, D u) \geq 0 \quad \text { in } \Omega
$$

Generalized principal eigenvalues

What about

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu
$$

when $\mu>0$?

Generalized principal eigenvalues

What about

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu .
$$

when $\mu>0$?
Linear uniformly elliptic case [Berestycki-Nirenberg-Varadhan, Comm. Pure Appl. Math. 1994]

$$
F[u]:=\operatorname{Tr}\left(A(x) D^{2} u\right)+b(x) \cdot D u+c(x) u
$$

the validity of the weak maximum (minimum) principle is related to the positivity of the principal eigenvalue
$\mu_{1}^{+}:=\sup \left\{\mu \in \mathbb{R}: \exists w \in W_{\text {loc }}^{2, N}(\Omega), w>0\right.$ and $F[u]+\mu w \leq 0$ in $\left.\Omega\right\}$

The BNV approach has been addressed in the fully nonlinear uniformly elliptic framework
[Busca-Esteban-Quaas, Birindelli-Demengel, Ishii-Yoshimura, Quaas-Sirakov, Armstrong, Patrizi, Ikoma-Ishii...]

$$
\begin{aligned}
F[u] & : \\
\mu_{1}^{+} & :=\sup \left\{\mu, u, D u, D^{2} u\right) \quad \text { homogeneous of degree } 1 \\
\mu_{1}^{-} & :=\sup \{\mu \in \mathbb{R}: \exists w \in \operatorname{LSC}(\Omega), w>0 \text { and } F[u]+\mu w \leq 0 \text { in } \Omega\} \\
& U S C(\Omega), w<0 \text { and } F[u]+\mu w \geq 0 \text { in } \Omega\}
\end{aligned}
$$

The BNV approach has been addressed in the fully nonlinear uniformly elliptic framework
[Busca-Esteban-Quaas, Birindelli-Demengel, Ishii-Yoshimura, Quaas-Sirakov, Armstrong, Patrizi, Ikoma-Ishii...]
$F[u]:=F\left(x, u, D u, D^{2} u\right) \quad$ homogeneous of degree 1
$\mu_{1}^{+}:=\sup \{\mu \in \mathbb{R}: \exists w \in \operatorname{LSC}(\Omega), w>0$ and $F[u]+\mu w \leq 0$ in $\Omega\}$
$\mu_{1}^{-}:=\sup \{\mu \in \mathbb{R}: \exists w \in U S C(\Omega), w<0$ and $F[u]+\mu w \geq 0$ in $\Omega\}$
In particular
(i) $\Omega_{1} \subset \Omega_{2}$ and $\left|\Omega_{2} \backslash \Omega_{1}\right|>0 \Rightarrow \mu_{1}^{ \pm}\left(\Omega_{1}\right)>\mu_{1}^{ \pm}\left(\Omega_{2}\right)$

The BNV approach has been addressed in the fully nonlinear uniformly elliptic framework
[Busca-Esteban-Quaas, Birindelli-Demengel, Ishii-Yoshimura, Quaas-Sirakov, Armstrong, Patrizi, Ikoma-Ishii...]
$F[u]:=F\left(x, u, D u, D^{2} u\right) \quad$ homogeneous of degree 1
$\mu_{1}^{+}:=\sup \{\mu \in \mathbb{R}: \exists w \in \operatorname{LSC}(\Omega), w>0$ and $F[u]+\mu w \leq 0$ in $\Omega\}$
$\mu_{1}^{-}:=\sup \{\mu \in \mathbb{R}: \exists w \in U S C(\Omega), w<0$ and $F[u]+\mu w \geq 0$ in $\Omega\}$
In particular
(i) $\Omega_{1} \subset \Omega_{2}$ and $\left|\Omega_{2} \backslash \Omega_{1}\right|>0 \Rightarrow \mu_{1}^{ \pm}\left(\Omega_{1}\right)>\mu_{1}^{ \pm}\left(\Omega_{2}\right)$
(ii) $|\Omega| \rightarrow 0 \Rightarrow \mu_{1}^{ \pm} \rightarrow+\infty$

The BNV approach has been addressed in the fully nonlinear uniformly elliptic framework
[Busca-Esteban-Quaas, Birindelli-Demengel, Ishii-Yoshimura, Quaas-Sirakov, Armstrong, Patrizi, Ikoma-Ishii...]
$F[u]:=F\left(x, u, D u, D^{2} u\right) \quad$ homogeneous of degree 1
$\mu_{1}^{+}:=\sup \{\mu \in \mathbb{R}: \exists w \in \operatorname{LSC}(\Omega), w>0$ and $F[u]+\mu w \leq 0$ in $\Omega\}$
$\mu_{1}^{-}:=\sup \{\mu \in \mathbb{R}: \exists w \in U S C(\Omega), w<0$ and $F[u]+\mu w \geq 0$ in $\Omega\}$
In particular
(i) $\Omega_{1} \subset \Omega_{2}$ and $\left|\Omega_{2} \backslash \Omega_{1}\right|>0 \Rightarrow \mu_{1}^{ \pm}\left(\Omega_{1}\right)>\mu_{1}^{ \pm}\left(\Omega_{2}\right)$
(ii) $|\Omega| \rightarrow 0 \Rightarrow \mu_{1}^{ \pm} \rightarrow+\infty$
(iii) $\mu<\mu_{1}^{+} \Rightarrow F[\cdot]+\mu \cdot$ satisfies the weak maximum principle in Ω $\mu<\mu_{1}^{-} \Rightarrow F[\cdot]+\mu \cdot$ satisfies the weak minimum principle in Ω

The BNV approach has been addressed in the fully nonlinear uniformly elliptic framework
[Busca-Esteban-Quaas, Birindelli-Demengel, Ishii-Yoshimura, Quaas-Sirakov, Armstrong, Patrizi, Ikoma-Ishii...]
$F[u]:=F\left(x, u, D u, D^{2} u\right) \quad$ homogeneous of degree 1
$\mu_{1}^{+}:=\sup \{\mu \in \mathbb{R}: \exists w \in \operatorname{LSC}(\Omega), w>0$ and $F[u]+\mu w \leq 0$ in $\Omega\}$
$\mu_{1}^{-}:=\sup \{\mu \in \mathbb{R}: \exists w \in U S C(\Omega), w<0$ and $F[u]+\mu w \geq 0$ in $\Omega\}$
In particular
(i) $\Omega_{1} \subset \Omega_{2}$ and $\left|\Omega_{2} \backslash \Omega_{1}\right|>0 \Rightarrow \mu_{1}^{ \pm}\left(\Omega_{1}\right)>\mu_{1}^{ \pm}\left(\Omega_{2}\right)$
(ii) $|\Omega| \rightarrow 0 \Rightarrow \mu_{1}^{ \pm} \rightarrow+\infty$
(iii) $\mu<\mu_{1}^{+} \Rightarrow F[\cdot]+\mu$ satisfies the weak maximum principle in Ω $\mu<\mu_{1}^{-} \Rightarrow F[\cdot]+\mu \cdot$ satisfies the weak minimum principle in Ω
(iv) μ_{1}^{+}and μ_{1}^{-}correspond respectively to a positive and negative principal eigenfunction

$$
\begin{array}{r}
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu \cdot \\
H(x, t \xi)=t H(x, \xi) \quad t>0 \tag{SC2}\\
|H(x, \xi)-H(y, \xi)| \leq \omega(|x-y|(1+|\xi|))
\end{array}
$$

$$
\begin{aligned}
& \qquad \mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu \cdot \\
& H(x, t \xi)=t H(x, \xi) \quad t>0 \quad \text { (SC } 2) \\
& |H(x, \xi)-H(y, \xi)| \leq \omega(|x-y|(1+|\xi|)) \quad \text { (SC 3) } \\
& \boldsymbol{\mu}_{k}^{-}=\sup \left\{\mu \in \mathbb{R}: \exists w<0 \text { in } \Omega, \mathcal{P}_{k}^{-}\left(D^{2} w\right)+H(x, D w)+\mu w \geq 0\right\} \\
& \text { and } \\
& \boldsymbol{\mu}_{k}^{+}=\sup \left\{\mu \in \mathbb{R}: \exists w>0 \text { in } \Omega, \mathcal{P}_{k}^{-}\left(D^{2} w\right)+H(x, D w)+\mu w \leq 0\right\}
\end{aligned}
$$

$$
\begin{align*}
& \left\lvert\, \begin{array}{l}
\mathcal{P}_{k}^{-}\left(D^{2}\right)+H(x, D \cdot)+\mu \\
H(x, t \xi)=t H(x, \xi) \quad t>0 \quad(\text { SC 2) }
\end{array}\right. \\
& \qquad H(x, \xi)-H(y, \xi) \mid \leq \omega(|x-y|(1+|\xi|)) \quad \text { (SC 3) } \tag{SC2}
\end{align*}
$$

Theorem

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain. Under the assumptions (SC 2)(SC 3), then the operator

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu .
$$

satisfies:
i) the weak minimum principle for $\mu<\overline{\boldsymbol{\mu}}_{k}^{-}$
ii) the weak maximum principle for $\mu<\bar{\mu}_{k}^{+}$.
...To reach the values $\boldsymbol{\mu}_{k}^{-}$and $\boldsymbol{\mu}_{k}^{+}$(the standard thresholds in the uniformly elliptic case) we shall need some further conditions!

$$
\Omega \subseteq B_{R} \quad \text { and } \quad b R<k
$$

Let

$$
w(|x|)=\left(R^{2}-|x|^{2}\right)^{\gamma}>0 \quad \text { in } \bar{\Omega}
$$

Then for any $\mu>0$

$$
\mathcal{P}_{k}^{-}\left(D^{2} w\right)+H(x, D w)+\mu w \leq 0 \quad \text { for } \gamma=\gamma(\mu, b, k, R) \text { big enough }
$$

$$
\overline{\boldsymbol{\mu}}_{k}^{+}=+\infty
$$

$$
\Omega \subseteq B_{R} \quad \text { and } \quad b R<k
$$

Let

$$
w(|x|)=\left(R^{2}-|x|^{2}\right)^{\gamma}>0 \quad \text { in } \bar{\Omega}
$$

Then for any $\mu>0$

$$
\mathcal{P}_{k}^{-}\left(D^{2} w\right)+H(x, D w)+\mu w \leq 0 \quad \text { for } \gamma=\gamma(\mu, b, k, R) \text { big enough }
$$

$$
\boldsymbol{\mu}_{k}^{+}=\overline{\boldsymbol{\mu}}_{k}^{+}=+\infty
$$

$$
\Omega \subseteq B_{R} \quad \text { and } \quad b R<k
$$

Let

$$
w(|x|)=\left(R^{2}-|x|^{2}\right)^{\gamma}>0 \quad \text { in } \bar{\Omega}
$$

Then for any $\mu>0$

$$
\mathcal{P}_{k}^{-}\left(D^{2} w\right)+H(x, D w)+\mu w \leq 0 \quad \text { for } \gamma=\gamma(\mu, b, k, R) \text { big enough }
$$

$$
\boldsymbol{\mu}_{k}^{+}=\overline{\boldsymbol{\mu}}_{k}^{+}=+\infty
$$

\mathcal{P}_{k}^{-}vs Δ

Maximum principle holds true for

$$
\Delta \cdot+\mu \cdot=\lambda_{1}\left(D^{2} \cdot\right)+\ldots+\lambda_{N}\left(D^{2} \cdot\right)+\mu \cdot \text { in } \Omega
$$

provided $\mu<\mu_{\Delta}<+\infty$.

$$
\Omega \subseteq B_{R} \quad \text { and } \quad b R<k
$$

Let

$$
w(|x|)=\left(R^{2}-|x|^{2}\right)^{\gamma}>0 \quad \text { in } \bar{\Omega}
$$

Then for any $\mu>0$

$$
\mathcal{P}_{k}^{-}\left(D^{2} w\right)+H(x, D w)+\mu w \leq 0 \quad \text { for } \gamma=\gamma(\mu, b, k, R) \text { big enough }
$$

$$
\boldsymbol{\mu}_{k}^{+}=\overline{\boldsymbol{\mu}}_{k}^{+}=+\infty
$$

\mathcal{P}_{k}^{-}vs Δ

Maximum principle holds true for

$$
\Delta \cdot+\mu \cdot=\lambda_{1}\left(D^{2} \cdot\right)+\ldots+\lambda_{N}\left(D^{2} \cdot\right)+\mu \cdot \text { in } \Omega
$$

provided $\mu<\mu_{\Delta}<+\infty$. Conversely

$$
\mathcal{P}_{N-1}^{-}\left(D^{2} \cdot\right)+\mu \cdot=\lambda_{1}\left(D^{2} \cdot\right)+\ldots+\lambda_{N-1}\left(D^{2} \cdot\right)+\lambda_{N}\left(D^{2} \cdot\right)+\mu
$$

satisfies the maximum principle for any $\mu \in \mathbb{R}$.

Instability of $\bar{\mu}_{k}^{+}$

Consider

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+\frac{k}{R}|D \cdot| \quad \text { in } \Omega_{n}=B_{R-\frac{1}{n}}
$$

In this case the condition $b R<k$ reads as

$$
\frac{k}{R}\left(R-\frac{1}{n}\right)<k
$$

Instability of $\bar{\mu}_{k}^{+}$

Consider

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+\frac{k}{R}|D \cdot| \quad \text { in } \Omega_{n}=B_{R-\frac{1}{n}}
$$

In this case the condition $b R<k$ reads as

$$
\frac{k}{R}\left(R-\frac{1}{n}\right)<k \Longrightarrow \overline{\boldsymbol{\mu}}_{k}^{+}\left(\Omega_{n}\right)=+\infty
$$

Instability of $\bar{\mu}_{k}^{+}$

Consider

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+\frac{k}{R}|D \cdot| \quad \text { in } \Omega_{n}=B_{R-\frac{1}{n}}
$$

In this case the condition $b R<k$ reads as

$$
\frac{k}{R}\left(R-\frac{1}{n}\right)<k \Longrightarrow \bar{\mu}_{k}^{+}\left(\Omega_{n}\right)=+\infty
$$

On the other hand $w(|x|)=\left(R^{2}-|x|^{2}\right)^{\gamma}$ satisfies

$$
\left\{\begin{aligned}
\mathcal{P}_{k}^{-}\left(D^{2} w\right)+\frac{k}{R}|D w|+\frac{2 \gamma k}{R^{2}} w & \geq 0 & & \text { in } \Omega=\cup_{n \in \mathbb{N}} \Omega_{n} \\
w & =0 & & \text { on } \partial \Omega \\
w & >0 & & \text { in } \Omega .
\end{aligned}\right.
$$

Hence this contradicts the maximum principle and

$$
\overline{\boldsymbol{\mu}}_{k}^{+}(\Omega) \leq \frac{2 \gamma k}{R^{2}}
$$

Let $R_{1} \leq 1$ s.t. $B_{R_{1}} \subseteq \Omega$. No blow-up phenomena, being

$$
\overline{\boldsymbol{\mu}}_{k}^{-} \leq \frac{C(b, k)}{R_{1}^{2}}
$$

Let $R_{1} \leq 1$ s.t. $B_{R_{1}} \subseteq \Omega$. No blow-up phenomena, being

$$
\overline{\boldsymbol{\mu}}_{k}^{-} \leq \frac{C(b, k)}{R_{1}^{2}}
$$

But $w(|x|)=\sin |x|+\cos \frac{1}{n}$ satisfies

$$
\left\{\begin{aligned}
\mathcal{P}_{k}^{-}\left(D^{2} w\right)-\frac{k}{\frac{3}{2} \pi}|D w|+0 w & \leq 0 \\
& \text { in } \Omega_{n}=B_{\frac{3}{2} \pi+\frac{1}{n}} \backslash \bar{B}_{\frac{3}{2} \pi-\frac{1}{n}} \\
w=0 & \text { on } \partial \Omega_{n} \\
w<0 & \text { in } \Omega_{n}
\end{aligned}\right.
$$

contradicting the minimum principle. Hence

Let $R_{1} \leq 1$ s.t. $B_{R_{1}} \subseteq \Omega$. No blow-up phenomena, being

$$
\overline{\boldsymbol{\mu}}_{k}^{-} \leq \frac{C(b, k)}{R_{1}^{2}}
$$

But $w(|x|)=\sin |x|+\cos \frac{1}{n}$ satisfies

$$
\left\{\begin{aligned}
& \mathcal{P}_{k}^{-}\left(D^{2} w\right)-\frac{k}{\frac{3}{2} \pi}|D w|+0 w \leq 0 \\
& \text { in } \Omega_{n}=B_{\frac{3}{2} \pi+\frac{1}{n}} \backslash \bar{B}_{\frac{3}{2} \pi-\frac{1}{n}} \\
& w=0 \\
& w<0 \text { on } \partial \Omega_{n} \\
& w \text { in } \Omega_{n}
\end{aligned}\right.
$$

contradicting the minimum principle. Hence

$$
\overline{\boldsymbol{\mu}}_{k}^{-}\left(\Omega_{n}\right) \leq 0
$$

Let $R_{1} \leq 1$ s.t. $B_{R_{1}} \subseteq \Omega$. No blow-up phenomena, being

$$
\overline{\boldsymbol{\mu}}_{k}^{-} \leq \frac{C(b, k)}{R_{1}^{2}}
$$

But $w(|x|)=\sin |x|+\cos \frac{1}{n}$ satisfies

$$
\left\{\begin{aligned}
& \mathcal{P}_{k}^{-}\left(D^{2} w\right)-\frac{k}{\frac{3}{2} \pi}|D w|+0 w \leq 0 \\
& \text { in } \Omega_{n}=B_{\frac{3}{2} \pi+\frac{1}{n}} \backslash \bar{B}_{\frac{3}{2} \pi-\frac{1}{n}} \\
& w=0 \\
& w<0 \text { on } \partial \Omega_{n} \\
& w \text { in } \Omega_{n}
\end{aligned}\right.
$$

contradicting the minimum principle. Hence

$$
0 \leq \overline{\boldsymbol{\mu}}_{k}^{-}\left(\Omega_{n}\right) \leq 0
$$

Let $R_{1} \leq 1$ s.t. $B_{R_{1}} \subseteq \Omega$. No blow-up phenomena, being

$$
\overline{\boldsymbol{\mu}}_{k}^{-} \leq \frac{C(b, k)}{R_{1}^{2}}
$$

But $w(|x|)=\sin |x|+\cos \frac{1}{n}$ satisfies

$$
\left\{\begin{aligned}
\mathcal{P}_{k}^{-}\left(D^{2} w\right)-\frac{k}{\frac{3}{2}}|D w|+0 w & \leq 0 \\
& \text { in } \Omega_{n}=B_{\frac{3}{2} \pi+\frac{1}{n}} \backslash \bar{B}_{\frac{3}{2} \pi-\frac{1}{n}} \\
w=0 & \text { on } \partial \Omega_{n} \\
w<0 & \text { in } \Omega_{n}
\end{aligned}\right.
$$

contradicting the minimum principle. Hence

$$
0 \leq \overline{\boldsymbol{\mu}}_{k}^{-}\left(\Omega_{n}\right) \leq 0
$$

while

$$
\lim _{n \rightarrow \infty}\left|\Omega_{n}\right|=0
$$

The case $\bar{\mu}_{k}^{-}$

Let $R_{1} \leq 1$ s.t. $B_{R_{1}} \subseteq \Omega$. No blow-up phenomena, being

$$
\overline{\boldsymbol{\mu}}_{k}^{-} \leq \frac{C(b, k)}{R_{1}^{2}}
$$

But $w(|x|)=\sin |x|+\cos \frac{1}{n}$ satisfies

$$
\left\{\begin{aligned}
& \mathcal{P}_{k}^{-}\left(D^{2} w\right)-\frac{k}{\frac{3}{2} \pi}|D w|+0 w \leq 0 \\
& \text { in } \Omega_{n}=B_{\frac{3}{2} \pi+\frac{1}{n}} \backslash \bar{B}_{\frac{3}{2} \pi-\frac{1}{n}} \\
& w=0 \\
& w<0 \text { on } \partial \Omega_{n} \\
& \text { in } \Omega_{n}
\end{aligned}\right.
$$

contradicting the minimum principle. Hence

$$
0 \leq \overline{\boldsymbol{\mu}}_{k}^{-}\left(\Omega_{n}\right) \leq 0
$$

while

$$
\lim _{n \rightarrow \infty}\left|\Omega_{n}\right|=0
$$

Ω_{n} : domains whose measure goes to zero but whose principal eigenvalue stays equal to zero !!!
...Unusual phenomena again: 2D-narrow domains shrinking to a line with bounded principal eigenvalue
...Unusual phenomena again: 2D-narrow domains shrinking to a line with bounded principal eigenvalue

Let

$$
w\left(x_{1}, x_{2}\right)=-\sin n x_{1}-\sin x_{2}
$$

and $\left(x_{1}, x_{2}\right) \in \Omega_{n}:=\left\{0 \leq \frac{n x_{1}+x_{2}}{2} \leq \pi,-\frac{\pi}{2} \leq \frac{n x_{1}-x_{2}}{2} \leq \frac{\pi}{2}\right\}$
...Unusual phenomena again: 2D-narrow domains shrinking to a line with bounded principal eigenvalue

Let

$$
w\left(x_{1}, x_{2}\right)=-\sin n x_{1}-\sin x_{2}
$$

and $\left(x_{1}, x_{2}\right) \in \Omega_{n}:=\left\{0 \leq \frac{n x_{1}+x_{2}}{2} \leq \pi,-\frac{\pi}{2} \leq \frac{n x_{1}-x_{2}}{2} \leq \frac{\pi}{2}\right\}$
Ω_{n} narrow domains in the x_{1}-direction s.t.

$$
\operatorname{diam}\left(\Omega_{n}\right)=2 \pi \quad \text { and } \quad \Omega_{n} \rightarrow\{0\} \times\left[-\frac{\pi}{2}, \frac{3}{2} \pi\right]
$$

...Unusual phenomena again: 2D-narrow domains shrinking to a line with bounded principal eigenvalue

Let

$$
w\left(x_{1}, x_{2}\right)=-\sin n x_{1}-\sin x_{2}
$$

and $\left(x_{1}, x_{2}\right) \in \Omega_{n}:=\left\{0 \leq \frac{n x_{1}+x_{2}}{2} \leq \pi,-\frac{\pi}{2} \leq \frac{n x_{1}-x_{2}}{2} \leq \frac{\pi}{2}\right\}$
Ω_{n} narrow domains in the x_{1}-direction s.t.

$$
\operatorname{diam}\left(\Omega_{n}\right)=2 \pi \quad \text { and } \quad \Omega_{n} \rightarrow\{0\} \times\left[-\frac{\pi}{2}, \frac{3}{2} \pi\right]
$$

Nevertheless

$$
\left\{\begin{aligned}
\mathcal{P}_{1}^{-}\left(D^{2} w\right)+1 w \leq 0 & \text { in } \Omega_{n} \\
w=0 & \text { on } \partial \Omega_{n} \\
w<0 & \text { in } \Omega_{n}
\end{aligned}\right.
$$

violating the minimum principle, hence

$$
\overline{\boldsymbol{\mu}}_{1}^{-}\left(\Omega_{n}\right) \leq 1 \quad \forall n \in \mathbb{N}
$$

On the equivalence $\bar{\mu}_{k}^{-}=\mu_{k}^{-}$

$$
\left\{\begin{aligned}
\mathcal{P}_{k}^{-}\left(D^{2} v\right)+H(x, D v)+\mu v & \leq 0 \text { in } \Omega \\
\liminf _{x \rightarrow \partial \Omega} v & \geq 0
\end{aligned}\right.
$$

Minumum principle OK if $\mu<\overline{\boldsymbol{\mu}}_{k}^{-}\left(\leq \boldsymbol{\mu}_{k}^{-}\right)$
How reach the value $\boldsymbol{\mu}_{k}^{-}$?

On the equivalence $\bar{\mu}_{k}^{-}=\mu_{k}^{-}$

$$
\left\{\begin{aligned}
\mathcal{P}_{k}^{-}\left(D^{2} v\right)+H(x, D v)+\mu v & \leq 0 \text { in } \Omega \\
\liminf _{x \rightarrow \partial \Omega} v & \geq 0
\end{aligned}\right.
$$

Minumum principle OK if $\mu<\overline{\boldsymbol{\mu}}_{k}^{-}\left(\leq \boldsymbol{\mu}_{k}^{-}\right)$
How reach the value $\boldsymbol{\mu}_{k}^{-}$?
Barrier function: $v \geq-C d(x):=-C \operatorname{dist}(x, \partial \Omega)$

On the equivalence $\bar{\mu}_{k}^{-}=\mu_{k}^{-}$

$$
\left\{\begin{aligned}
\mathcal{P}_{k}^{-}\left(D^{2} v\right)+H(x, D v)+\mu v & \leq 0 \text { in } \Omega \\
\liminf _{x \rightarrow \partial \Omega} v & \geq 0
\end{aligned}\right.
$$

Minumum principle OK if $\mu<\overline{\boldsymbol{\mu}}_{k}^{-}\left(\leq \boldsymbol{\mu}_{k}^{-}\right)$
How reach the value $\boldsymbol{\mu}_{k}^{-}$?
Barrier function: $v \geq-C d(x):=-C \operatorname{dist}(x, \partial \Omega)$
Warning : " $\partial \Omega$ flat", e.g. $v(x)=-x_{N}^{\gamma \in(0,1)}$ is a solution of

$$
\begin{aligned}
\mathcal{P}_{k}^{-}\left(D^{2} v\right) & =0 \quad \text { in } \mathbb{R}_{+}^{N}:=\left\{x: x_{N}>0\right\} \\
v & =0 \quad \text { on } \partial \mathbb{R}_{+}^{N} \\
\lim _{x \rightarrow \partial \mathbb{R}_{+}^{N}} \frac{v(x)}{d(x)} & =-\lim _{x \rightarrow \partial \mathbb{R}_{+}^{N}} \frac{x_{N}^{\gamma}}{x_{N}}=-\infty
\end{aligned}
$$

Convexity of Ω is needed...

Hula hoop domains

We shall consider a class \mathcal{C}_{R} of convex domains Ω satisfying the following assumption: there exist $R>0$ and $Y \subseteq \mathbb{R}^{N}$, depending on Ω, such that

$$
\Omega=\bigcap_{y \in Y} B_{R}(y)
$$

Hula hoop domains

We shall consider a class \mathcal{C}_{R} of convex domains Ω satisfying the following assumption: there exist $R>0$ and $Y \subseteq \mathbb{R}^{N}$, depending on Ω, such that

$$
\Omega=\bigcap_{y \in Y} B_{R}(y) \Longrightarrow \text { existence of barrier! }
$$

Hula hoop domains

We shall consider a class \mathcal{C}_{R} of convex domains Ω satisfying the following assumption: there exist $R>0$ and $Y \subseteq \mathbb{R}^{N}$, depending on Ω, such that

$$
\Omega=\bigcap_{y \in Y} B_{R}(y)
$$

\Longrightarrow existence of barrier!

Proposition

Let Ω be a bounded domain with C^{2}-boundary. Let $\kappa_{i}(x)$ denote the principal curvatures of $\partial \Omega$ at x for $i=1, \ldots, N-1$, set

$$
\underline{\kappa}=\min \left\{\kappa_{i}(x): i=1, \ldots, N-1, x \in \partial \Omega\right\},
$$

and assume that $\underline{\kappa}>0$. If $R \geq \frac{1}{\underline{\kappa}}$, then $\Omega \in \mathcal{C}_{R}$.

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 2)-(SC 3) and $b R<k$, then

$$
\boldsymbol{\mu}_{k}^{-}=\overline{\boldsymbol{\mu}}_{k}^{-}
$$

and the minimum principle holds true in Ω for

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu .
$$

if and only if $\mu<\boldsymbol{\mu}_{k}^{-}$.

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 2)-(SC 3) and $b R<k$, then

$$
\boldsymbol{\mu}_{k}^{-}=\overline{\boldsymbol{\mu}}_{k}^{-}
$$

and the minimum principle holds true in Ω for

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu .
$$

if and only if $\mu<\boldsymbol{\mu}_{k}^{-}$.
Step 1. For $\mu<\boldsymbol{\mu}_{k}^{-}$the operator $\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu \cdot$ satisfies the minimum principle

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 2)-(SC 3) and $b R<k$, then

$$
\boldsymbol{\mu}_{k}^{-}=\overline{\boldsymbol{\mu}}_{k}^{-}
$$

and the minimum principle holds true in Ω for

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu .
$$

if and only if $\mu<\boldsymbol{\mu}_{k}^{-}$.
Step 1. For $\mu<\boldsymbol{\mu}_{k}^{-}$the operator $\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu \cdot$ satisfies the minimum principle
Step 2. There exists a $v \not \equiv 0$ solution of

$$
\left\{\begin{array}{rlrl}
\mathcal{P}_{k}^{-}\left(D^{2} v\right)+H(x, D v)+\overline{\boldsymbol{\mu}}_{k}^{-} & v & \leq 0 & \\
\text { in } \Omega \\
v & =0 & & \text { on } \partial \Omega \\
& v \leq 0 & & \text { in } \Omega
\end{array}\right.
$$

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 2)-(SC 3) and $b R<k$, then

$$
\boldsymbol{\mu}_{k}^{-}=\overline{\boldsymbol{\mu}}_{k}^{-}
$$

and the minimum principle holds true in Ω for

$$
\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu .
$$

if and only if $\mu<\boldsymbol{\mu}_{k}^{-}$.
Step 1. For $\mu<\boldsymbol{\mu}_{k}^{-}$the operator $\mathcal{P}_{k}^{-}\left(D^{2} \cdot\right)+H(x, D \cdot)+\mu \cdot$ satisfies the minimum principle
Step 2. There exists a $v \not \equiv 0$ solution of

$$
\left\{\begin{aligned}
\mathcal{P}_{k}^{-}\left(D^{2} v\right)+H(x, D v)+\overline{\boldsymbol{\mu}}_{k}^{-} & v \leq 0 & & \text { in } \Omega \\
v & =0 & & \text { on } \partial \Omega \\
& v \leq 0 & & \text { in } \Omega
\end{aligned}\right.
$$

Step 3. $\boldsymbol{\mu}_{k}^{-}=\overline{\boldsymbol{\mu}}_{k}^{-}$

Lipschitz regularity $(k=1)$

$$
\left\{\begin{aligned}
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u) & =f(x) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

$\left(\mathrm{DP}_{1}\right)$

Lipschitz regularity $(k=1)$

$$
\left\{\begin{aligned}
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u) & =f(x) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

(DP_{1})

Preliminary considerations $(H \equiv 0, f \equiv 0)$:
(i) $\mathcal{P}_{1}^{-}\left(D^{2} u\right) \geq 0 \Longrightarrow u$ convex, in particular $u \in \operatorname{Lip}_{\text {loc }}(\Omega)$

Lipschitz regularity $(k=1)$

$$
\left\{\begin{align*}
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u) & =f(x) & & \text { in } \Omega \tag{1}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

Preliminary considerations $(H \equiv 0, f \equiv 0)$:
(i) $\mathcal{P}_{1}^{-}\left(D^{2} u\right) \geq 0 \Longrightarrow u$ convex, in particular $u \in \operatorname{Lip}_{\text {loc }}(\Omega)$
(ii) u subsolution of $\left(\mathrm{DP}_{1}\right)$ and $u \geq 0 \Longrightarrow u \equiv 0$, regularity up to $\partial \Omega$!

Lipschitz regularity $(k=1)$

$$
\left\{\begin{align*}
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u) & =f(x) & & \text { in } \Omega \tag{1}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

Preliminary considerations $(H \equiv 0, f \equiv 0)$:
(i) $\mathcal{P}_{1}^{-}\left(D^{2} u\right) \geq 0 \Longrightarrow u$ convex, in particular $u \in \operatorname{Lip}_{\text {loc }}(\Omega)$
(ii) u subsolution of $\left(\mathrm{DP}_{1}\right)$ and $u \geq 0 \Longrightarrow u \equiv 0$, regularity up to $\partial \Omega$!
(iii) u subsolution of $\left(\mathrm{DP}_{1}\right) \Longrightarrow u \in C^{0, \alpha}(\bar{\Omega})$ for $\alpha \in(0,1]$

Lipschitz regularity $(k=1)$

$$
\left\{\begin{align*}
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u) & =f(x) & & \text { in } \Omega \tag{1}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

Preliminary considerations ($H \equiv 0, f \equiv 0$):
(i) $\mathcal{P}_{1}^{-}\left(D^{2} u\right) \geq 0 \Longrightarrow u$ convex, in particular $u \in \operatorname{Lip}_{\mathrm{loc}}(\Omega)$
(ii) u subsolution of $\left(\mathrm{DP}_{1}\right)$ and $u \geq 0 \Longrightarrow u \equiv 0$, regularity up to $\partial \Omega!$
(iii) u subsolution of $\left(\mathrm{DP}_{1}\right) \Longrightarrow u \in C^{0, \alpha}(\bar{\Omega})$ for $\alpha \in(0,1]$ (iv) u solution of $\left(\mathrm{DP}_{1}\right)$?

Lipschitz regularity $(k=1)$

$$
\left\{\begin{align*}
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u) & =f(x) & & \text { in } \Omega \tag{1}\\
u & =0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

Preliminary considerations $(H \equiv 0, f \equiv 0)$:
(i) $\mathcal{P}_{1}^{-}\left(D^{2} u\right) \geq 0 \Longrightarrow u$ convex, in particular $u \in \operatorname{Lip}_{\text {loc }}(\Omega)$
(ii) u subsolution of $\left(\mathrm{DP}_{1}\right)$ and $u \geq 0 \Longrightarrow u \equiv 0$, regularity up to $\partial \Omega$!
(iii) u subsolution of $\left(\mathrm{DP}_{1}\right) \Longrightarrow u \in C^{0, \alpha}(\bar{\Omega})$ for $\alpha \in(0,1]$
(iv) u solution of $\left(\mathrm{DP}_{1}\right)$? At least for Ω unbounded, global regularity does not hold: $u(x)=x_{N}^{\gamma<\alpha} \notin C^{0, \alpha}\left(\overline{\mathbb{R}}_{+}^{N}\right)$, but it is a solution of

$$
\mathcal{P}_{1}^{-}\left(D^{2} u\right)=0 \text { in } \mathbb{R}_{+}^{N}, \quad u=0 \text { on } \partial \mathbb{R}_{+}^{N}
$$

...Again "hula hoop" condition

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 1) and $b R<1$, then the solutions u of

$$
\left\{\begin{aligned}
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u) & =f(x) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

are Lipschitz continuous in $\bar{\Omega}$. The Lipschitz norm of u can be bounded by a constant depending only on Ω, b and the L^{∞} norms of u and f (compactness).

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 1) and $b R<1$, then the solutions u of

$$
\left\{\begin{aligned}
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u) & =f(x) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

are Lipschitz continuous in $\bar{\Omega}$. The Lipschitz norm of u can be bounded by a constant depending only on Ω, b and the L^{∞} norms of u and f (compactness).

Comparison principle

$$
u(x) \quad v_{y}(x):=u(y)+L\left(|x-y|-|x-y|^{\theta}\right) \quad \text { in } B_{\delta}(y) \cap \Omega
$$

where $\theta \in(1,2)$ and L, δ chosen in such a way v_{y} is a classical strict supersolution of

$$
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u)=f(x) \quad \text { in } B_{\delta}(y) \backslash\{y\}
$$

and

$$
u \leq v_{y} \quad \text { on } \partial\left(B_{\delta}(y) \cap \Omega\right)
$$

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 1) and $b R<1$, then the solutions u of

$$
\left\{\begin{aligned}
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u) & =f(x) & & \text { in } \Omega \\
u & =0 & & \text { on } \partial \Omega
\end{aligned}\right.
$$

are Lipschitz continuous in $\bar{\Omega}$. The Lipschitz norm of u can be bounded by a constant depending only on Ω, b and the L^{∞} norms of u and f (compactness).

Comparison principle

$$
u(x) \leq v_{y}(x):=u(y)+L\left(|x-y|-|x-y|^{\theta}\right) \quad \text { in } B_{\delta}(y) \cap \Omega
$$

where $\theta \in(1,2)$ and L, δ chosen in such a way v_{y} is a classical strict supersolution of

$$
\mathcal{P}_{1}^{-}\left(D^{2} u\right)+H(x, D u)=f(x) \quad \text { in } B_{\delta}(y) \backslash\{y\}
$$

and

$$
u \leq v_{y} \quad \text { on } \partial\left(B_{\delta}(y) \cap \Omega\right)
$$

Eigenfunction for \mathcal{P}_{1}^{-}

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 2)-(SC 3) and $b R<1$, then there exists a negative function $\psi_{1} \in \operatorname{Lip}(\bar{\Omega})$ such that

$$
\left\{\begin{aligned}
\mathcal{P}_{1}^{-}\left(D^{2} \boldsymbol{\psi}_{1}\right)+H\left(x, D \psi_{1}\right)+\boldsymbol{\mu}_{1}^{-} \boldsymbol{\psi}_{1}=0 & \text { in } \Omega \\
\boldsymbol{\psi}_{1}=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Eigenfunction for \mathcal{P}_{1}^{-}

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 2)-(SC 3) and $b R<1$, then there exists a negative function $\psi_{1} \in \operatorname{Lip}(\bar{\Omega})$ such that

$$
\left\{\begin{aligned}
\mathcal{P}_{1}^{-}\left(D^{2} \boldsymbol{\psi}_{1}\right)+H\left(x, D \psi_{1}\right)+\boldsymbol{\mu}_{1}^{-} \boldsymbol{\psi}_{1}=0 & \text { in } \Omega \\
\boldsymbol{\psi}_{1}=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Step 1. Let $\boldsymbol{\mu}_{n} \nearrow \boldsymbol{\mu}_{1}^{-}$. Then $\exists u_{n} \in \operatorname{Lip}(\bar{\Omega})$ negative solutions of

$$
\mathcal{P}_{1}^{-}\left(D^{2} u_{n}\right)+H\left(x, D u_{n}\right)+\mu_{n} u_{n}=1 \text { in } \Omega, u_{n}=0 \text { on } \partial \Omega
$$

Eigenfunction for \mathcal{P}_{1}^{-}

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 2)-(SC 3) and $b R<1$, then there exists a negative function $\psi_{1} \in \operatorname{Lip}(\bar{\Omega})$ such that

$$
\left\{\begin{aligned}
\mathcal{P}_{1}^{-}\left(D^{2} \boldsymbol{\psi}_{1}\right)+H\left(x, D \psi_{1}\right)+\boldsymbol{\mu}_{1}^{-} \boldsymbol{\psi}_{1}=0 & \text { in } \Omega \\
\boldsymbol{\psi}_{1}=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Step 1. Let $\boldsymbol{\mu}_{n} \nearrow \boldsymbol{\mu}_{1}^{-}$. Then $\exists u_{n} \in \operatorname{Lip}(\bar{\Omega})$ negative solutions of

$$
\mathcal{P}_{1}^{-}\left(D^{2} u_{n}\right)+H\left(x, D u_{n}\right)+\mu_{n} u_{n}=1 \text { in } \Omega, u_{n}=0 \text { on } \partial \Omega
$$

Step 2. Compactness yields $\left\|u_{n}\right\|_{\infty} \rightarrow \infty$

Eigenfunction for \mathcal{P}_{1}^{-}

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 2)-(SC 3) and $b R<1$, then there exists a negative function $\psi_{1} \in \operatorname{Lip}(\bar{\Omega})$ such that

$$
\left\{\begin{aligned}
\mathcal{P}_{1}^{-}\left(D^{2} \boldsymbol{\psi}_{1}\right)+H\left(x, D \psi_{1}\right)+\boldsymbol{\mu}_{1}^{-} \boldsymbol{\psi}_{1}=0 & \text { in } \Omega \\
\boldsymbol{\psi}_{1}=0 & \text { on } \partial \Omega .
\end{aligned}\right.
$$

Step 1. Let $\boldsymbol{\mu}_{n} \nearrow \boldsymbol{\mu}_{1}^{-}$. Then $\exists u_{n} \in \operatorname{Lip}(\bar{\Omega})$ negative solutions of

$$
\mathcal{P}_{1}^{-}\left(D^{2} u_{n}\right)+H\left(x, D u_{n}\right)+\mu_{n} u_{n}=1 \text { in } \Omega, u_{n}=0 \text { on } \partial \Omega
$$

Step 2. Compactness yields $\left\|u_{n}\right\|_{\infty} \rightarrow \infty$
Step 3. Rescaling $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{\infty}} \rightarrow \psi_{1} \in \operatorname{Lip}(\bar{\Omega})$ and passing to the limit

$$
\mathcal{P}_{1}^{-}\left(D^{2} \boldsymbol{\psi}_{1}\right)+H\left(x, D \boldsymbol{\psi}_{1}\right)+\boldsymbol{\mu}_{1}^{-} \boldsymbol{\psi}_{1}=0 \text { in } \Omega, \boldsymbol{\psi}_{1}=0 \text { on } \partial \Omega
$$

Eigenfunction for \mathcal{P}_{1}^{-}

Theorem

Let $\Omega \in \mathcal{C}_{R}$. If H satisfies (SC 2)-(SC 3) and $b R<1$, then there exists a negative function $\psi_{1} \in \operatorname{Lip}(\bar{\Omega})$ such that

$$
\left\{\begin{aligned}
& \mathcal{P}_{1}^{-}\left(D^{2} \boldsymbol{\psi}_{1}\right)+H\left(x, D \psi_{1}\right)+\boldsymbol{\mu}_{1}^{-} \boldsymbol{\psi}_{1}=0 \\
& \boldsymbol{\psi}_{1}=0 \text { in } \Omega \\
& \text { on } \partial \Omega .
\end{aligned}\right.
$$

Step 1. Let $\boldsymbol{\mu}_{n} \nearrow \boldsymbol{\mu}_{1}^{-}$. Then $\exists u_{n} \in \operatorname{Lip}(\bar{\Omega})$ negative solutions of

$$
\mathcal{P}_{1}^{-}\left(D^{2} u_{n}\right)+H\left(x, D u_{n}\right)+\mu_{n} u_{n}=1 \text { in } \Omega, u_{n}=0 \text { on } \partial \Omega
$$

Step 2. Compactness yields $\left\|u_{n}\right\|_{\infty} \rightarrow \infty$
Step 3. Rescaling $v_{n}=\frac{u_{n}}{\left\|u_{n}\right\|_{\infty}} \rightarrow \psi_{1} \in \operatorname{Lip}(\bar{\Omega})$ and passing to the limit

$$
\mathcal{P}_{1}^{-}\left(D^{2} \boldsymbol{\psi}_{1}\right)+H\left(x, D \psi_{1}\right)+\boldsymbol{\mu}_{1}^{-} \boldsymbol{\psi}_{1}=0 \text { in } \Omega, \boldsymbol{\psi}_{1}=0 \text { on } \partial \Omega
$$

Step 4. Strong maximum principle yields $\boldsymbol{\psi}_{1}<0$ in Ω.

Example: $\Omega=B_{R}$ and $H \equiv 0$

Consider

$$
\boldsymbol{\psi}_{1}(x)=-\cos \left(\frac{\pi}{2 R}|x|\right)
$$

Example: $\Omega=B_{R}$ and $H \equiv 0$

Consider

$$
\psi_{1}(x)=-\cos \left(\frac{\pi}{2 R}|x|\right)
$$

then
$\lambda_{1}\left(D^{2} \boldsymbol{\psi}_{1}(x)\right)=\left(\frac{\pi}{2 R}\right)^{2} \cos \left(\frac{\pi}{2 R}|x|\right)$

and

Example: $\Omega=B_{R}$ and $H \equiv 0$

Consider

$$
\psi_{1}(x)=-\cos \left(\frac{\pi}{2 R}|x|\right)
$$

then
$\lambda_{1}\left(D^{2} \psi_{1}(x)\right)=\left(\frac{\pi}{2 R}\right)^{2} \cos \left(\frac{\pi}{2 R}|x|\right)$

$$
\leq \frac{\lambda_{i}\left(D^{2} \phi_{1}(x)\right)}{}=\left(\frac{\pi}{2 R}\right) \frac{\sin \left(\frac{\pi}{2 R}|x|\right)}{|x|} \text { for } i=2, \ldots, N
$$

and

$$
\mathcal{P}_{1}^{-}\left(D^{2} \psi_{1}\right)+\left(\frac{\pi}{2 R}\right)^{2} \psi_{1}=0 \text { in } \Omega, \psi_{1}=0 \text { on } \partial \Omega
$$

By definition $\mu_{1}^{-} \geq\left(\frac{\pi}{2 R}\right)^{2}$, on the other hand ψ_{1} violates the minimum principle, hence $\mu_{1}^{-} \leq\left(\frac{\pi}{2 R}\right)^{2}$

$$
\boldsymbol{\mu}_{1}^{-}=\left(\frac{\pi}{2 R}\right)^{2}
$$

Open questions

- Is the global Lipschitz regularity true for $1<k<N$? Or Hölder regularity?

Open questions

- Is the global Lipschitz regularity true for $1<k<N$? Or Hölder regularity?
- Higher regularity $C^{1, \alpha}$?

Open questions

- Is the global Lipschitz regularity true for $1<k<N$? Or Hölder regularity?
- Higher regularity $C^{1, \alpha}$?
- Is μ_{1}^{-}simple?

Open questions

- Is the global Lipschitz regularity true for $1<k<N$? Or Hölder regularity?
- Higher regularity $C^{1, \alpha}$?
- Is μ_{1}^{-}simple?
- Is the $\bar{\mu}_{k}^{-}=\boldsymbol{\mu}_{k}^{-}$for any Ω ?
- ...

Open questions

- Is the global Lipschitz regularity true for $1<k<N$? Or Hölder regularity?
- Higher regularity $C^{1, \alpha}$?
- Is μ_{1}^{-}simple?
- Is the $\bar{\mu}_{k}^{-}=\boldsymbol{\mu}_{k}^{-}$for any Ω ?
- ...

Thank you for your attention!!!

