A class of highly degenerate elliptic operators: maximum principle and unusual phenomena Based on a joint work with Isabeau Birindelli and Hitoshi Ishii

Giulio Galise

Sapienza Università di Roma

BIRS workshop - Mostly Maximum Principle

April 2-7, 2017

$$F[u] := F(x, u, Du, D^2u) = 0$$
 in $\Omega \subset \mathbb{R}^N$

 $F: \Omega \times \mathbb{R} \times \mathbb{R}^{N} \times \mathbb{S}^{N} \mapsto \mathbb{R} \text{ continuous and degenerate elliptic, i.e.}$ $F(\cdot, \cdot, \cdot, X) \leq F(\cdot, \cdot, \cdot, Y) \text{ whenever } X \leq Y \text{ in } \mathbb{S}^{N},$

$$F[u] := F(x, u, Du, D^2u) = 0$$
 in $\Omega \subset \mathbb{R}^N$

 $F: \Omega \times \mathbb{R} \times \mathbb{R}^N \times \mathbb{S}^N \mapsto \mathbb{R}$ continuous and degenerate elliptic, i.e. $F(\cdot, \cdot, \cdot, X) \leq F(\cdot, \cdot, \cdot, Y)$ whenever $X \leq Y$ in \mathbb{S}^N , e.g. "+ Δ "

$$F[u] := F(x, u, Du, D^2u) = 0$$
 in $\Omega \subset \mathbb{R}^N$

 $F: \Omega \times \mathbb{R} \times \mathbb{R}^N \times \mathbb{S}^N \mapsto \mathbb{R}$ continuous and degenerate elliptic, i.e.

 $F(\cdot, \cdot, \cdot, X) \leq F(\cdot, \cdot, \cdot, Y)$ whenever $X \leq Y$ in \mathbb{S}^N ,

e.g. " $+\Delta$ "

Maximum Principle

▷ Weak Maximum Principle

$$F[u] \ge 0 \text{ in } \Omega, \quad \limsup_{x \to \partial \Omega} u(x) \le 0 \implies u \le 0 \text{ in } \Omega$$

$$F[u] := F(x, u, Du, D^2u) = 0$$
 in $\Omega \subset \mathbb{R}^N$

 $F: \Omega \times \mathbb{R} \times \mathbb{R}^N \times \mathbb{S}^N \mapsto \mathbb{R}$ continuous and degenerate elliptic, i.e.

 $F(\cdot, \cdot, \cdot, X) \leq F(\cdot, \cdot, \cdot, Y)$ whenever $X \leq Y$ in \mathbb{S}^N ,

e.g. " $+\Delta$ "

Maximum Principle

 ▷ Weak Maximum Principle
 $F[u] \ge 0$ in Ω, lim sup $u(x) \le 0 \implies u \le 0$ in Ω
 ▷ Strong Maximum Principle
 $F[u] \ge 0$ in Ω, $u \le 0$ in Ω ⇒ either u < 0 or $u \equiv 0$

A class of degenerate operators

For $X \in \mathbb{S}^N$ let $\lambda_1(X) \leq \ldots \leq \lambda_N(X) \in \operatorname{spec}(X)$ and $N \geq k \in \mathbb{N}$. We shall consider

$$\mathcal{P}_{\boldsymbol{k}}^{-}(X) = \lambda_{1}(X) + \ldots + \lambda_{\boldsymbol{k}}(X)$$
$$\mathcal{P}_{\boldsymbol{k}}^{+}(X) = \lambda_{N-\boldsymbol{k}+1}(X) + \ldots + \lambda_{N}(X)$$

some sort of "truncated Laplacians": $\mathcal{P}_{N}^{\pm}(X) = \text{Tr}(X)$, arising in:

A class of degenerate operators

For $X \in \mathbb{S}^N$ let $\lambda_1(X) \leq \ldots \leq \lambda_N(X) \in \operatorname{spec}(X)$ and $N \geq k \in \mathbb{N}$. We shall consider

$$\mathcal{P}_{\boldsymbol{k}}^{-}(X) = \lambda_{1}(X) + \ldots + \lambda_{\boldsymbol{k}}(X)$$
$$\mathcal{P}_{\boldsymbol{k}}^{+}(X) = \lambda_{N-\boldsymbol{k}+1}(X) + \ldots + \lambda_{N}(X)$$

some sort of "truncated Laplacians": $\mathcal{P}_N^{\pm}(X) = \text{Tr}(X)$, arising in: Differential geometry

,

> Handlebodies and p-convexity [Sha, J. Differential Geom. 1987]

> Manifolds of partially positive curvature [Wu, Indiana Univ. Math. J. 1987]

> Level set approach to mean curvature flow in arbitrary codimension [Ambrosio-Soner,

J. Differential Geom. 1990]

PDEs

▷ Dirichlet Duality and the Nonlinear Dirichlet Problem [Harvey-Lawson, Comm. Pure Appl. Math. 2009]

▷ Some remarks on singular solutions of nonlinear elliptic equations. I [Caffarelli-Li-Nirenberg, J. Fixed Point Theory Appl. 2009]

> The Dirichlet problem for the convex envelope [Oberman-Silvestre, Trans. Amer. Math. Soc. 2011]

 \triangleright On the inequality $F(x, D^2u) \ge f(u) + g(u)|Du|^q$ [Capuzzo Dolcetta-Leoni-Vitolo, Math. Ann. 2016]

▷ Removable singularities for degenerate elliptic Pucci operators [G.-Vitolo, Adv. Differential Equations 2017]

Giulio Galise - April 4, 2017 BIRS 2017 - Mostly Maximum Principle

A class of degenerate operators

For $X \in \mathbb{S}^N$ let $\lambda_1(X) \leq \ldots \leq \lambda_N(X) \in \operatorname{spec}(X)$ and $N \geq k \in \mathbb{N}$. We shall consider

$$\mathcal{P}_{\boldsymbol{k}}^{-}(X) = \lambda_{1}(X) + \ldots + \lambda_{\boldsymbol{k}}(X)$$

$$\mathcal{P}_{\boldsymbol{k}}^{+}(X) = \lambda_{N-\boldsymbol{k}+1}(X) + \ldots + \lambda_{N}(X) = -\mathcal{P}_{\boldsymbol{k}}^{-}(-X),$$

some sort of "truncated Laplacians": $\mathcal{P}_N^{\pm}(X) = \text{Tr}(X)$, arising in: Differential geometry

> Handlebodies and p-convexity [Sha, J. Differential Geom. 1987]

> Manifolds of partially positive curvature [Wu, Indiana Univ. Math. J. 1987]

> Level set approach to mean curvature flow in arbitrary codimension [Ambrosio-Soner,

J. Differential Geom. 1990]

PDEs

▷ Dirichlet Duality and the Nonlinear Dirichlet Problem [Harvey-Lawson, Comm. Pure Appl. Math. 2009]

▷ Some remarks on singular solutions of nonlinear elliptic equations. I [Caffarelli-Li-Nirenberg, J. Fixed Point Theory Appl. 2009]

> The Dirichlet problem for the convex envelope [Oberman-Silvestre, Trans. Amer. Math. Soc. 2011]

 \triangleright On the inequality $F(x, D^2u) \ge f(u) + g(u)|Du|^q$ [Capuzzo Dolcetta-Leoni-Vitolo, Math. Ann. 2016]

▷ *Removable singularities for degenerate elliptic Pucci operators* [G.-Vitolo, Adv. Differential Equations 2017]

Giulio Galise - April 4, 2017 BIRS 2017 - Mostly Maximum Principle

$$\lambda_i(X) = \min_{\dim V = i} \max_{v \in V} \frac{\langle Xv, v \rangle}{|v|^2} \quad i = 1, \dots, N$$

 $X \leq Y \; \Rightarrow \qquad \qquad \lambda_i(X) \leq \qquad \lambda_i(Y)$

Giulio Galise - April 4, 2017 BIRS 2017 - Mostly Maximum Principle

$$\lambda_{i}(X) = \min_{\dim V=i} \max_{v \in V} \frac{\langle Xv, v \rangle}{|v|^{2}} \quad i = 1, \dots, N$$

$$\downarrow$$

$$X \le Y \Rightarrow \mathcal{P}_{k}^{-}(X) = \sum_{i=1}^{k} \lambda_{i}(X) \le \sum_{i=1}^{k} \lambda_{i}(Y) = \mathcal{P}_{k}^{-}(Y)$$

$$\lambda_{i}(X) = \min_{\dim V=i} \max_{v \in V} \frac{\langle Xv, v \rangle}{|v|^{2}} \quad i = 1, \dots, N$$

$$\downarrow$$

$$X \le Y \Rightarrow \mathcal{P}_{k}^{-}(X) = \sum_{i=1}^{k} \lambda_{i}(X) \le \sum_{i=1}^{k} \lambda_{i}(Y) = \mathcal{P}_{k}^{-}(Y)$$

If k < N, it is furthermore *degenerate in any direction* $v \in \mathbb{R}^N$, i.e.

$$\min_{X\in\mathcal{S}^{N}}\left(\mathcal{P}_{\boldsymbol{k}}^{-}(X+v\otimes v)-\mathcal{P}_{\boldsymbol{k}}^{-}(X)\right)=0$$

$$\lambda_{i}(X) = \min_{\dim V=i} \max_{v \in V} \frac{\langle Xv, v \rangle}{|v|^{2}} \quad i = 1, \dots, N$$

$$\downarrow$$

$$X \le Y \implies \mathcal{P}_{k}^{-}(X) = \sum_{i=1}^{k} \lambda_{i}(X) \le \sum_{i=1}^{k} \lambda_{i}(Y) = \mathcal{P}_{k}^{-}(Y)$$

If k < N, it is furthermore *degenerate in any direction* $v \in \mathbb{R}^N$, i.e.

$$\min_{X\in\mathcal{S}^{N}}\left(\mathcal{P}_{\boldsymbol{k}}^{-}(X+\boldsymbol{v}\otimes\boldsymbol{v})-\mathcal{P}_{\boldsymbol{k}}^{-}(X)\right)=0$$

just take X = 0 and use spec $(v \otimes v) = \{0, \dots, 0, 1\}$

$$\begin{cases} \mathcal{P}_{k}^{-}(D^{2}u) + \mathcal{H}(x, Du) + \mu u = f(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(DP)

where $f \in C(\Omega)$, $\mu \in \mathbb{R}$, the Hamiltonian $H \in C(\Omega \times \mathbb{R}^N)$ and

 $|H(x,\xi)| \le b |\xi| \qquad \forall (x,\xi) \in \Omega \times \mathbb{R}^N$ (SC 1)

e.g. H(x, Du) = b(x)|Du| or $H(x, Du) = \langle b(x), Du \rangle$ with $b \in L^{\infty}$

$$\begin{cases} \mathcal{P}_{k}^{-}(D^{2}u) + \mathcal{H}(x, Du) + \mu u = f(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(DP)

where $f \in C(\Omega)$, $\mu \in \mathbb{R}$, the Hamiltonian $H \in C(\Omega \times \mathbb{R}^N)$ and

 $|H(x,\xi)| \le b |\xi| \qquad \forall (x,\xi) \in \Omega \times \mathbb{R}^N$ (SC 1)

e.g. H(x, Du) = b(x)|Du| or $H(x, Du) = \langle b(x), Du \rangle$ with $b \in L^{\infty}$

Aims

 Validity (lack of) of the maximum/minimum principle, be it weak or strong (w.l.o.g. μ ≥ 0)

$$\begin{cases} \mathcal{P}_{k}^{-}(D^{2}u) + \mathcal{H}(x, Du) + \mu u = f(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(DP)

where $f \in C(\Omega)$, $\mu \in \mathbb{R}$, the Hamiltonian $H \in C(\Omega \times \mathbb{R}^N)$ and

 $|H(x,\xi)| \le b |\xi| \qquad \forall (x,\xi) \in \Omega \times \mathbb{R}^N$ (SC 1)

e.g. H(x, Du) = b(x)|Du| or $H(x, Du) = \langle b(x), Du \rangle$ with $b \in L^{\infty}$

- Validity (lack of) of the maximum/minimum principle, be it weak or strong (w.l.o.g. μ ≥ 0)
- Regularity of the solutions of (DP)

$$\begin{cases} \mathcal{P}_{k}^{-}(D^{2}u) + \mathcal{H}(x, Du) + \mu u = f(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(DP)

where $f \in C(\Omega)$, $\mu \in \mathbb{R}$, the Hamiltonian $H \in C(\Omega \times \mathbb{R}^N)$ and

 $|H(x,\xi)| \le b |\xi| \qquad \forall (x,\xi) \in \Omega \times \mathbb{R}^N$ (SC 1)

e.g. H(x, Du) = b(x)|Du| or $H(x, Du) = \langle b(x), Du \rangle$ with $b \in L^{\infty}$

- Validity (lack of) of the maximum/minimum principle, be it weak or strong (w.l.o.g. μ ≥ 0)
- Regularity of the solutions of (DP)
- Existence of principal eigenvalues and eigenfunctions

$$\begin{cases} \mathcal{P}_{k}^{-}(D^{2}u) + \mathcal{H}(x, Du) + \mu u = f(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
(DP)

where $f \in C(\Omega)$, $\mu \in \mathbb{R}$, the Hamiltonian $H \in C(\Omega \times \mathbb{R}^N)$ and

 $|H(x,\xi)| \le b |\xi| \qquad \forall (x,\xi) \in \Omega \times \mathbb{R}^N$ (SC 1)

e.g. H(x, Du) = b(x)|Du| or $H(x, Du) = \langle b(x), Du \rangle$ with $b \in L^{\infty}$

- Validity (lack of) of the maximum/minimum principle, be it weak or strong (w.l.o.g. $\mu \ge 0$)
- Regularity of the solutions of (DP)
- Existence of principal eigenvalues and eigenfunctions
- Point out differences with respect to the uniformly elliptic case

The strong minimum principle is closely related to the *Hopf lemma* and the *weak Harnack inequality*

The strong minimum principle is closely related to the *Hopf lemma* and the *weak Harnack inequality* Let

$$w(|x|) = (1 - |x|^2)^{\gamma}$$
 $\gamma > 1$

The eigenvalues of the Hessian are

The strong minimum principle is closely related to the *Hopf lemma* and the *weak Harnack inequality* Let

$$w(|x|) = (1 - |x|^2)^{\gamma}$$
 $\gamma > 1$

The eigenvalues of the Hessian are

$$\lambda_{i}(D^{2}w) = \frac{w'(|x|)}{|x|} = -2\gamma \left(1 - |x|^{2}\right)^{\gamma - 1} \quad \text{for } i = 1, \dots, N - 1$$
$$\lambda_{N}(D^{2}w) = w''(|x|) = \underbrace{-2\gamma \left(1 - |x|^{2}\right)^{\gamma - 1}}_{=\lambda_{i}(D^{2}w)} + 4|x|^{2}\gamma(\gamma - 1) \left(1 - |x|^{2}\right)^{\gamma - 2}$$

$$\begin{cases} \mathcal{P}_{\boldsymbol{k}}^{-}(D^2w) < 0 & \text{in } B_1 \\ w > 0 & \text{in } B_1 \\ w = \partial_{\boldsymbol{\nu}}w = 0 & \text{on } \partial B_1 \end{cases}$$

The strong minimum principle is closely related to the *Hopf lemma* and the *weak Harnack inequality* Let

$$w(|x|) = (1 - |x|^2)^{\gamma}$$
 $\gamma > 1$

The eigenvalues of the Hessian are

$$\lambda_{i}(D^{2}w) = \frac{w'(|x|)}{|x|} = -2\gamma \left(1 - |x|^{2}\right)^{\gamma - 1} \quad \text{for } i = 1, \dots, N - 1$$
$$\lambda_{N}(D^{2}w) = w''(|x|) = \underbrace{-2\gamma \left(1 - |x|^{2}\right)^{\gamma - 1}}_{=\lambda_{i}(D^{2}w)} + 4|x|^{2}\gamma(\gamma - 1) \left(1 - |x|^{2}\right)^{\gamma - 2}$$

Then Hopf lemma **does not hold** for \mathcal{P}_{k}^{-} if k < N:

$$\begin{cases} \mathcal{P}_{\boldsymbol{k}}^{-}(D^2w) < 0 & \text{in } B_1 \\ w > 0 & \text{in } B_1 \\ w = \partial_{\boldsymbol{\nu}}w = 0 & \text{on } \partial B_1 \end{cases}$$

Likewise for the weak Harnack inequality

Let

$$u(x_1,\ldots,x_N)=\frac{1}{2}x_N^2$$

then

$$D^2 u = \mathsf{diag}[0, \ldots, 0, 1]$$

and (k < N) $\mathcal{P}_{k}^{-}(D^{2}u) = 0$ in B_{2}

Nevertheless for any p > 0 and any C > 0

$$\left(\frac{1}{|B_1|}\int_{B_1}u^p\right)^{\frac{1}{p}} \not\leq 0 = C\inf_{B_1}u$$

Maximum and Minimum Principle

Under the assumption (SC 1) and for any k < N, the operator

 $\mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}\cdot) + \boldsymbol{H}(\boldsymbol{x},\boldsymbol{D}\cdot)$

does not satisfy the strong minimum principle in any bounded domain Ω .

On the other hand the weak minimum principle holds true in

$$\Omega \subseteq B_R$$
 if $bR \le k$

and the condition $bR \le k$ is sharp (remember $H(x, Du) \approx b|Du|$). The strong maximum principle holds true in any bounded domain since the boundary Hopf lemma applies to negative solutions u of

 $\mathcal{P}_{k}^{-}(D^{2}u) + H(x, Du) \geq 0$ in Ω

Generalized principal eigenvalues

What about

$$\mathcal{P}_{\underline{k}}^{-}(D^{2}\cdot) + \underline{H}(x,\underline{D}\cdot) + \mu\cdot$$

when $\mu > 0$?

Generalized principal eigenvalues

What about

$$\mathcal{P}_k^-(D^2\cdot)+H(x,D\cdot)+\mu\cdot$$

when $\mu > 0$?

Linear uniformly elliptic case [Berestycki-Nirenberg-Varadhan, Comm. Pure Appl. Math. 1994]

$$F[u] := \operatorname{Tr}(A(x)D^2u) + b(x) \cdot Du + c(x)u$$

the validity of the weak maximum (minimum) principle is related to the positivity of the principal eigenvalue

$$\boldsymbol{\mu}_1^+ := \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in W^{2,N}_{\mathsf{loc}}(\Omega), \ w > 0 \ \mathsf{and} \ F[u] + \mu w \leq 0 \ \mathsf{in} \ \Omega \right\}$$

[Busca-Esteban-Quaas, Birindelli-Demengel, Ishii-Yoshimura, Quaas-Sirakov, Armstrong, Patrizi, Ikoma-Ishii...]

$$\begin{split} F[u] &:= F(x, u, Du, D^2u) \quad \text{homogeneous of degree 1} \\ \mu_1^+ &:= \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in LSC(\Omega), \ w > 0 \ \text{and} \ F[u] + \mu w \leq 0 \ \text{in} \ \Omega \right\} \\ \mu_1^- &:= \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in USC(\Omega), \ w < 0 \ \text{and} \ F[u] + \mu w \geq 0 \ \text{in} \ \Omega \right\} \end{split}$$

[Busca-Esteban-Quaas, Birindelli-Demengel, Ishii-Yoshimura, Quaas-Sirakov, Armstrong, Patrizi, Ikoma-Ishii...]

$$\begin{split} F[u] &:= F(x, u, Du, D^2u) \quad \text{homogeneous of degree 1} \\ \mu_1^+ &:= \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in LSC(\Omega), \ w > 0 \ \text{and} \ F[u] + \mu w \leq 0 \ \text{in} \ \Omega \right\} \\ \mu_1^- &:= \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in USC(\Omega), \ w < 0 \ \text{and} \ F[u] + \mu w \geq 0 \ \text{in} \ \Omega \right\} \end{split}$$

In particular

(i)
$$\Omega_1 \subset \Omega_2$$
 and $|\Omega_2 \setminus \Omega_1| > 0 \Rightarrow \mu_1^{\pm}(\Omega_1) > \mu_1^{\pm}(\Omega_2)$

[Busca-Esteban-Quaas, Birindelli-Demengel, Ishii-Yoshimura, Quaas-Sirakov, Armstrong, Patrizi, Ikoma-Ishii...]

$$\begin{split} F[u] &:= F(x, u, Du, D^2u) \quad \text{homogeneous of degree 1} \\ \mu_1^+ &:= \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in LSC(\Omega), \ w > 0 \ \text{and} \ F[u] + \mu w \leq 0 \ \text{in} \ \Omega \right\} \\ \mu_1^- &:= \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in USC(\Omega), \ w < 0 \ \text{and} \ F[u] + \mu w \geq 0 \ \text{in} \ \Omega \right\} \end{split}$$

In particular

(i)
$$\Omega_1 \subset \Omega_2$$
 and $|\Omega_2 \setminus \Omega_1| > 0 \Rightarrow \mu_1^{\pm}(\Omega_1) > \mu_1^{\pm}(\Omega_2)$
(ii) $|\Omega| \to 0 \Rightarrow \mu_1^{\pm} \to +\infty$

[Busca-Esteban-Quaas, Birindelli-Demengel, Ishii-Yoshimura, Quaas-Sirakov, Armstrong, Patrizi, Ikoma-Ishii...]

$$\begin{split} F[u] &:= F(x, u, Du, D^2u) \quad \text{homogeneous of degree 1} \\ \mu_1^+ &:= \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in LSC(\Omega), \ w > 0 \ \text{and} \ F[u] + \mu w \leq 0 \ \text{in} \ \Omega \right\} \\ \mu_1^- &:= \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in USC(\Omega), \ w < 0 \ \text{and} \ F[u] + \mu w \geq 0 \ \text{in} \ \Omega \right\} \end{split}$$

In particular

[Busca-Esteban-Quaas, Birindelli-Demengel, Ishii-Yoshimura, Quaas-Sirakov, Armstrong, Patrizi, Ikoma-Ishii...]

$$\begin{split} F[u] &:= F(x, u, Du, D^2u) \quad \text{homogeneous of degree 1} \\ \mu_1^+ &:= \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in LSC(\Omega), \ w > 0 \ \text{and} \ F[u] + \mu w \leq 0 \ \text{in} \ \Omega \right\} \\ \mu_1^- &:= \sup \left\{ \mu \in \mathbb{R} \colon \exists w \in USC(\Omega), \ w < 0 \ \text{and} \ F[u] + \mu w \geq 0 \ \text{in} \ \Omega \right\} \end{split}$$

In particular

(i)
$$\Omega_1 \subset \Omega_2$$
 and $|\Omega_2 \setminus \Omega_1| > 0 \Rightarrow \mu_1^{\pm}(\Omega_1) > \mu_1^{\pm}(\Omega_2)$
(ii) $|\Omega| \to 0 \Rightarrow \mu_1^{\pm} \to +\infty$

(iii) $\mu < \mu_1^+ \Rightarrow F[\cdot] + \mu \cdot$ satisfies the weak maximum principle in Ω $\mu < \mu_1^- \Rightarrow F[\cdot] + \mu \cdot$ satisfies the weak minimum principle in Ω

(iv) μ_1^+ and μ_1^- correspond respectively to a positive and negative principal eigenfunction

$$\mathcal{P}_{\mathbf{k}}^{-}(D^{2}\cdot) + \mathbf{H}(\mathbf{x}, \mathbf{D}\cdot) + \boldsymbol{\mu}\cdot$$

$$H(x, t \xi) = t H(x, \xi) \qquad t > 0 \qquad (SC 2)$$

$$|H(x, \xi) - H(y, \xi)| \le \omega \left(|x - y| (1 + |\xi|)\right) \qquad (SC 3)$$

$$\mathcal{P}_{k}^{-}(D^{2}\cdot) + H(x, D\cdot) + \mu\cdot$$

$$H(x, t\xi) = t H(x, \xi) t > 0 (SC 2) H(x, \xi) - H(y, \xi)| \le \omega (|x - y| (1 + |\xi|)) (SC 3)$$

 $\boldsymbol{\mu}_{\boldsymbol{k}}^{-} = \sup\{\boldsymbol{\mu} \in \mathbb{R} : \exists w < 0 \text{ in } \Omega, \, \mathcal{P}_{\boldsymbol{k}}^{-}(D^2w) + \boldsymbol{H}(x, Dw) + \boldsymbol{\mu}w \geq 0\}$

and

$$\boldsymbol{\mu}_{\boldsymbol{k}}^{+} = \sup\{\boldsymbol{\mu} \in \mathbb{R} : \exists w > 0 \text{ in } \Omega, \, \mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}w) + \boldsymbol{H}(x, Dw) + \boldsymbol{\mu}w \leq 0\}$$

$$\mathcal{P}_{k}^{-}(D^{2}\cdot) + H(x, D\cdot) + \mu\cdot$$

$$H(x, t \xi) = t H(x, \xi) \qquad t > 0 \qquad (SC 2)$$

$$|H(x, \xi) - H(y, \xi)| \le \omega (|x - y| (1 + |\xi|)) \qquad (SC 3)$$

 $\mu_{k}^{-} = \sup\{\mu \in \mathbb{R} : \exists w < 0 \text{ in } \Omega, \mathcal{P}_{k}^{-}(D^{2}w) + H(x, Dw) + \mu w \ge 0\}$ $\overline{\mu}_{k}^{-} = \sup\{\mu \in \mathbb{R} : \exists w < 0 \text{ in } \overline{\Omega}, \mathcal{P}_{k}^{-}(D^{2}w) + H(x, Dw) + \mu w \ge 0\}$ and

$$\begin{split} \mu_k^+ &= \sup\{\mu \in \mathbb{R} : \exists w > 0 \text{ in } \Omega, \, \mathcal{P}_k^-(D^2w) + H(x, Dw) + \mu w \leq 0\}\\ \overline{\mu}_k^+ &= \sup\{\mu \in \mathbb{R} : \exists w > 0 \text{ in } \overline{\Omega}, \, \mathcal{P}_k^-(D^2w) + H(x, Dw) + \mu w \leq 0\} \end{split}$$

$\overline{\mu}_k^{\pm} = \mu_k^{\pm}$?

The equality $\overline{\mu}^{\pm} = \mu^{\pm}$ holds for uniformly elliptic operators, while examples of degenerate (first order) operators s.t. $\overline{\mu}^{\pm} < \mu^{\pm}$ are exhibit in [Berestycki-Capuzzo Dolcetta-Porretta-Rossi, 2015].

Theorem

Let $\Omega \subset \mathbb{R}^N$ be a bounded domain. Under the assumptions (SC 2)-(SC 3), then the operator

$$\mathcal{P}_{\mathbf{k}}^{-}(D^{2}\cdot) + \mathbf{H}(\mathbf{x}, \mathbf{D}\cdot) + \mu\cdot$$

satisfies:

i) the weak minimum principle for $\mu < \overline{\mu}_{k}^{-}$ ii) the weak maximum principle for $\mu < \overline{\mu}_{k}^{+}$.

If the weak maximum principle for $\mu < \mu_k$.

...To reach the values μ_k^- and μ_k^+ (the standard thresholds in the uniformly elliptic case) we shall need some further conditions!

The case $\overline{\mu}_k^+$

 $\Omega \subseteq B_R$ and bR < k

Let

$$w(|x|) = \left(R^2 - |x|^2\right)^{\gamma} > 0$$
 in $\overline{\Omega}$

Then for any $\mu > 0$

 $\mathcal{P}_{k}^{-}(D^{2}w) + \mathcal{H}(x, Dw) + \mu w \leq 0$ for $\gamma = \gamma(\mu, b, k, R)$ big enough

$$\overline{\mu}_{\mathbf{k}}^+ = +\infty$$
$\Omega \subseteq B_R$ and bR < k

Let

$$w(|x|) = (R^2 - |x|^2)^{\gamma} > 0$$
 in $\overline{\Omega}$

Then for any $\mu > 0$

 $\mathcal{P}_{k}^{-}(D^{2}w) + \mathcal{H}(x, Dw) + \mu w \leq 0$ for $\gamma = \gamma(\mu, b, k, R)$ big enough

$$\mu_k^+ = \overline{\mu}_k^+ = +\infty$$

 $\Omega \subseteq B_R$ and bR < k

Let

$$w(|x|) = \left(R^2 - |x|^2\right)^{\gamma} > 0$$
 in $\overline{\Omega}$

Then for any $\mu > 0$

 $\mathcal{P}_{k}^{-}(D^{2}w) + H(x, Dw) + \mu w \leq 0$ for $\gamma = \gamma(\mu, b, k, R)$ big enough

$$\mu_k^+ = \overline{\mu}_k^+ = +\infty$$

\mathcal{P}_k^- vs Δ

Maximum principle holds true for

$$\Delta \cdot + \mu \cdot = \lambda_1(D^2 \cdot) + \ldots + \lambda_N(D^2 \cdot) + \mu \cdot \text{ in } \Omega$$

provided $\mu < \mu_{\Delta} < +\infty$.

 $\Omega \subseteq B_R$ and bR < k

Let

$$w(|x|) = (R^2 - |x|^2)^{\gamma} > 0$$
 in $\overline{\Omega}$

Then for any $\mu > 0$

 $\mathcal{P}_{k}^{-}(D^{2}w) + H(x, Dw) + \mu w \leq 0$ for $\gamma = \gamma(\mu, b, k, R)$ big enough

$$\mu_k^+ = \overline{\mu}_k^+ = +\infty$$

\mathcal{P}_k^- vs Δ

Maximum principle holds true for

$$\Delta \cdot + \mu \cdot = \lambda_1(D^2 \cdot) + \ldots + \lambda_N(D^2 \cdot) + \mu \cdot \text{ in } \Omega$$

provided $\mu < \mu_{\Delta} < +\infty$. Conversely

$$\mathcal{P}_{N-1}^{-}(D^{2}\cdot) + \mu \cdot = \lambda_{1}(D^{2}\cdot) + \ldots + \lambda_{N-1}(D^{2}\cdot) + \lambda_{N}(\mathcal{D}^{2}\cdot) + \mu$$

satisfies the maximum principle for any $\mu \in \mathbb{R}$.

Instability of $\overline{\mu}_k^+$

Consider

$$\mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}\cdot)+rac{\boldsymbol{k}}{R}|\boldsymbol{D}\cdot|$$
 in $\Omega_{n}=B_{R-rac{1}{n}}$

In this case the condition bR < k reads as

$$\frac{k}{R}\left(R-\frac{1}{n}\right) < k$$

Instability of $\overline{\mu}_k^+$

Consider

$$\mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}\cdot)+rac{\boldsymbol{k}}{R}|\boldsymbol{D}\cdot|$$
 in $\Omega_{n}=B_{R-rac{1}{n}}$

In this case the condition bR < k reads as

$$\frac{k}{R}\left(R-\frac{1}{n}\right) < k \implies \overline{\mu}_{k}^{+}(\Omega_{n}) = +\infty$$

Instability of $\overline{\mu}_k^+$

Consider

$$\mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}\cdot) + \frac{k}{R}|D\cdot|$$
 in $\Omega_{n} = B_{R-\frac{1}{n}}$

In this case the condition bR < k reads as

$$\frac{k}{R}\left(R-\frac{1}{n}\right) < k \implies \overline{\mu}_{k}^{+}(\Omega_{n}) = +\infty$$

On the other hand $w(|x|) = \left(R^2 - |x|^2
ight)^\gamma$ satisfies

$$\begin{cases} \mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}w) + \frac{\boldsymbol{k}}{R}|Dw| + \frac{2\gamma\boldsymbol{k}}{R^{2}}w \geq 0 & \text{in } \Omega = \cup_{\boldsymbol{n}\in\mathbb{N}}\Omega_{\boldsymbol{n}} \\ w = 0 & \text{on } \partial\Omega \\ w > 0 & \text{in } \Omega. \end{cases}$$

Hence this contradicts the maximum principle and

$$\overline{\boldsymbol{\mu}}_{\boldsymbol{k}}^+(\Omega) \leq \frac{2\gamma k}{R^2}$$

Let $R_1 \leq 1$ s.t. $B_{R_1} \subseteq \Omega$. No blow-up phenomena, being

$$\overline{\boldsymbol{\mu}}_{\boldsymbol{k}}^{-} \leq \frac{C(\boldsymbol{b}, \boldsymbol{k})}{R_1^2}$$

Let $R_1 \leq 1$ s.t. $B_{R_1} \subseteq \Omega$. No blow-up phenomena, being

$$\overline{oldsymbol{\mu}}_{oldsymbol{k}}^{-} \leq rac{C(oldsymbol{b},oldsymbol{k})}{R_1^2}$$

But $w(|x|) = \sin |x| + \cos \frac{1}{n}$ satisfies $\begin{cases}
\mathcal{P}_{k}^{-}(D^{2}w) - \frac{k}{\frac{3}{2}\pi} |Dw| + \mathbf{0}w \leq 0 & \text{in } \Omega_{n} = B_{\frac{3}{2}\pi + \frac{1}{n}} \setminus \overline{B}_{\frac{3}{2}\pi - \frac{1}{n}} \\
w = 0 & \text{on } \partial\Omega_{n} \\
w < 0 & \text{in } \Omega_{n}
\end{cases}$

contradicting the minimum principle. Hence

Let $R_1 \leq 1$ s.t. $B_{R_1} \subseteq \Omega$. No blow-up phenomena, being

$$\overline{oldsymbol{\mu}}_{oldsymbol{k}}^{-} \leq rac{C(oldsymbol{b},oldsymbol{k})}{R_1^2}$$

But $w(|x|) = \sin |x| + \cos \frac{1}{n}$ satisfies $\begin{cases}
\mathcal{P}_{k}^{-}(D^{2}w) - \frac{k}{\frac{3}{2}\pi} |Dw| + \mathbf{0}w \leq 0 & \text{in } \Omega_{n} = B_{\frac{3}{2}\pi + \frac{1}{n}} \setminus \overline{B}_{\frac{3}{2}\pi - \frac{1}{n}} \\
w = 0 & \text{on } \partial\Omega_{n} \\
w < 0 & \text{in } \Omega_{n}
\end{cases}$

contradicting the minimum principle. Hence

 $\overline{\boldsymbol{\mu}}_{\boldsymbol{k}}^{-}(\Omega_n) \leq \boldsymbol{0}$

Let $R_1 \leq 1$ s.t. $B_{R_1} \subseteq \Omega$. No blow-up phenomena, being

$$\overline{\mu}_{\overline{k}}^{-} \leq rac{C(b, k)}{R_1^2}$$

But $w(|x|) = \sin |x| + \cos \frac{1}{n}$ satisfies $\begin{cases}
\mathcal{P}_{k}^{-}(D^{2}w) - \frac{k}{\frac{3}{2}\pi} |Dw| + \mathbf{0}w \leq 0 & \text{in } \Omega_{n} = B_{\frac{3}{2}\pi + \frac{1}{n}} \setminus \overline{B}_{\frac{3}{2}\pi - \frac{1}{n}} \\
w = 0 & \text{on } \partial\Omega_{n} \\
w < 0 & \text{in } \Omega_{n}
\end{cases}$

contradicting the minimum principle. Hence

 $0 \leq \overline{\mu}_{\underline{k}}^{-}(\Omega_n) \leq \mathbf{0}$

Let $R_1 \leq 1$ s.t. $B_{R_1} \subseteq \Omega$. No blow-up phenomena, being

$$\overline{\boldsymbol{\mu}}_{\boldsymbol{k}}^{-} \leq \frac{C(\boldsymbol{b}, \boldsymbol{k})}{R_1^2}$$

But $w(|x|) = \sin |x| + \cos \frac{1}{n}$ satisfies $\begin{cases}
\mathcal{P}_{k}^{-}(D^{2}w) - \frac{k}{\frac{3}{2}\pi} |Dw| + \mathbf{0}w \leq 0 & \text{in } \Omega_{n} = B_{\frac{3}{2}\pi + \frac{1}{n}} \setminus \overline{B}_{\frac{3}{2}\pi - \frac{1}{n}} \\
w = 0 & \text{on } \partial\Omega_{n} \\
w < 0 & \text{in } \Omega_{n}
\end{cases}$

contradicting the minimum principle. Hence

 $0 \leq \overline{\mu}_{\boldsymbol{k}}^{-}(\Omega_n) \leq \boldsymbol{0}$

while

$$\lim_{n\to\infty}|\Omega_n|=0$$

Let $R_1 \leq 1$ s.t. $B_{R_1} \subseteq \Omega$. No blow-up phenomena, being

$$\overline{\mu}_{\overline{k}}^{-} \leq rac{C(b, k)}{R_1^2}$$

But $w(|x|) = \sin |x| + \cos \frac{1}{n}$ satisfies $\begin{cases}
\mathcal{P}_{k}^{-}(D^{2}w) - \frac{k}{\frac{3}{2}\pi} |Dw| + \mathbf{0}w \leq 0 & \text{in } \Omega_{n} = B_{\frac{3}{2}\pi + \frac{1}{n}} \setminus \overline{B}_{\frac{3}{2}\pi - \frac{1}{n}} \\
w = 0 & \text{on } \partial\Omega_{n} \\
w < 0 & \text{in } \Omega_{n}
\end{cases}$

contradicting the minimum principle. Hence

$$0 \leq \overline{\mu}_{\underline{k}}^{-}(\Omega_n) \leq \mathbf{0}$$

while

$$\lim_{n\to\infty}|\Omega_n|=0$$

 Ω_n : domains whose measure goes to zero but whose principal eigenvalue stays equal to zero !!!

Giulio Galise - April 4, 2017 BIRS 2017 - Mostly Maximum Principle

Let

$$w(x_1, x_2) = -\sin nx_1 - \sin x_2$$

and $(x_1, x_2) \in \Omega_n := \left\{ 0 \le \frac{nx_1 + x_2}{2} \le \pi, -\frac{\pi}{2} \le \frac{nx_1 - x_2}{2} \le \frac{\pi}{2} \right\}$

Let

$$w(x_1, x_2) = -\sin nx_1 - \sin x_2$$

and $(x_1, x_2) \in \Omega_n := \left\{ 0 \le \frac{nx_1 + x_2}{2} \le \pi, -\frac{\pi}{2} \le \frac{nx_1 - x_2}{2} \le \frac{\pi}{2} \right\}$
 Ω_n narrow domains in the x_1 -direction s.t.

diam
$$(\Omega_n) = 2\pi$$
 and $\Omega_n \rightarrow \{0\} \times \left[-\frac{\pi}{2}, \frac{3}{2}\pi\right]$

Let

$$w(x_1, x_2) = -\sin nx_1 - \sin x_2$$

and $(x_1, x_2) \in \Omega_n := \left\{ 0 \le \frac{nx_1 + x_2}{2} \le \pi, -\frac{\pi}{2} \le \frac{nx_1 - x_2}{2} \le \frac{\pi}{2} \right\}$
 Ω_n narrow domains in the x_1 -direction s.t.

diam
$$(\Omega_n) = 2\pi$$
 and $\Omega_n \to \{0\} \times \left[-\frac{\pi}{2}, \frac{3}{2}\pi\right]$

Nevertheless

$$\begin{cases} \mathcal{P}_{\mathbf{1}}^{-}(D^{2}w) + \mathbf{1}w \leq 0 & \text{in } \Omega_{n} \\ w = 0 & \text{on } \partial \Omega_{n} \\ w < 0 & \text{in } \Omega_{n} \end{cases}$$

violating the minimum principle, hence

$$\overline{\mu}_1^-(\Omega_n) \leq 1 \quad \forall n \in \mathbb{N}$$

On the equivalence $\overline{\mu}_k^- = \mu_k^-$

$$\begin{cases} \mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}v) + \boldsymbol{H}(x, Dv) + \mu v \leq 0 & \text{in } \Omega \\ \lim_{x \to \partial \Omega} \int v \geq 0 \end{cases}$$

Minumum principle OK if $\mu < \overline{\mu}_k^- (\leq \mu_k^-)$

How reach the value μ_k^- ?

Giulio Galise - April 4, 2017 BIRS 2017 - Mostly Maximum Principle

On the equivalence $\overline{\mu}_k^- = \mu_k^-$

$$\begin{cases} \mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}v) + \boldsymbol{H}(x, Dv) + \mu v \leq 0 & \text{in } \Omega \\ \lim_{x \to \partial \Omega} \int v \geq 0 \end{cases}$$

Minumum principle OK if $\mu < \overline{\mu}_k^- (\leq \mu_k^-)$

How reach the value μ_k^- ?

Barrier function: $v \ge -Cd(x) := -Cdist(x, \partial \Omega)$

On the equivalence $\overline{\mu}_k^- = \mu_k^-$

$$\begin{cases} \mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}v) + \boldsymbol{H}(x, Dv) + \mu v \leq 0 & \text{in } \Omega \\ \lim_{x \to \partial \Omega} \int v \geq 0 \end{cases}$$

Minumum principle OK if $\mu < \overline{\mu}_k^- (\leq \mu_k^-)$

How reach the value μ_{k}^{-} ?

Barrier function: $v \ge -Cd(x) := -C \operatorname{dist}(x, \partial \Omega)$ *Warning: "\partial \Omega flat"*, e.g. $v(x) = -x_N^{\gamma \in (0,1)}$ is a solution of

$$\mathcal{P}_{k}^{-}(D^{2}v) = 0 \quad \text{in } \mathbb{R}_{+}^{N} := \{x : x_{N} > 0 \\ v = 0 \quad \text{on } \partial \mathbb{R}_{+}^{N} \\ \lim_{x \to \partial \mathbb{R}_{+}^{N}} \frac{v(x)}{d(x)} = -\lim_{x \to \partial \mathbb{R}_{+}^{N}} \frac{x_{N}^{\gamma}}{x_{N}} = -\infty$$

Convexity of Ω is needed...

Giulio Galise - April 4, 2017 BIRS 2017 - Mostly Maximum Principle

Hula hoop domains

We shall consider a class C_R of convex domains Ω satisfying the following assumption: there exist R > 0 and $Y \subseteq \mathbb{R}^N$, depending on Ω , such that

$$\Omega = \bigcap_{y \in Y} B_R(y)$$

Hula hoop domains

We shall consider a class C_R of convex domains Ω satisfying the following assumption: there exist R > 0 and $Y \subseteq \mathbb{R}^N$, depending on Ω , such that

$$\Omega = \bigcap_{y \in Y} B_R(y)$$

 \implies existence of barrier!

Hula hoop domains

We shall consider a class C_R of convex domains Ω satisfying the following assumption: there exist R > 0 and $Y \subseteq \mathbb{R}^N$, depending on Ω , such that

$$\Omega = \bigcap_{y \in Y} B_R(y) =$$

 \implies existence of barrier!

Proposition

Let Ω be a bounded domain with C^2 -boundary. Let $\kappa_i(x)$ denote the principal curvatures of $\partial \Omega$ at x for i = 1, ..., N - 1, set

$$\underline{\kappa} = \min\{\kappa_i(x) : i = 1, \dots, N - 1, x \in \partial\Omega\},\$$

and assume that $\underline{\kappa} > 0$. If $R \geq \frac{1}{\kappa}$, then $\Omega \in \mathcal{C}_R$.

Let $\Omega \in \mathcal{C}_R$. If *H* satisfies (SC 2)-(SC 3) and bR < k, then

 $\mu_{\mathbf{k}}^{-} = \overline{\mu}_{\mathbf{k}}^{-}$

and the minimum principle holds true in $\boldsymbol{\Omega}$ for

 $\mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}\cdot) + \boldsymbol{H}(\boldsymbol{x},\boldsymbol{D}\cdot) + \boldsymbol{\mu}\cdot$

if and only if $\mu < \mu_k^-$.

Let $\Omega \in C_R$. If *H* satisfies (SC 2)-(SC 3) and bR < k, then

$$\mu_{\mathbf{k}}^{-} = \overline{\mu}_{\mathbf{k}}^{-}$$

and the minimum principle holds true in $\boldsymbol{\Omega}$ for

 $\mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}\cdot) + \boldsymbol{H}(\boldsymbol{x},\boldsymbol{D}\cdot) + \boldsymbol{\mu}\cdot$

if and only if $\mu < \mu_k^-$.

Step 1. For $\mu < \mu_k^-$ the operator $\mathcal{P}_k^-(D^2 \cdot) + \mathcal{H}(x, D \cdot) + \mu \cdot$ satisfies the minimum principle

Let $\Omega \in C_R$. If *H* satisfies (SC 2)-(SC 3) and bR < k, then

$$\mu_{\mathbf{k}}^{-} = \overline{\mu}_{\mathbf{k}}^{-}$$

and the minimum principle holds true in Ω for

 $\mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}\cdot) + \boldsymbol{H}(\boldsymbol{x},\boldsymbol{D}\cdot) + \boldsymbol{\mu}\cdot$

if and only if $\mu < \mu_k^-$.

Step 1. For $\mu < \mu_k^-$ the operator $\mathcal{P}_k^-(D^2 \cdot) + H(x, D \cdot) + \mu \cdot$ satisfies the minimum principle

Step 2. There exists a $v \not\equiv 0$ solution of

4

$$\begin{cases} \mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}v) + \mathcal{H}(x, Dv) + \overline{\boldsymbol{\mu}}_{\boldsymbol{k}}^{-}v \leq 0 & \text{in } \Omega \\ v = 0 & \text{on } \partial\Omega \\ v \leq 0 & \text{in } \Omega \end{cases}$$

Let $\Omega \in C_R$. If *H* satisfies (SC 2)-(SC 3) and bR < k, then

$$\mu_{\mathbf{k}}^{-} = \overline{\mu}_{\mathbf{k}}^{-}$$

and the minimum principle holds true in Ω for

 $\mathcal{P}_{\boldsymbol{k}}^{-}(D^{2}\cdot) + \boldsymbol{H}(\boldsymbol{x},\boldsymbol{D}\cdot) + \boldsymbol{\mu}\cdot$

if and only if $\mu < \mu_k^-$.

Step 1. For $\mu < \mu_k^-$ the operator $\mathcal{P}_k^-(D^2 \cdot) + H(x, D \cdot) + \mu \cdot$ satisfies the minimum principle

Step 2. There exists a $v \not\equiv 0$ solution of

$$\begin{cases} \mathcal{P}_{\mathbf{k}}^{-}(D^{2}v) + \mathcal{H}(x, Dv) + \overline{\mu}_{\mathbf{k}}^{-}v \leq 0 & \text{in } \Omega \\ v = 0 & \text{on } \partial\Omega \\ v \leq 0 & \text{in } \Omega \end{cases}$$

Step 3. $\mu_k^- = \overline{\mu}_k^-$

$$\begin{cases} \mathcal{P}_{1}^{-}(D^{2}u) + \mathcal{H}(x, Du) = f(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (DP₁)

Giulio Galise - April 4, 2017 BIRS 2017 - Mostly Maximum Principle

$$\begin{cases} \mathcal{P}_{1}^{-}(D^{2}u) + \mathcal{H}(x, Du) = f(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (DP₁)

Preliminary considerations ($H \equiv 0, f \equiv 0$):

(i) $\mathcal{P}_1^-(D^2u) \ge 0 \Longrightarrow u$ convex, in particular $u \in \operatorname{Lip}_{\operatorname{loc}}(\Omega)$

$$\begin{cases} \mathcal{P}_1^-(D^2u) + \mathcal{H}(x, Du) = f(x) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
 (DP₁)

Preliminary considerations ($H \equiv 0$, $f \equiv 0$):

(i) $\mathcal{P}_1^-(D^2u) \ge 0 \Longrightarrow u$ convex, in particular $u \in \operatorname{Lip}_{\operatorname{loc}}(\Omega)$

(ii) *u* subsolution of (DP₁) and $u \ge 0 \implies u \equiv 0$, regularity up to $\partial \Omega!$

$$\begin{cases} \mathcal{P}_1^-(D^2u) + \mathcal{H}(x, Du) = f(x) & \text{in } \Omega\\ u = 0 & \text{on } \partial\Omega \end{cases}$$
 (DP₁)

Preliminary considerations ($H \equiv 0$, $f \equiv 0$):

(i) $\mathcal{P}_1^-(D^2u) \ge 0 \Longrightarrow u$ convex, in particular $u \in \operatorname{Lip}_{\operatorname{loc}}(\Omega)$

- (ii) *u* subsolution of (DP₁) and $u \ge 0 \implies u \equiv 0$, regularity up to $\partial \Omega!$
- (iii) *u* subsolution of $(DP_1) \Longrightarrow u \in C^{0,\alpha}(\overline{\Omega})$ for $\alpha \in (0,1]$

$$\begin{cases} \mathcal{P}_{1}^{-}(D^{2}u) + \mathcal{H}(x, Du) = f(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (DP₁)

Preliminary considerations ($H \equiv 0$, $f \equiv 0$):

(i) $\mathcal{P}_1^-(D^2u) \ge 0 \Longrightarrow u$ convex, in particular $u \in \operatorname{Lip}_{\mathsf{loc}}(\Omega)$

- (ii) *u* subsolution of (DP₁) and $u \ge 0 \implies u \equiv 0$, regularity up to $\partial \Omega!$
- (iii) *u* subsolution of $(DP_1) \Longrightarrow u \in C^{0,\alpha}(\overline{\Omega})$ for $\alpha \in (0,1]$
- (iv) u solution of (DP₁) ?

$$\begin{cases} \mathcal{P}_{1}^{-}(D^{2}u) + \mathcal{H}(x, Du) = f(x) & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$
 (DP₁)

Preliminary considerations ($H \equiv 0$, $f \equiv 0$):

(i) $\mathcal{P}_1^-(D^2u) \ge 0 \Longrightarrow u$ convex, in particular $u \in \operatorname{Lip}_{\operatorname{loc}}(\Omega)$

- (ii) *u* subsolution of (DP₁) and $u \ge 0 \implies u \equiv 0$, regularity up to $\partial \Omega!$
- (iii) *u* subsolution of $(\mathsf{DP}_1) \Longrightarrow u \in C^{0,\alpha}(\overline{\Omega})$ for $\alpha \in (0,1]$
- (iv) u solution of (DP₁)? At least for Ω unbounded, global regularity does not hold: $u(x) = x_N^{\gamma < \alpha} \notin C^{0,\alpha}(\overline{\mathbb{R}}^N_+)$, but it is a solution of

$$\mathcal{P}_1^-(D^2u)=0 \hspace{0.2cm} ext{in} \hspace{0.2cm} \mathbb{R}^N_+, \hspace{0.2cm} u=0 \hspace{0.2cm} ext{on} \hspace{0.2cm} \partial \mathbb{R}^N_+$$

... Again "hula hoop" condition

Let $\Omega \in C_R$. If *H* satisfies (SC 1) and bR < 1, then the solutions *u* of $\begin{cases}
\mathcal{P}_1^-(D^2u) + \mathcal{H}(x, Du) = f(x) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$

are **Lipschitz** continuous in $\overline{\Omega}$. The Lipschitz norm of u can be bounded by a constant depending only on Ω , b and the L^{∞} norms of u and f (compactness).

Let $\Omega \in C_R$. If *H* satisfies (SC 1) and bR < 1, then the solutions *u* of $\begin{cases}
\mathcal{P}_1^-(D^2u) + \mathcal{H}(x, Du) = f(x) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$

are **Lipschitz** continuous in $\overline{\Omega}$. The Lipschitz norm of u can be bounded by a constant depending only on Ω , b and the L^{∞} norms of u and f (compactness).

Comparison principle

$$u(x)$$
 $v_y(x) := u(y) + L\left(|x-y| - |x-y|^{ heta}
ight)$ in $B_{\delta}(y) \cap \Omega$

where $\theta \in (1,2)$ and L, δ chosen in such a way v_y is a classical strict supersolution of

$$\mathcal{P}_1^-(D^2u) + H(x, Du) = f(x) \text{ in } B_\delta(y) \setminus \{y\}$$

 $u < v_v$ on $\partial(B_{\delta}(v) \cap \Omega)$

and

Let $\Omega \in C_R$. If *H* satisfies (SC 1) and bR < 1, then the solutions *u* of $\begin{cases}
\mathcal{P}_1^-(D^2u) + \mathcal{H}(x, Du) = f(x) & \text{in } \Omega \\
u = 0 & \text{on } \partial\Omega
\end{cases}$

are **Lipschitz** continuous in $\overline{\Omega}$. The Lipschitz norm of u can be bounded by a constant depending only on Ω , b and the L^{∞} norms of u and f (compactness).

Comparison principle

$$u(x) \leq v_y(x) := u(y) + L\left(|x-y| - |x-y|^{ heta}
ight) \qquad ext{in } B_{\delta}(y) \cap \Omega$$

where $\theta \in (1,2)$ and L, δ chosen in such a way v_y is a classical strict supersolution of

$$\mathcal{P}_1^-(D^2u) + H(x, Du) = f(x) \text{ in } B_\delta(y) \setminus \{y\}$$

 $u < v_v$ on $\partial(B_{\delta}(v) \cap \Omega)$

and

Let $\Omega \in C_R$. If *H* satisfies (SC 2)-(SC 3) and bR < 1, then there exists a negative function $\psi_1 \in \text{Lip}(\overline{\Omega})$ such that

$$\begin{cases} \mathcal{P}_1^-(D^2\psi_1) + \mathcal{H}(x, D\psi_1) + \mu_1^-\psi_1 = 0 & \text{in } \Omega \\ \psi_1 = 0 & \text{on } \partial\Omega. \end{cases}$$
Let $\Omega \in C_R$. If *H* satisfies (SC 2)-(SC 3) and bR < 1, then there exists a negative function $\psi_1 \in \text{Lip}(\overline{\Omega})$ such that

$$\begin{cases} \mathcal{P}_1^-(D^2\psi_1) + \mathcal{H}(x, D\psi_1) + \mu_1^-\psi_1 = 0 & \text{in } \Omega\\ \psi_1 = 0 & \text{on } \partial\Omega. \end{cases}$$

Step 1. Let $\mu_n \nearrow \mu_1^-$. Then $\exists u_n \in \operatorname{Lip}(\overline{\Omega})$ negative solutions of

 $\mathcal{P}_1^-(D^2u_n) + \mathcal{H}(x, Du_n) + \mu_n u_n = 1$ in Ω , $u_n = 0$ on $\partial\Omega$

Let $\Omega \in C_R$. If *H* satisfies (SC 2)-(SC 3) and bR < 1, then there exists a negative function $\psi_1 \in \text{Lip}(\overline{\Omega})$ such that

$$\begin{cases} \mathcal{P}_1^-(D^2\psi_1) + \mathcal{H}(x, D\psi_1) + \mu_1^-\psi_1 = 0 & \text{in } \Omega\\ \psi_1 = 0 & \text{on } \partial\Omega. \end{cases}$$

Step 1. Let $\mu_n \nearrow \mu_1^-$. Then $\exists u_n \in \operatorname{Lip}(\overline{\Omega})$ negative solutions of

$$\mathcal{P}_1^-(D^2u_n) + \mathcal{H}(x, Du_n) + \mu_n u_n = 1$$
 in Ω , $u_n = 0$ on $\partial \Omega$

Step 2. Compactness yields $\|u_n\|_{\infty} \to \infty$

Let $\Omega \in C_R$. If *H* satisfies (SC 2)-(SC 3) and bR < 1, then there exists a negative function $\psi_1 \in \text{Lip}(\overline{\Omega})$ such that

$$\begin{bmatrix} \mathcal{P}_1^-(D^2\psi_1) + \mathcal{H}(x, D\psi_1) + \mu_1^-\psi_1 = 0 & \text{in } \Omega\\ \psi_1 = 0 & \text{on } \partial\Omega. \end{bmatrix}$$

Step 1. Let $\mu_n \nearrow \mu_1^-$. Then $\exists u_n \in \operatorname{Lip}(\overline{\Omega})$ negative solutions of

 $\mathcal{P}_1^-(D^2u_n) + \mathcal{H}(x, Du_n) + \mu_n u_n = 1$ in Ω , $u_n = 0$ on $\partial \Omega$

 $\begin{array}{l} \underline{\text{Step 2.}} & \textit{Compactness yields } \|u_n\|_{\infty} \to \infty \\ \underline{\overline{\text{Step 3.}}} & \textit{Rescaling } v_n = \frac{u_n}{\|u_n\|_{\infty}} \to \psi_1 \in \text{Lip}(\overline{\Omega}) \text{ and passing to the limit} \\ \mathcal{P}_1^-(D^2\psi_1) + \mathcal{H}(x, D\psi_1) + \mu_1^-\psi_1 = 0 \text{ in } \Omega, \ \psi_1 = 0 \text{ on } \partial\Omega \end{array}$

Let $\Omega \in C_R$. If *H* satisfies (SC 2)-(SC 3) and bR < 1, then there exists a negative function $\psi_1 \in \text{Lip}(\overline{\Omega})$ such that

$$\begin{bmatrix} \mathcal{P}_1^-(D^2\psi_1) + \mathcal{H}(x, D\psi_1) + \mu_1^-\psi_1 = 0 & \text{in } \Omega\\ \psi_1 = 0 & \text{on } \partial\Omega. \end{bmatrix}$$

Step 1. Let $\mu_n \nearrow \mu_1^-$. Then $\exists u_n \in \operatorname{Lip}(\overline{\Omega})$ negative solutions of

 $\mathcal{P}_1^-(D^2u_n) + H(x, Du_n) + \mu_n u_n = 1$ in Ω , $u_n = 0$ on $\partial \Omega$

 $\begin{array}{l} \underline{\text{Step 2. Compactness yields }} \|u_n\|_{\infty} \to \infty \\ \underline{\overline{\text{Step 3. }}} \\ \underline{\text{Rescaling }} v_n = \frac{u_n}{\|u_n\|_{\infty}} \to \psi_1 \in \text{Lip}(\overline{\Omega}) \text{ and passing to the limit} \\ \mathcal{P}_1^-(D^2\psi_1) + \mathcal{H}(x, D\psi_1) + \mu_1^-\psi_1 = 0 \text{ in } \Omega, \ \psi_1 = 0 \text{ on } \partial\Omega \end{array}$

Step 4. Strong maximum principle yields $\psi_1 < 0$ in Ω .

Example: $\Omega = B_R$ and $H \equiv 0$

Consider

$$\psi_1(x) = -\cos\left(\frac{\pi}{2R}|x|\right)$$

Example: $\Omega = B_R$ and $H \equiv 0$

Consider

$$\psi_1(x) = -\cos\left(\frac{\pi}{2R}|x|\right),\,$$

then

$$\lambda_{1} \left(D^{2} \psi_{1}(x) \right) = \left(\frac{\pi}{2R} \right)^{2} \cos \left(\frac{\pi}{2R} |x| \right)$$
$$\leq \underline{\lambda_{i} \left(D^{2} \psi_{1}(x) \right)} = \underbrace{\left(\frac{\pi}{2R} \right)}_{|x|} \frac{\sin \left(\frac{\pi}{2R} |x| \right)}{|x|} \quad \text{for } i = 2, \dots, N$$

and

Example: $\Omega = B_R$ and $H \equiv 0$

Consider

$$\psi_1(x) = -\cos\left(\frac{\pi}{2R}|x|\right),$$

then

$$\lambda_{1} \left(D^{2} \psi_{1}(x) \right) = \left(\frac{\pi}{2R} \right)^{2} \cos \left(\frac{\pi}{2R} |x| \right)$$
$$\leq \underbrace{\lambda_{i} \left(D^{2} \psi_{1}(x) \right)}_{i} = \underbrace{\left(\frac{\pi}{2R} \right)}_{i} \underbrace{\frac{\sin \left(\frac{\pi}{2R} |x| \right)}{|x|}}_{i} \quad \text{for } i = 2, \dots, N$$

and

$$\mathcal{P}_1^-(D^2\psi_1) + \left(rac{\pi}{2R}
ight)^2\psi_1 = 0 \ ext{in} \ \Omega, \ \psi_1 = 0 \ ext{on} \ \partial\Omega$$

By definition $\mu_1^- \ge \left(\frac{\pi}{2R}\right)^2$, on the other hand ψ_1 violates the minimum principle, hence $\mu_1^- \le \left(\frac{\pi}{2R}\right)^2$

$$\boldsymbol{\mu}_{\mathbf{1}}^{-} = \left(\frac{\pi}{2R}\right)^2$$

 Is the global Lipschitz regularity true for 1 < k < N ? Or Hölder regularity?

- Is the global Lipschitz regularity true for 1 < k < N ? Or Hölder regularity?
- Higher regularity $C^{1,\alpha}$?

- Is the global Lipschitz regularity true for 1 < k < N ? Or Hölder regularity?
- Higher regularity $C^{1,\alpha}$?
- Is μ_1^- simple?

- Is the global Lipschitz regularity true for 1 < k < N ? Or Hölder regularity?
- Higher regularity $C^{1,\alpha}$?
- Is μ_1^- simple?

• Is the
$$\overline{\mu}_{k}^{-}=\mu_{k}^{-}$$
 for any Ω ?

- Is the global Lipschitz regularity true for 1 < k < N ? Or Hölder regularity?
- Higher regularity *C*^{1,α}?
- Is μ_1^- simple?

• Is the
$$\overline{\mu}_{k}^{-} = \mu_{k}^{-}$$
 for any Ω ?

Thank you for your attention!!!