

α-Harmonicity in Sub-Riemannian Geometry

Francesca Da Lio (joint work with Paul Laurain \& Tristan Rivière)

α-Harmonic Maps

They are critical points of the nonlocal energy

$$
\begin{equation*}
\mathcal{L}^{\alpha}(u)=\int_{\mathbb{R}^{k}}\left|(-\Delta)^{\frac{\alpha}{2}} u(x)\right|^{2} d x^{k} \tag{1}
\end{equation*}
$$

where $u \in \dot{H}^{\alpha}\left(\mathbb{R}^{k}, \mathcal{N}\right), \mathcal{N} \subset \mathbb{R}^{m}$ is an at least C^{2} closed (compact without boundary) n-dimensional manifold, and

$$
\widehat{(-\Delta)^{\frac{\alpha}{2}}} u=|\xi|^{\alpha} \hat{u} .
$$

AlHzürich

Case of Harmonic maps into a sub-manifold \mathcal{N} of \mathbb{R}^{m}

Critical points $u \in W^{1,2}\left(B^{k}, \mathcal{N}\right)$ of

$$
\begin{equation*}
\mathcal{L}(u)=\int_{B^{k}}|\nabla u|^{2} d x^{k} \tag{2}
\end{equation*}
$$

satisfy under the pointwise constraint $u(x) \in \mathcal{N}$

$$
-\Delta u=A(u)(\nabla u, \nabla u) \quad \Longleftrightarrow \quad P_{T}(u) \Delta u=0
$$

$A(z)(X, Y), 2^{\text {nd }}$ fundamental form of \mathcal{N} at $z \in \mathcal{N}$ along $(X, Y) \in\left(T_{z} \mathcal{N}\right)^{2}, P_{T}(z)$ is the orthogonal matrix projection onto $T_{z} \mathcal{N}$.

Horizontal Harmonic Maps

A Polarization of \mathbb{R}^{m} is a C^{1} field of orthogonal projections

$$
\left\{\begin{array}{l}
P_{T} \in C^{1}\left(\mathbb{R}^{m}, M_{m}(\mathbb{R})\right) \quad \text { s.t. } \quad P_{T} \circ P_{T}=P_{T} \\
P_{N}:=I d-P_{T} \quad \text { and } \quad \forall z, X, Y \quad\left\langle P_{T}(z) X, P_{N}(z) Y\right\rangle=0 \\
\left\|\partial_{z} P_{T}\right\|_{L \infty}<+\infty, \quad \operatorname{rank}\left(P_{T}\right)=n
\end{array}\right.
$$

Horizontal Harmonic Maps in $W^{1,2}\left(B^{k}, \mathbb{R}^{m}\right)$

$$
\begin{aligned}
& P_{T}(u) \Delta u=0 \\
& P_{N}(u) \nabla u=0
\end{aligned} \quad \text { in } \quad \mathcal{D}^{\prime}\left(B^{k}\right)
$$

If P_{T} is integrable, namely $P_{N}\left[P_{T} X, P_{T} Y\right]=0 \Rightarrow$ back to harmonic maps.

Horizontal Harmonic Maps satisfy:

$$
\begin{aligned}
0=P_{T}(u) \Delta u & =\operatorname{div}\left(P_{T}(u) \nabla u\right)-\nabla P_{T}(u) \nabla u \\
& =\operatorname{div}(\nabla u)-\nabla P_{T}(u) \nabla u \\
& =\Delta u+[\nabla P_{N} P_{T}-\underbrace{\left.\left(\nabla P_{N} P_{T}\right)^{t}\right] \nabla u}_{=0}
\end{aligned}
$$

Therefore:

$$
-\Delta u=\Omega \nabla u
$$

with $\Omega:=\left(\nabla P_{N} P_{T}-P_{T} \nabla P_{N}\right)$ and $\Omega^{t}=-\Omega$.

If $k=2 \Rightarrow$ Regularity for Systems with Antisymmetric Potentials in 2-D [Rivière, 2005]

- Locally there exists $A \in W^{1,2} \cap L^{\infty}$ invertible such that

$$
\operatorname{div}(\nabla A-A \Omega)=0
$$

- Poincaré Lemma \Rightarrow there is $B \in W^{1,2}$ such that

$$
\nabla^{\perp} B:=\nabla A-A \Omega
$$

$$
\Delta u+\Omega \cdot \nabla u=0 \quad \Longleftrightarrow \quad \operatorname{div}\left(A \nabla u+B \nabla^{\perp} u\right)=0
$$

Thus [Coifman, Lions, Meyer, Semmes, 1989]

$$
\operatorname{div}(A \nabla u)=\nabla^{\perp} B \cdot \nabla u \quad \in \mathcal{H}^{1} \quad \text { Hardy space }
$$

But

$$
\operatorname{curl}(A \nabla u)=\nabla^{\perp} A \cdot \nabla u \quad \in \mathcal{H}^{1} \quad \text { Hardy space }
$$

Hence [Fefferman,Stein, 1972]

$$
A \nabla u \in W^{1,1} \Rightarrow A \nabla u \in L^{2,1} \Rightarrow \nabla u \in L^{2,1} \Rightarrow u \in C^{0}
$$

Concentration Compactness for H-H Maps in 2-D

Let u_{k} be horizontal harmonic maps with $\mathcal{L}\left(u_{k}\right)<C$.

$$
u_{k} \rightarrow u_{\infty} \quad \text { strong in } C_{l o c}^{1, \alpha}\left(B^{2} \backslash\left\{a_{1} \cdots a_{Q}\right\}\right)
$$

u_{∞} is a horizontal harmonic map. Moreover

$$
\left|\nabla u_{k}\right|^{2} d x^{2} \quad-\left|\nabla u_{\infty}\right|^{2} d x^{2}+\sum_{j=1}^{Q} \lambda_{j} \delta_{a_{j}} \quad \text { in Radon meas. }
$$

Question:

How much energy is dissipating ? $\lambda_{j}=$? Is λ_{j} equal to the sum of the Bubbles' Energy concentrating at a_{j} ?

$$
\lambda_{j}=\sum_{i=1}^{N_{j}} \mathcal{L}\left(u^{i, j}\right)
$$

where $u^{i, j}: \mathbb{C} \rightarrow \mathbb{R}^{m}$ is a horizontal harmonic map w.r.t P_{T} ?

No Neck Energy Problem

Neck Region

Let u_{k} be horiz. harm. with $\mathcal{L}\left(u_{k}\right)<C$.
A neck region for u_{k} is a union of degenerating annuli :
$A_{k}:=B_{R_{k}} \backslash B_{r_{k}}$ s.t.

$$
\lim _{k \rightarrow+\infty} \frac{R_{k}}{r_{k}}=+\infty \quad \text { and } \quad\left|\nabla u_{k}\right|(x) \leq \frac{o_{k}(1)}{|x|}
$$

Main Problem: Do we have

$$
\int_{B_{R_{k}} \backslash B_{r_{k}}}\left|\nabla u_{k}(x)\right|^{2} d x \longrightarrow 0 ?
$$

Duality between the Lorentz spaces $L^{2,1}$ and $L^{2, \infty}$

What holds:

$$
\left\|\nabla u_{k}\right\|_{L^{2}, \infty}\left(B_{R_{k}} \backslash B_{r_{k}}\right) \longrightarrow 0
$$

Question:
$\lim \sup _{k \rightarrow+\infty}\left\|\nabla u_{k}\right\|_{L^{2,1}\left(B_{R_{k}} \backslash B_{r_{k}}\right)}<+\infty ?$

Asymptotic Expansions in Neck Region, [Laurain, Rivière (2011)]

There exist $\overrightarrow{c_{k}} \in \mathbb{R}^{m}, A_{k} \in W^{1,2} \cap L^{\infty}, A_{k}$ radial, $f_{k} \in L^{2,1}$

$$
\nabla u_{k}(x)=\frac{A_{k}(|x|) \overrightarrow{c_{k}}}{|x|}+f_{k}
$$

with $\lim \sup _{k \rightarrow+\infty}\left\|f_{k}\right\|_{L^{2,1}\left(B_{R_{k}} \backslash B_{r_{k}}\right)}<+\infty, \quad\left|\overrightarrow{c_{k}}\right|=O\left(\frac{1}{\sqrt{\log R_{k} / r_{k}}}\right)$. Hence
$\limsup _{k \rightarrow+\infty}\left\|\frac{1}{r} \frac{\partial u_{k}}{\partial \theta}\right\|_{L^{2,1}\left(B_{R_{k}} \backslash B_{r_{k}}\right)}<+\infty \Rightarrow \lim _{k \rightarrow+\infty}\left\|\frac{1}{r} \frac{\partial u_{k}}{\partial \theta}\right\|_{L^{2}\left(B_{R_{k}} \backslash B_{r_{k}}\right)}=0$.

GHzürich

Pohozaev \Rightarrow No Neck Energy

Pohozaev Identity says

$$
\forall r>0 \quad \int_{\partial B_{r}}\left|\frac{1}{r} \frac{\partial u_{k}}{\partial \theta}\right|^{2} d \ell=\int_{\partial B_{r}}\left|\frac{\partial u_{k}}{\partial r}\right|^{2} d \ell
$$

Hence

$$
\lim _{k \rightarrow+\infty}\left\|\frac{1}{r} \frac{\partial u_{k}}{\partial \theta}\right\|_{L^{2}\left(B_{R_{k}} \backslash B_{r_{k}}\right)}=0 \Rightarrow \lim _{k \rightarrow+\infty}\left\|\frac{\partial u_{k}}{\partial r}\right\|_{L^{2}\left(B_{R_{k}} \backslash B_{r_{k}}\right)}=0
$$

Case $\alpha=\frac{1}{2}$: Half Harmonic Maps

Case $\alpha=\frac{1}{2}$: Half Harmonic Maps

Critical points $u \in H^{1 / 2}\left(\mathbb{R}^{k} \mathcal{N}\right), \mathcal{N} \hookrightarrow \mathbb{R}^{m}$

$$
\mathcal{L}^{1 / 2}(u):=\int_{\mathbb{R}^{k}}\left|(-\Delta)^{1 / 4} u\right|^{2} d x<+\infty
$$

Variations under pointwise constraint of the map : $u(x) \in \mathcal{N}$ a.e.

$$
P_{T}(u)(-\Delta)^{1 / 2} u=0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}^{k}\right)
$$

where $P_{T}(z)$ is the orthogonal matrix projection onto $T_{z} \mathcal{N}$.

Some Motivations

- Free Boundary Minimal Discs

A map $u \in H^{1 / 2}\left(S^{1}, \mathcal{N}\right)$ is $1 / 2$-harmonic iff its harmonic extension \tilde{u} in B^{2} is conformal and "cuts" \mathcal{N} orthogonally.

Some Motivations

- Free Boundary Minimal Discs

A map $u \in H^{1 / 2}\left(S^{1}, \mathcal{N}\right)$ is $1 / 2$-harmonic iff its harmonic extension \tilde{u} in B^{2} is conformal and "cuts" \mathcal{N} orthogonally.

- Asymptotic Analysis of Ginzburg Landau Equation [Millot \& Sire (2015)]

$$
(-\Delta)^{1 / 2} u_{\varepsilon}=\frac{1}{\varepsilon}\left(1-\left|u_{\varepsilon}\right|^{2}\right) u_{\varepsilon}, \quad \text { in } \Omega \subseteq \mathbb{R}^{k}
$$

Horizontal 1/2-Harmonic Maps in $H^{1 / 2}\left(\mathbb{R}^{k}, \mathbb{R}^{m}\right)$:

$$
\begin{aligned}
& P_{T}(u)(-\Delta)^{1 / 2} u=0 \quad \text { in } \quad \mathcal{D}^{\prime}\left(\mathbb{R}^{k}\right) \\
& P_{N}(u) \nabla u=0
\end{aligned}
$$

Horizontal 1/2-Harmonic Maps in $H^{1 / 2}\left(\mathbb{R}^{k}, \mathbb{R}^{m}\right)$:

$$
\begin{aligned}
& P_{T}(u)(-\Delta)^{1 / 2} u=0 \quad \text { in } \quad \mathcal{D}^{\prime}\left(\mathbb{R}^{\kappa}\right) \\
& P_{N}(u) \nabla u=0
\end{aligned}
$$

If P_{T} is integrable : back to $1 / 2$-harmonic maps.

Horizontal 1/2-Harmonic Maps in $H^{1 / 2}\left(\mathbb{R}^{k}, \mathbb{R}^{m}\right)$:

$$
\begin{array}{ll}
P_{T}(u)(-\Delta)^{1 / 2} u=0 & \text { in } \quad \mathcal{D}^{\prime}\left(\mathbb{R}^{k}\right) \\
P_{N}(u) \nabla u=0
\end{array}
$$

If P_{T} is integrable : back to $1 / 2$-harmonic maps.
For $k=1$ Horizontal 1/2-Harmonic Maps correspond to Minimal Discs with Horizontal Boundaries and Vertical Exterior Vector

Example: Hopf Distribution

$\ln \mathbb{C}^{2} \backslash\{0\}$ let P_{T} be given by

$$
P_{T}(z) Z:=Z-|z|^{-2}\left[Z \cdot\left(z_{1}, z_{2}\right)\left(z_{1}, z_{2}\right)+Z \cdot\left(i z_{1}, i z_{2}\right)\left(i z_{1}, i z_{2}\right)\right] .
$$

Horizontal $1 / 2$-harmonic maps u are given by solutions to the system

$$
\left\{\begin{array}{l}
\frac{\partial \bar{u}}{\partial r} \in \operatorname{Span}\{u, i u\} \\
u \cdot \frac{\partial u}{\partial \theta}=0 \\
i u \cdot \frac{\partial u}{\partial \theta}=0
\end{array} \quad \text { in } \mathcal{D}^{\prime}\left(S^{1}\right)\right.
$$

where \tilde{u} denotes the harmonic extension of u which defines a minimal disc.

An example of such a map is

$$
u(\theta):=\frac{1}{\sqrt{2}}\left(e^{i \theta}, e^{-i \theta}\right) \quad \text { where } \quad \tilde{u}(z, \bar{z})=\frac{1}{\sqrt{2}}(z, \bar{z})
$$

Observe that u is also an $1 / 2$-harmonic into S^{3}.

AlHzürich

Conservation Laws for Horizontal 1/2-Harmonic maps

Let P_{T} be a $H^{1 / 2}$-map into orthogonal projections of \mathbb{R}^{m} and u s.t.

$$
\left\{\begin{array}{l}
P_{T}(-\Delta)^{1 / 2} u=0 \\
P_{N} \nabla u=0
\end{array} \quad \text { in } \quad \mathcal{D}^{\prime}(\mathbb{R})\right.
$$

We set

$$
v=\binom{P_{T}(-\Delta)^{1 / 4} u}{P_{N}(-\Delta)^{1 / 4} u}
$$

Then locally $\exists A \in H^{1 / 2} \cap L^{\infty}$, invertible, $B \in H^{1 / 2}$

$$
(-\Delta)^{1 / 4}(A v)=\mathcal{J}(B, v)
$$

with

$$
\|\mathcal{J}(B, v)\|_{\mathcal{H}^{1}(\mathbb{R})} \leq C\left\|(-\Delta)^{1 / 4} B\right\|_{L^{2}(\mathbb{R})}\|v\|_{L^{2}(\mathbb{R})}
$$

Blow-up Analysis of Sequence of Horizontal 1/2-Harmonic Maps, [DL, Laurain, Rivière 2016]

Asymptotic Expansions in Necks: Let u_{k} be a sequence of Horizontal 1/2-Harmonic Maps

$$
\limsup _{k \rightarrow+\infty}\left\|(-\Delta)^{1 / 4}\left(u_{k}\right)\right\|_{L^{2}\left(S^{1}\right)}<+\infty
$$

Then there are $\overrightarrow{c_{k}} \in \mathbb{R}^{m}, f_{k} \in L^{2,1}, A_{k} \in H^{1 / 2} \cap L^{\infty}\left(\mathbb{R}^{m}, G L_{m}\right)$:

$$
(-\Delta)^{1 / 4} u_{k}(x)=\frac{\left(A_{k}(x)+A_{k}(-x)\right) \overrightarrow{c_{k}}}{|x|^{1 / 2}}+f_{k}
$$

with $\lim _{k \rightarrow+\infty}\left\|f_{k}\right\|_{L^{2,1}\left(B_{R_{k}} \backslash B_{r_{k}}\right)}<+\infty,\left|\overrightarrow{c_{k}}\right|=O\left(\frac{1}{\sqrt{\log R_{k} / r_{k}}}\right)$.

AlHzürich

It follows:

$$
\lim _{k \rightarrow+\infty}\left\|\left((-\Delta)^{1 / 4} u_{k}(x)-(-\Delta)^{1 / 4} u_{k}(-x)\right)\right\|_{L^{2,1}\left(B_{R_{k}} \backslash B_{r_{k}}\right)}<+\infty
$$

On the other hands it always holds

$$
\left\|(-\Delta)^{1 / 4} u_{k}\right\|_{L^{2, \infty}\left(B_{R_{k}} \backslash B_{r_{k}}\right)} \longrightarrow 0
$$

Hence

$$
\lim _{k \rightarrow+\infty}\left\|\left((-\Delta)^{1 / 4} u_{k}(x)-(-\Delta)^{1 / 4} u_{k}(-x)\right)\right\|_{L^{2}\left(B_{R_{k}} \backslash B_{r_{k}}\right)}=0
$$

Pohozaev Identities for Horizontal 1/2- Harmonic Maps on S^{1}
Let $u \in W^{1,2}\left(S^{1}, \mathbb{R}^{m}\right)$ satisfy

$$
\frac{d u}{d \theta} \cdot(-\Delta)^{1 / 2} u=0 \text { a.e in } S^{1}
$$

Then

$$
\left|u^{+}\right|=\left|u^{-}\right| \text {and } u^{+} \cdot u^{-}=0
$$

where

$$
\begin{aligned}
& u^{+}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(\theta) \cos (\theta) d \theta=\frac{1}{\pi} \int_{0}^{2 \pi}(u(\theta)+u(-\theta)) \cos (\theta) d \theta \\
& u^{-}:=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(\theta) \sin (\theta) d \theta=\frac{1}{\pi} \int_{0}^{2 \pi}(u(\theta)-u(-\theta)) \sin (\theta) d \theta
\end{aligned}
$$

$$
\int_{\partial B(0, r) \cap R_{+}^{2}} \frac{\partial \tilde{u}}{\partial \theta} d \theta=(u(r)-u(0))-(u(-r)-u(0))=(u-u(0))^{-}(r)
$$

Pohozaev Identities \Rightarrow

$$
\begin{gathered}
\lim _{k \rightarrow+\infty}\left\|\left((-\Delta)^{1 / 4} u_{k}(x)+(-\Delta)^{1 / 4} u_{k}(-x)\right)\right\|_{L^{2}\left(B_{R_{k}} \backslash B_{r_{k}}\right)}=0 \\
\Downarrow
\end{gathered}
$$

Let u_{k} be a sequence of Horizontal 1/2-Harmonic Maps

$$
\limsup _{k \rightarrow+\infty}\left\|(-\Delta)^{1 / 4}\left(u_{k}\right)\right\|_{L^{2}\left(S^{1}\right)}<+\infty
$$

If in addition

$$
\limsup _{k \rightarrow+\infty} \int_{S^{1}}\left|(-\Delta)^{1 / 2} u_{k}\right|(\theta) d \theta<+\infty
$$

For 1/2-harmonic maps into manifolds it always holds:

$$
\left\|(-\Delta)^{1 / 2} u\right\|_{L^{1}\left(S^{1}\right)} \leq C\|u\|_{H^{1 / 2}\left(S^{1}\right)}^{2}
$$

The Energy Identity holds for 1/2-harmonic maps into arbitrary closed manifolds:

$$
\int_{S^{1}}\left|(-\Delta)^{1 / 4} u_{k}\right|^{2} d \theta \rightarrow \int_{S^{1}}\left|(-\Delta)^{1 / 4} u_{\infty}\right|^{2} d \theta+\sum_{i, j} \int_{S^{1}}\left|(-\Delta)^{1 / 4} \tilde{u}_{\infty}^{i, j}\right|^{2} d \theta
$$

