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Introduction
Results for 0 < s < 1

Questions
Some answers

Problem

We consider the problem:

(∗)

{
(−∆)su = f (u) in RN

+,

u = 0 in RN \ RN
+,

where
RN
+ = {x ∈ RN : xN > 0}

(we use the conventional notation x = (x ′, xN) for a point
x ∈ RN).

The function f : [0,+∞)→ R is Lipschitz or C 1 and we deal only
with nonnegative solutions.
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Results for 0 < s < 1

Questions
Some answers

Case of s=1

Questions: for a nonnegative solution u of{
−∆u = f (u) in RN

+

u = 0 on ∂RN
+,

does it hold that:

u is monotone in xN :

∂u

∂xN
> 0 in RN

+?

u is symmetric:

u(x) = v(xN)?
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Results for 0 < s < 1

Questions
Some answers

Some answers

Monotonicity

The crucial assumption is f (0) ≥ 0 (this implies nonnegative
solutions are actually positive).

N. Dancer (1986 , 1992): some additional assumptions on f

+ boundedness of u =⇒ u is monotone.

H. Berestycki, L. Caffarelli and L. Nirenberg ( 1996, 1997): f

Lipschitz =⇒ u is monotone.

So, the case f (0) ≥ 0 is essentially closed.
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Questions
Some answers

As for the case f (0) < 0, only results for N = 2 are known:

H. Berestycki, L. Caffarelli and L. Nirenberg ( 1997): f

Lipschitz and u positive =⇒
u is monotone.

A. Farina, B. Sciunzi (2016): f locally Lipschitz =⇒

I Either u > 0 and u is monotone;

I Or u(x) = u0(xN), where u0 is the unique one-dimensional
solution of the problem verifying u0(0) = u′0(0) = 0.
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STILL OPEN

f (0) < 0 and N ≥ 3.
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Symmetry

Important

Symmetry does not hold in general!!

The function u(x) = xNe
x1 solves{
−∆u = −u in RN

+

u = 0 on ∂RN
+,

and is not one-dimensional.

Therefore for symmetry it is usually assumed that

M = supRN
+
u < +∞.
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Questions
Some answers

Known results:

S. Angenent (1985), P. Clément, G. Sweers (1987) some
special non-linearities.

H. Berestycki, L. Caffarelli, L. Nirenberg (1993): if

f (M) ≤ 0 =⇒ u is symmetric

H. Berestycki, L. Caffarelli, L. Nirenberg (1997):

u positive, N = 2 or N = 3 and f ∈ C 1, f (0) ≥ 0 , =⇒ u is
symmetric.

A. Farina, E. Valdinoci (2010):

u positive, N = 3 and f locally Lipschitz or

N = 4, 5 and special f ’s =⇒ u is symmetric.
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STILL OPEN

N ≥ 3 and f (M) > 0.

Conjecture A (BCN, ASNP 1997)

If u is positive, then f (M) = 0 and therefore u is one-dimensional.
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Questions
Some answers

An interesting example related to this conjecture:{
−∆u = u − 1 in RN

+

u = 0 on ∂RN
+.

This problem admits a nonnegative solution

u0(x) = 1− cos xN .

Conjecture-Now-Theorem for a special case (BCN 1997)

u0 is the only nonnegative solution of this problem.

This conjecture has been proved for N = 2, 3 (Farina-Soave,
Farina-Sciunzi).
For N ≥ 4. C. Cortázar, M. Elgueta, J. Garćıa-Melián. (2016).
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Some extension are know for p-Laplacian, fully nonlinear elliptic
operator, etc...
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{
(−∆)su = f (u) in RN

+,

u = 0 in RN \ RN
+,

(1)

here

(−∆)su(x) =
1

2

∫
RN

2u(x)− u(x + y)− u(x − y)

|y |N+2s
dy ,

Previous cases for positive monotone nonlinearity f :

M. M. Fall, T. Weth (2016): (Green function in the half
space)

A. Q., A. Xia (2015). ABP-Strip domain + truncation

W. Chen, Y. Fang, R. Yang (2015) for f (t) = tp (Green
function in the half space).
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Main Results Monotonicity

Theorem

Assume f ∈ C 1(R) and let u be a bounded, nonnegative, nontrivial
classical solution of (1). Then u is positive and

∂u

∂xN
> 0 in RN

+.
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Results one dimensional case

When s = 1, however, the corresponding problem{
−u′′ = f (u) in R+,

u(0) = 0
(2)

Easy to see that there exists a bounded solution of (2) if and only
if ρ = ‖u‖L∞(R+) verifies f (ρ) = 0 and

F (t) < F (ρ) for all t ∈ [0, ρ), (F)

where F is the primitive of f vanishing at zero, F (t) =
∫ t
0 f (τ)dτ .
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Results one dimensional case

Theorem

Assume f is locally Lipschitz and ρ > 0 is such that f (ρ) = 0 and
condition (F) is verified. Then there exists a unique positive
solution u of (∗)(N = 1) with the property

‖u‖L∞(R) = ρ.

Moreover, u is strictly increasing and defining `0 := limx→0+
u(x)
xs

then

`0 =
(2F (ρ))

1
2

Γ(1 + s)
. (3)

Finally, all bounded positive solutions of (∗)(N = 1) are of the
above form.
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Main Results

Theorem

Assume f is locally Lipschitz and let u be a bounded positive
solution of (∗). Suppose in addition that ρ = ‖u‖L∞(RN) verifies
f (ρ) = 0. Then f verifies (F) and u is one-dimensional.

Remark:If f (ρ) ≤ 0 then f (ρ) = 0
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Ideas of the Proof.

Key points

F (ρ)− F (u(a)) =
c(1, s)

2

∫ +∞

−∞

(u(a)− u(y))2

|a− y |1+2s
dy

+(1 + 2s)

∫ +∞

a

∫ a

−∞

(u(x)− u(y))2

|x − y |2+2s
dydx

`0 =
(2F (ρ))

1
2

Γ(1 + s)
.
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Ideas of the Proof.

Define

Iδ,M :=

∫∫
Aδ,M

u′(x)
u(x)− u(y)

|x − y |1+2s
dydx ,

Iδ,M =
1

2

∫∫
Aδ,M

(u(x)− u(y))2x

|x − y|1+2s
dydx

=
1

2

∫∫
Aδ,M

(
(u(x)− u(y))2

|x − y|1+2s

)
x

dydx +
1 + 2s

2

∫∫
Aδ,M

(x − y)(u(x)− u(y))2

|x − y|3+2s
dydx.

Quaas Monotonicity



Introduction
Results for 0 < s < 1

Ideas of the Proof.
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1

2
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Aδ,M

(
(u(x)− u(y))2

|x − y|1+2s

)
x

dydx +
1 + 2s

2

∫∫
A3
δ,M

(u(x)− u(y))2

(x − y)2+2s
dydx

=
1

2

∮
∂Aδ,M

(u(x)− u(y))2

|x − y|1+2s
dy +

1 + 2s

2

∫∫
A3
δ,M
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Ideas of the Proof.

F (ρ) = K(s)`20, (4)

where

K(s) =
c(1, s)

2

(
−

1

2s
−
∫ 1

−1

((t + 1)s − 1)2

|t|1+2s
dt +

∫ +∞

1

t2s − ((t + 1)s − 1)2

t1+2s
dt

+(1 + 2s)

∫ +∞

1

∫ 1

0

(ts − τ s )2

(t − τ)2+2s
dτdt

)
.

(5)

Quaas Monotonicity



Introduction
Results for 0 < s < 1

Thanks!

Thank you for your attention!

Quaas Monotonicity


	Introduction
	Questions
	Some answers

	Results for 0<s<1

