L^{p} Hardy inequality on $C^{1, \gamma}$ domains

Yehuda Pinchover

Department of Mathematics, Technion
32000 Haifa, ISRAEL
E-mail: pincho@technion.ac.il

Mostly Maximum Principle (BIRS) 4/4/2017
Joint work with Pier Domenico Lamberti

The Hardy inequality

Let Ω be a domain in $\mathbb{R}^{n}, n \geq 2$, with compact nonempty boundary. Let $\delta(x):=d(x, \partial \Omega)$ be the distance function to the boundary. Fix $p \in(1, \infty)$. The L^{p} Hardy inequality is satisfied in Ω if there exists $c>0$ s.t.

$$
\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x \geq c \int_{\Omega} \frac{|u|^{p}}{\delta^{p}} \mathrm{~d} x \quad \text { for all } u \in C_{0}^{\infty}(\Omega)
$$

The Hardy inequality

Let Ω be a domain in $\mathbb{R}^{n}, n \geq 2$, with compact nonempty boundary. Let $\delta(x):=d(x, \partial \Omega)$ be the distance function to the boundary. Fix $p \in(1, \infty)$. The L^{p} Hardy inequality is satisfied in Ω if there exists $c>0$ s.t.

$$
\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x \geq c \int_{\Omega} \frac{|u|^{p}}{\delta^{p}} \mathrm{~d} x \quad \text { for all } u \in C_{0}^{\infty}(\Omega)
$$

The L^{p} Hardy constant $H_{p}(\Omega)$ of Ω is given by the Rayleigh-Ritz variational problem

$$
H_{p}(\Omega):=\inf _{u \in W_{0}^{1,2}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x}{\int_{\Omega} \frac{\left|u^{p}\right|^{p}}{\delta p} \mathrm{~d} x} .
$$

The Hardy inequality

Let Ω be a domain in $\mathbb{R}^{n}, n \geq 2$, with compact nonempty boundary. Let $\delta(x):=d(x, \partial \Omega)$ be the distance function to the boundary. Fix $p \in(1, \infty)$. The L^{p} Hardy inequality is satisfied in Ω if there exists $c>0$ s.t.

$$
\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x \geq c \int_{\Omega} \frac{|u|^{p}}{\delta^{p}} \mathrm{~d} x \quad \text { for all } u \in C_{0}^{\infty}(\Omega)
$$

The L^{p} Hardy constant $H_{p}(\Omega)$ of Ω is given by the Rayleigh-Ritz variational problem

$$
H_{p}(\Omega):=\inf _{u \in W_{0}^{1,2}(\Omega)} \frac{\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x}{\int_{\Omega} \frac{|u|^{p}}{\delta^{p}} \mathrm{~d} x} .
$$

The associated Euler-Lagrange equation is given by

$$
\left(-\Delta_{p}-\frac{H_{p}(\Omega)}{\delta^{p}} \mathcal{I}_{p}\right) u=0 \quad \text { in } \Omega
$$

$-\Delta_{p} v:=-\operatorname{div}\left(|\nabla v|^{p-2} \nabla v\right)$ is the p-Laplacian, and $\mathcal{I}_{p} v:=|v|^{p-2} v$.

Existence of minimizer

Theorem (Marcus-Mizel-YP (1998), Marcus-Shafrir (2000))

Let Ω be a bounded domain in \mathbb{R}^{n} of class C^{2}, and denote $c_{p}:=\left(\frac{p-1}{p}\right)^{p}$. Then $0<H_{p}(\Omega) \leq c_{p}$.

Existence of minimizer

Theorem (Marcus-Mizel-YP (1998), Marcus-Shafrir (2000))

Let Ω be a bounded domain in \mathbb{R}^{n} of class C^{2}, and denote $c_{p}:=\left(\frac{p-1}{p}\right)^{p}$. Then $0<H_{p}(\Omega) \leq c_{p}$.
Moreover, $H_{p}(\Omega)<c_{p}$ if and only if the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W_{0}^{1, p}(\Omega)$.

Existence of minimizer

Theorem (Marcus-Mizel-YP (1998), Marcus-Shafrir (2000))

Let Ω be a bounded domain in \mathbb{R}^{n} of class C^{2}, and denote $c_{p}:=\left(\frac{p-1}{p}\right)^{p}$. Then $0<H_{p}(\Omega) \leq c_{p}$.
Moreover, $H_{p}(\Omega)<c_{p}$ if and only if the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W_{0}^{1, p}(\Omega)$.
Furthermore, if $\alpha \in((p-1) / p, 1)$ is such that
$\lambda_{\alpha}:=(p-1) \alpha^{p-1}(1-\alpha)=H_{p}(\Omega)$, then

$$
u(x) \asymp \delta^{\alpha}(x) \quad \forall x \in \Omega
$$

Existence of minimizer

Theorem (Marcus-Mizel-YP (1998), Marcus-Shafrir (2000))

Let Ω be a bounded domain in \mathbb{R}^{n} of class C^{2}, and denote $c_{p}:=\left(\frac{p-1}{p}\right)^{p}$. Then $0<H_{p}(\Omega) \leq c_{p}$.
Moreover, $H_{p}(\Omega)<c_{p}$ if and only if the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W_{0}^{1, p}(\Omega)$.

Furthermore, if $\alpha \in((p-1) / p, 1)$ is such that
$\lambda_{\alpha}:=(p-1) \alpha^{p-1}(1-\alpha)=H_{p}(\Omega)$, then

$$
u(x) \asymp \delta^{\alpha}(x) \quad \forall x \in \Omega
$$

Remark

The proof relies heavily on the assumption $\Omega \in C^{2}$, which implies the tubular neighbourhood theorem and also that $\delta \in C^{2}$ in a neighbourhood of the boundary, so $|\Delta \delta|$ is bounded. Both properties do not hold for $\Omega \in C^{1, \gamma}$ (δ is not necessarily differentiable near $\partial \Omega!$).

Properties of the Hardy constant

Theorem (Lewis-J. Li-Yanyan Li (2012))

If Ω is convex, or weakly mean convex C^{2} domain (i.e. $-\Delta \delta \geq 0$ in Ω), then $H_{p}(\Omega)=c_{p}=\left(\frac{p-1}{p}\right)^{p}$.

Properties of the Hardy constant

Theorem (Lewis-J. Li-Yanyan Li (2012))

If Ω is convex, or weakly mean convex C^{2} domain (i.e. $-\Delta \delta \geq 0$ in Ω), then $H_{p}(\Omega)=c_{p}=\left(\frac{p-1}{p}\right)^{p}$.

Remark

1. If $\Omega=\mathbb{R}^{n} \backslash\{0\}$, then $\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x \geq H_{p}(\Omega) \int_{\Omega} \frac{|u|^{p}}{|x|^{p}} \mathrm{~d} x$ for all $u \in C_{0}^{\infty}(\Omega)$, where

$$
H_{p}(\Omega)=c_{p, n}^{*}:=\left|\frac{p-n}{p}\right|^{p} .
$$

Properties of the Hardy constant

Theorem (Lewis-J. Li-Yanyan Li (2012))

If Ω is convex, or weakly mean convex C^{2} domain (i.e. $-\Delta \delta \geq 0$ in Ω), then $H_{p}(\Omega)=c_{p}=\left(\frac{p-1}{p}\right)^{p}$.

Remark

1. If $\Omega=\mathbb{R}^{n} \backslash\{0\}$, then $\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x \geq H_{p}(\Omega) \int_{\Omega} \frac{|u|^{p}}{|x|^{p}} \mathrm{~d} x$ for all $u \in C_{0}^{\infty}(\Omega)$, where

$$
H_{p}(\Omega)=c_{p, n}^{*}:=\left|\frac{p-n}{p}\right|^{p} .
$$

2. For C^{2} domains such that $H_{p}(\Omega)<c_{p}$, the Hardy constant $H_{p}(\Omega)$ depends continuously on p and on domain perturbations (Barbatis and Lamberti).

$C^{1, \gamma}$ bounded domains

Theorem (Lamberti-YP (2016))

Let $\Omega \in C^{1, \gamma}$ be a bounded domain in \mathbb{R}^{n}. Then $H_{p}(\Omega)<c_{p}$ iff the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W_{0}^{1, p}(\Omega)$.
$C^{1, \gamma}$ bounded domains

Theorem (Lamberti-YP (2016))

Let $\Omega \in C^{1, \gamma}$ be a bounded domain in \mathbb{R}^{n}. Then $H_{p}(\Omega)<c_{p}$ iff the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W_{0}^{1, p}(\Omega)$.
Moreover, if $\alpha \in[(p-1) / p, 1]$ is such that

$$
0 \leq \lambda_{\alpha}:=(p-1) \alpha^{p-1}(1-\alpha) \leq c_{p}=\left(\frac{p-1}{p}\right)^{p},
$$

then any positive solution u of the equation

$$
\left(-\Delta_{p}-\frac{\lambda_{\alpha}}{\delta^{p}} \mathcal{I}_{p}\right) v=0 \quad \text { in } \Omega^{\prime}
$$

of minimal growth in a neighbourhood Ω^{\prime} of $\partial \Omega$ satisfies

$$
u(x) \asymp \delta^{\alpha}(x) \quad \forall x \in \Omega_{\beta} .
$$

Minimal Growth

Definition

Let $K_{0} \Subset \Omega$. A positive solution u of the equation $Q(u)=0$ in $\Omega \backslash K_{0}$ is of minimal growth in a neighborhood of infinity in Ω, if for all smooth K s.t. $K_{0} \Subset \operatorname{int}(K) \Subset \Omega$ and any positive supersolution $v \in C((\Omega \backslash K) \cup \partial K)$ of $Q(u)=0$ in $\Omega \backslash K$ we have

$$
u \leq v \text { on } \partial K \Rightarrow u \leq v \text { in } \Omega \backslash K .
$$

Minimal Growth

Definition

Let $K_{0} \Subset \Omega$. A positive solution u of the equation $Q(u)=0$ in $\Omega \backslash K_{0}$ is of minimal growth in a neighborhood of infinity in Ω, if for all smooth K s.t. $K_{0} \Subset \operatorname{int}(K) \Subset \Omega$ and any positive supersolution $v \in C((\Omega \backslash K) \cup \partial K)$ of $Q(u)=0$ in $\Omega \backslash K$ we have

$$
u \leq v \text { on } \partial K \Rightarrow u \leq v \text { in } \Omega \backslash K .
$$

Theorem
Let $\mathcal{Q} \geq 0$ on $C_{0}^{\infty}(\Omega)$. Then $\forall x_{0} \in \Omega$ the $E-L$ equation $Q(u)=0$ admits a unique positive solution $u_{x_{0}}$ in $\Omega \backslash\left\{x_{0}\right\}$ of minimal growth in a neighborhood of infinity in Ω.

$C^{1, \gamma}$ exterior domains

Theorem (Lamberti-YP (2016))

Let $\Omega \subset \mathbb{R}^{n}$ be an $C^{1, \gamma}$ exterior domain, and $p \neq n$. Let

$$
\begin{aligned}
c_{p, n} & :=\min \left\{c_{p}, c_{p, n}^{*}\right\}=\min \left\{\left(\frac{p-1}{p}\right)^{p},\left|\frac{p-n}{p}\right|^{p}\right\} . \\
\widetilde{W}^{1, p}(\Omega) & :=\left\{u \in W_{\operatorname{loc}}^{1, p}(\Omega) \mid\|u\|_{L^{p}\left(\Omega ; \delta^{-p}\right)}+\|\nabla u\|_{L^{p}(\Omega)}<\infty\right\} .
\end{aligned}
$$

Then $H_{p}(\Omega)<c_{p, n}$ iff the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in \widetilde{W}^{1, p}(\Omega)$.

$C^{1, \gamma}$ exterior domains

Theorem (Lamberti-YP (2016))

Let $\Omega \subset \mathbb{R}^{n}$ be an $C^{1, \gamma}$ exterior domain, and $p \neq n$. Let

$$
\begin{gathered}
c_{p, n}:=\min \left\{c_{p}, c_{p, n}^{*}\right\}=\min \left\{\left(\frac{p-1}{p}\right)^{p},\left|\frac{p-n}{p}\right|^{p}\right\} . \\
\widetilde{W}^{1, p}(\Omega):=\left\{u \in W_{\operatorname{loc}}^{1, p}(\Omega) \mid\|u\|_{L^{p}\left(\Omega ; \delta^{-p}\right)}+\|\nabla u\|_{L^{p}(\Omega)}<\infty\right\} .
\end{gathered}
$$

Then $H_{p}(\Omega)<c_{p, n}$ iff the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in \widetilde{W}^{1, p}(\Omega)$.

Remark

Chabrowski and Willem (2006) proved that if Ω is a C^{2} exterior domain and $H_{p}(\Omega)<c_{p, n}$, then a minimizer exists (no asymptotic of the minimizer is given).

$C^{1, \gamma}$ exterior domains

Theorem (Lamberti-YP (2016))

Let $\alpha, \alpha_{1} \in[(p-1) / p, 1)$ and $\alpha_{2} \in(0,(p-1) / p]$ be s.t.
$\lambda=\lambda_{\alpha}:=(p-1) \alpha^{p-1}(1-\alpha), \lambda_{\alpha_{1}}=\lambda_{\alpha_{2}}=|(p-1) /(p-n)|^{p} \lambda$. If $p \neq n$ and $0 \leq \lambda \leq c_{p, n}:=\min \left\{c_{p}, c_{p, n}^{*}\right\}$, then any positive solution u of the equation

$$
-\Delta_{p} v-\frac{\lambda}{\delta^{p}} \mathcal{I}_{p} v=0 \quad \text { in } \Omega^{\prime}=\Omega \backslash K, K \Subset \Omega,
$$

of minimal growth in a neighbourhood of infinity in Ω satisfies
(i) $u(x) \asymp \delta^{\alpha}(x)$ near $\partial \Omega$.
(ii) If $p<n$, then $u(x) \asymp|x|^{\frac{\alpha_{1}(p-n)}{p-1}}$ for all $|x|>M$.
(iii) If $p>n$, then $u(x) \asymp|x|^{\frac{\alpha_{2}(p-n)}{p-1}}$ for all $|x|>M$.

The supersolution construction

Lemma

Let G be a positive p-harmonic function in $U \subset \mathbb{R}^{n}$. Let $W:=|\nabla G / G|^{p}$. Then for every $\alpha \in(0,1)$ we have

$$
\left(-\Delta_{p}-\lambda_{\alpha} W \mathcal{I}_{p}\right) G^{\alpha}=0, \quad \text { in } U,
$$

$$
0<\lambda_{\alpha}=(p-1) \alpha^{p-1}(1-\alpha) \leq c_{p} .
$$

The supersolution construction

Lemma

Let G be a positive p-harmonic function in $U \subset \mathbb{R}^{n}$. Let $W:=|\nabla G / G|^{p}$. Then for every $\alpha \in(0,1)$ we have

$$
\left(-\Delta_{p}-\lambda_{\alpha} W \mathcal{I}_{p}\right) G^{\alpha}=0, \quad \text { in } U,
$$

$0<\lambda_{\alpha}=(p-1) \alpha^{p-1}(1-\alpha) \leq c_{p}$.

Lemma

Let $\Omega \in C^{1}$. Let $\Omega^{\prime} \subset \Omega$ be a nbd of $\partial \Omega$ and $0 \leq G \in C^{1}\left(\overline{\Omega^{\prime}}\right)$ s.t. $G(x)=0, \nabla G(x) \neq 0$ on $\partial \Omega$. Then

$$
\lim _{x \rightarrow \partial \Omega} \frac{|\nabla G(x)|}{G(x)} \delta(x)=1
$$

Moreover, if ω is the modulus of continuity of ∇G near $\partial \Omega$, then

$$
\left|\frac{\nabla G(x)}{G(x)}\right|=\frac{1}{\delta(x)}+\frac{O(\omega(\delta(x)))}{\delta(x)} \quad \text { as } x \rightarrow \partial \Omega \text {. }
$$

Hopf's boundary point lemma

Lemma (Mikayelyan-Shahgholian (2015) (Li-Nirenberg (2007)))

Hopf lemma holds for the p-Laplacian if $\partial \Omega$ is of class $C^{1, \gamma}$ or even $C^{1, \text { Dini }}$. In particular, if G is positive p-harmonic function in $\Omega \in C^{1, \gamma}$, and $G=0$ on $\partial \Omega$, then $\nabla G(x) \neq 0$ on $\partial \Omega$.

Agmon trick for bounded domains

Lemma

Consider a C^{1}-domain $\Omega \subset \mathbb{R}^{n}$ with compact boundary, and a neighbourhood $U \subset \Omega$ of $\partial \Omega$. Let $0<G \in C^{1, \gamma}(\overline{\Omega \cap U})$ be p-harmonic in U s.t. $G=0$ and $\nabla G(x) \neq 0$ on $\partial \Omega$. Let $\frac{(p-1)}{p} \leq \alpha<\beta<\alpha+\gamma<1$.

Agmon trick for bounded domains

Lemma

Consider a C^{1}-domain $\Omega \subset \mathbb{R}^{n}$ with compact boundary, and a neighbourhood $U \subset \Omega$ of $\partial \Omega$. Let $0<G \in C^{1, \gamma}(\overline{\Omega \cap U})$ be p-harmonic in U s.t. $G=0$ and $\nabla G(x) \neq 0$ on $\partial \Omega$. Let $\frac{(p-1)}{p} \leq \alpha<\beta<\alpha+\gamma<1$.
Then in a neighbourhood $\mathcal{U} \subset U$ of $\partial \Omega$,

$$
\left(-\Delta_{p} v-\frac{\lambda_{\alpha}}{\delta^{p}} \mathcal{I}_{p}\right)\left(G^{\alpha} \pm G^{\beta}\right) \stackrel{\leq}{\geq} 0 \quad \text { in } \mathcal{U}
$$

where $0<\lambda_{\alpha}=(p-1) \alpha^{p-1}(1-\alpha) \leq c_{p}$.

Allegretto-Piepenbrink theory

The functional

$$
\mathcal{Q}_{V}(u):=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V|u|^{p} \mathrm{~d} x,
$$

is nonnegative on $C_{0}^{\infty}(\Omega)$ iff the corresponding Euler-Lagrange equation admits a positive (super)solution.

Allegretto-Piepenbrink theory

The functional

$$
\mathcal{Q}_{V}(u):=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V|u|^{p} \mathrm{~d} x,
$$

is nonnegative on $C_{0}^{\infty}(\Omega)$ iff the corresponding Euler-Lagrange equation admits a positive (super)solution. Hence, the Hardy constant is given by

$$
\begin{aligned}
C_{H}(\Omega)=\lambda_{p, 0}(\Omega):=\sup \{ & \lambda \in \mathbb{R} \mid \exists u \in W_{\operatorname{loc}}^{1, p}(\Omega) \text { s.t. } \\
& \left.u>0 \text { and }\left(-\Delta_{p}-\frac{\lambda}{\delta^{p}} \mathcal{I}_{p}\right) u \geq 0 \text { in } \Omega\right\} .
\end{aligned}
$$

Allegretto-Piepenbrink theory

The functional

$$
\mathcal{Q}_{V}(u):=\int_{\Omega}|\nabla u|^{p} \mathrm{~d} x+\int_{\Omega} V|u|^{p} \mathrm{~d} x
$$

is nonnegative on $C_{0}^{\infty}(\Omega)$ iff the corresponding Euler-Lagrange equation admits a positive (super)solution. Hence, the Hardy constant is given by

$$
\begin{aligned}
C_{H}(\Omega)=\lambda_{p, 0}(\Omega):=\sup \{\lambda & \lambda \mathbb{R} \mid \exists u \in W_{\operatorname{loc}}^{1, p}(\Omega) \text { s.t. } \\
& \left.u>0 \text { and }\left(-\Delta_{p}-\frac{\lambda}{\delta^{p}} \mathcal{I}_{p}\right) u \geq 0 \text { in } \Omega\right\} .
\end{aligned}
$$

Define the Hardy constant at infinity

$$
\begin{aligned}
& \lambda_{p, \infty}(\Omega):=\sup \left\{\lambda \in \mathbb{R} \mid \exists K \Subset \Omega \text { and } u \in W_{\operatorname{loc}}^{1, p}(\Omega \backslash \bar{K})\right. \text { s.t. } \\
& \left.\qquad u>0 \text { and }\left(-\Delta_{p}-\frac{\lambda}{\delta^{p}} \mathcal{I}_{p}\right) u \geq 0 \text { in } \Omega \backslash \bar{K}\right\},
\end{aligned}
$$

Hardy constant at infinity

Under a mild smoothness assumption $\lambda_{p, \infty}(\Omega) \leq c_{p}$. Hence, Agmon's trick implies:

Corollary
If Ω is a C^{1} bounded domain, then

$$
0<C_{H}(\Omega)=\lambda_{p, 0}(\Omega) \leq \lambda_{p, \infty}(\Omega)=c_{p}
$$

Hardy constant at infinity

Under a mild smoothness assumption $\lambda_{p, \infty}(\Omega) \leq c_{p}$. Hence, Agmon's trick implies:

Corollary
If Ω is a C^{1} bounded domain, then

$$
0<C_{H}(\Omega)=\lambda_{p, 0}(\Omega) \leq \lambda_{p, \infty}(\Omega)=c_{p}
$$

Question: What happens if $\lambda_{p, 0}<\lambda_{p, \infty}(\Omega)$ i.e. if there is a spectral gap.

Hardy constant at infinity

Under a mild smoothness assumption $\lambda_{p, \infty}(\Omega) \leq c_{p}$. Hence, Agmon's trick implies:

Corollary
If Ω is a C^{1} bounded domain, then

$$
0<C_{H}(\Omega)=\lambda_{p, 0}(\Omega) \leq \lambda_{p, \infty}(\Omega)=c_{p}
$$

Question: What happens if $\lambda_{p, 0}<\lambda_{p, \infty}(\Omega)$ i.e. if there is a spectral gap. Answer: The corresponding operator is critical.

Spectral gap

Let Ω is a $C^{1, \gamma}$ bounded domain.
Any positive solution u in a nbd U of $\partial \Omega$ which has minimal growth at infinity in Ω satisfies

$$
u \leq G^{\alpha_{\lambda}} \asymp \delta^{\alpha_{\lambda}} \quad \text { in a nbd of } \partial \Omega .
$$

Note that $\delta^{\alpha_{\lambda}} \in L^{p}\left(U, \delta^{-p}\right)$ iff $\lambda<c_{p}$.

Spectral gap

Let Ω is a $C^{1, \gamma}$ bounded domain.
Any positive solution u in a nbd U of $\partial \Omega$ which has minimal growth at infinity in Ω satisfies

$$
u \leq G^{\alpha_{\lambda}} \asymp \delta^{\alpha_{\lambda}} \quad \text { in a nbd of } \partial \Omega
$$

Note that $\delta^{\alpha_{\lambda}} \in L^{p}\left(U, \delta^{-p}\right)$ iff $\lambda<c_{p}$.
Recall that if there is a spectral gap $0<H(\Omega)<\lambda_{p, \infty}(\Omega)=c_{p}$, then $\Delta_{p} v-\frac{H_{p}(\Omega)}{\delta^{P}} \mathcal{I}_{p}$ is critical in Ω i.e. the equation $\left(\Delta_{p} v-\frac{H_{p}(\Omega)}{\delta^{p}} \mathcal{I}_{p}\right) u=0$ in Ω admits unique positive (super)solution φ called the Agmon ground state, it has minimal growth at infinity in Ω.

Spectral gap

Let Ω is a $C^{1, \gamma}$ bounded domain.
Any positive solution u in a nbd U of $\partial \Omega$ which has minimal growth at infinity in Ω satisfies

$$
u \leq G^{\alpha_{\lambda}} \asymp \delta^{\alpha_{\lambda}} \quad \text { in a nbd of } \partial \Omega .
$$

Note that $\delta^{\alpha_{\lambda}} \in L^{p}\left(U, \delta^{-p}\right)$ iff $\lambda<c_{p}$.
Recall that if there is a spectral gap $0<H(\Omega)<\lambda_{p, \infty}(\Omega)=c_{p}$, then $\Delta_{p} v-\frac{H_{p}(\Omega)}{\delta^{p}} \mathcal{I}_{p}$ is critical in Ω i.e. the equation $\left(\Delta_{p} v-\frac{H_{p}(\Omega)}{\delta^{p}} \mathcal{I}_{p}\right) u=0$ in Ω admits unique positive (super)solution φ called the Agmon ground state, it has minimal growth at infinity in Ω. Hence, $\varphi \leq C \delta^{\alpha_{\lambda}}$, where $\lambda=C_{H}(\Omega)<c_{p}$. Thus, φ is a minimizer.

Comparison principle or Phragmén-Lindelöf principle (Agmon, Marcus-Mizel-YP and Marcus-Shafrir)

If a positive subsolution near $\partial \Omega$ of the Euler-Lagrange equation does not grow too fast (i,e, it satisfies a certain growth condition), then it is bounded (up to a multiplicative constant) by any positive supersolution.

Comparison principle or Phragmén-Lindelöf principle (Agmon, Marcus-Mizel-YP and Marcus-Shafrir)

If a positive subsolution near $\partial \Omega$ of the Euler-Lagrange equation does not grow too fast (i,e, it satisfies a certain growth condition), then it is bounded (up to a multiplicative constant) by any positive supersolution.

The subsolutions obtained by Agmon's trick satisfy the growth condition.

Comparison principle or Phragmén-Lindelöf principle (Agmon, Marcus-Mizel-YP and Marcus-Shafrir)

If a positive subsolution near $\partial \Omega$ of the Euler-Lagrange equation does not grow too fast (i,e, it satisfies a certain growth condition), then it is bounded (up to a multiplicative constant) by any positive supersolution.

The subsolutions obtained by Agmon's trick satisfy the growth condition. Hence, any minimizer u satisfies

$$
\delta^{\alpha_{\lambda}} \asymp G^{\alpha_{\lambda}} \leq C u .
$$

But $\lambda=c_{p}$ iff $\delta^{\alpha_{\lambda}} \notin L^{p}\left(U, \delta^{-p}\right)$. Hence, if $C_{H}(\Omega)=c_{p}$, then there is no minimizer.

Thank you for your attention!

