L^p Hardy inequality on $C^{1,\gamma}$ domains

Yehuda Pinchover

Department of Mathematics, Technion 32000 Haifa, ISRAEL

E-mail: pincho@technion.ac.il

Mostly Maximum Principle (BIRS) 4/4/2017

Joint work with Pier Domenico Lamberti

(3)

The Hardy inequality

Let Ω be a domain in \mathbb{R}^n , $n \ge 2$, with compact nonempty boundary. Let $\delta(x) := d(x, \partial \Omega)$ be the distance function to the boundary. Fix $p \in (1, \infty)$. The L^p Hardy inequality is satisfied in Ω if there exists c > 0 s.t.

$$\int_{\Omega} |\nabla u|^p \, \mathrm{d} x \ge c \int_{\Omega} \frac{|u|^p}{\delta^p} \, \mathrm{d} x \qquad \text{for all } u \in C_0^{\infty}(\Omega).$$

(日) (同) (三) (三)

The Hardy inequality

Let Ω be a domain in \mathbb{R}^n , $n \ge 2$, with compact nonempty boundary. Let $\delta(x) := d(x, \partial \Omega)$ be the distance function to the boundary. Fix $p \in (1, \infty)$. The L^p Hardy inequality is satisfied in Ω if there exists c > 0 s.t.

$$\int_{\Omega} |\nabla u|^p \, \mathrm{d} x \ge c \int_{\Omega} \frac{|u|^p}{\delta^p} \, \mathrm{d} x \qquad \text{for all } u \in C_0^{\infty}(\Omega)$$

The L^p Hardy constant $H_p(\Omega)$ of Ω is given by the Rayleigh-Ritz variational problem

$$H_p(\Omega) := \inf_{u \in W_0^{1,2}(\Omega)} \frac{\int_{\Omega} |\nabla u|^p \, \mathrm{d}x}{\int_{\Omega} \frac{|u|^p}{\delta^p} \, \mathrm{d}x} \, .$$

(日) (周) (三) (三)

The Hardy inequality

Let Ω be a domain in \mathbb{R}^n , $n \ge 2$, with compact nonempty boundary. Let $\delta(x) := d(x, \partial \Omega)$ be the distance function to the boundary. Fix $p \in (1, \infty)$. The L^p Hardy inequality is satisfied in Ω if there exists c > 0 s.t.

$$\int_{\Omega} |\nabla u|^p \, \mathrm{d} x \ge c \int_{\Omega} \frac{|u|^p}{\delta^p} \, \mathrm{d} x \qquad \text{for all } u \in C_0^{\infty}(\Omega)$$

The L^p Hardy constant $H_p(\Omega)$ of Ω is given by the Rayleigh-Ritz variational problem

$$\mathcal{H}_p(\Omega) := \inf_{u \in W_0^{1,2}(\Omega)} rac{\int_\Omega |
abla u|^p \,\mathrm{d}x}{\int_\Omega rac{|u|^p}{\delta^p} \,\mathrm{d}x}\,.$$

The associated Euler-Lagrange equation is given by

$$\left(-\Delta_{p}-\frac{H_{p}(\Omega)}{\delta^{p}}\mathcal{I}_{p}
ight)u=0\qquad ext{in }\Omega,$$

 $-\Delta_{\rho}v := -\mathrm{div} \left(|\nabla v|^{\rho-2} \nabla v
ight)$ is the *p*-Laplacian, and $\mathcal{I}_{\rho}v := |v|^{\rho-2}v$.

Theorem (Marcus-Mizel-YP (1998), Marcus-Shafrir (2000))

Let Ω be a bounded domain in \mathbb{R}^n of class C^2 , and denote $c_p := \left(\frac{p-1}{p}\right)^p$. Then $0 < H_p(\Omega) \le c_p$.

★ 3 → < 3</p>

Theorem (Marcus-Mizel-YP (1998), Marcus-Shafrir (2000))

Let Ω be a bounded domain in \mathbb{R}^n of class C^2 , and denote $c_p := \left(\frac{p-1}{p}\right)^p$. Then $0 < H_p(\Omega) \le c_p$.

Moreover, $H_p(\Omega) < c_p$ if and only if the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W_0^{1,p}(\Omega)$.

Theorem (Marcus-Mizel-YP (1998), Marcus-Shafrir (2000))

Let Ω be a bounded domain in \mathbb{R}^n of class C^2 , and denote $c_p := \left(\frac{p-1}{p}\right)^p$. Then $0 < H_p(\Omega) \le c_p$.

Moreover, $H_p(\Omega) < c_p$ if and only if the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W_0^{1,p}(\Omega)$.

Furthermore, if $\alpha \in ((p-1)/p, 1)$ is such that $\lambda_{\alpha} := (p-1)\alpha^{p-1}(1-\alpha) = H_p(\Omega)$, then

 $u(x) \asymp \delta^{\alpha}(x) \qquad \forall x \in \Omega.$

• • = • • = •

Theorem (Marcus-Mizel-YP (1998), Marcus-Shafrir (2000))

Let Ω be a bounded domain in \mathbb{R}^n of class C^2 , and denote $c_p := \left(\frac{p-1}{p}\right)^p$. Then $0 < H_p(\Omega) \le c_p$.

Moreover, $H_p(\Omega) < c_p$ if and only if the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W_0^{1,p}(\Omega)$.

Furthermore, if $\alpha \in ((p-1)/p, 1)$ is such that $\lambda_{\alpha} := (p-1)\alpha^{p-1}(1-\alpha) = H_p(\Omega)$, then

$$u(x) \asymp \delta^{\alpha}(x) \qquad \forall x \in \Omega.$$

Remark

The proof relies heavily on the assumption $\Omega \in C^2$, which implies the *tubular neighbourhood theorem* and also that $\delta \in C^2$ in a neighbourhood of the boundary, so $|\Delta \delta|$ is bounded. Both properties do not hold for $\Omega \in C^{1,\gamma}$ (δ is not necessarily differentiable near $\partial \Omega$!).

Properties of the Hardy constant

Theorem (Lewis-J. Li-Yanyan Li (2012)) If Ω is convex, or weakly mean convex C^2 domain (i.e. $-\Delta \delta \ge 0$ in Ω), then $H_p(\Omega) = c_p = \left(\frac{p-1}{p}\right)^p$.

- (三) (三)

Properties of the Hardy constant

Theorem (Lewis-J. Li-Yanyan Li (2012)) If Ω is convex, or weakly mean convex C^2 domain (i.e. $-\Delta \delta \ge 0$ in Ω), then $H_p(\Omega) = c_p = \left(\frac{p-1}{p}\right)^p$.

Remark

1. If $\Omega = \mathbb{R}^n \setminus \{0\}$, then $\int_{\Omega} |\nabla u|^p \, dx \ge H_p(\Omega) \int_{\Omega} \frac{|u|^p}{|x|^p} \, dx$ for all $u \in C_0^{\infty}(\Omega)$, where

$$H_p(\Omega) = c_{p,n}^* := \left| \frac{p-n}{p} \right|^p.$$

(4) (日本)

Properties of the Hardy constant

Theorem (Lewis-J. Li-Yanyan Li (2012)) If Ω is convex, or weakly mean convex C^2 domain (i.e. $-\Delta \delta \ge 0$ in Ω), then $H_p(\Omega) = c_p = \left(\frac{p-1}{p}\right)^p$.

Remark

1. If $\Omega = \mathbb{R}^n \setminus \{0\}$, then $\int_{\Omega} |\nabla u|^p \, \mathrm{d}x \ge H_p(\Omega) \int_{\Omega} \frac{|u|^p}{|x|^p} \, \mathrm{d}x$ for all $u \in C_0^{\infty}(\Omega)$, where

$$H_p(\Omega) = c_{p,n}^* := \left| rac{p-n}{p}
ight|^p.$$

2. For C^2 domains such that $H_p(\Omega) < c_p$, the Hardy constant $H_p(\Omega)$ depends continuously on p and on domain perturbations (Barbatis and Lamberti).

(日) (周) (三) (三)

$C^{1,\gamma}$ bounded domains

Theorem (Lamberti-YP (2016))

Let $\Omega \in C^{1,\gamma}$ be a bounded domain in \mathbb{R}^n . Then $H_p(\Omega) < c_p$ iff the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W_0^{1,p}(\Omega)$.

$C^{1,\gamma}$ bounded domains

Theorem (Lamberti-YP (2016))

Let $\Omega \in C^{1,\gamma}$ be a bounded domain in \mathbb{R}^n . Then $H_p(\Omega) < c_p$ iff the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W_0^{1,p}(\Omega)$. Moreover, if $\alpha \in [(n - 1)/n, 1]$ is such that

Moreover, if $\alpha \in [(p-1)/p, 1]$ is such that

$$0 \leq \lambda_{lpha} := (p-1) lpha^{p-1} (1-lpha) \leq c_p = \left(rac{p-1}{p}
ight)^p,$$

then any positive solution u of the equation

$$\left(-\Delta_{p}-rac{\lambda_{lpha}}{\delta^{p}}\mathcal{I}_{p}
ight)v=0$$
 in Ω'

of minimal growth in a neighbourhood Ω' of $\partial\Omega$ satisfies

$$u(x) \asymp \delta^{lpha}(x) \qquad \forall x \in \Omega_{eta}.$$

Minimal Growth

Definition

Let $K_0 \Subset \Omega$. A positive solution u of the equation Q(u) = 0 in $\Omega \setminus K_0$ is of minimal growth in a neighborhood of infinity in Ω , if for all smooth Ks.t. $K_0 \Subset \operatorname{int}(K) \Subset \Omega$ and any positive supersolution $v \in C((\Omega \setminus K) \cup \partial K)$ of Q(u) = 0 in $\Omega \setminus K$ we have $u \le v$ on $\partial K \Rightarrow u \le v$ in $\Omega \setminus K$.

A B A A B A

Minimal Growth

Definition

Let $K_0 \Subset \Omega$. A positive solution u of the equation Q(u) = 0 in $\Omega \setminus K_0$ is of minimal growth in a neighborhood of infinity in Ω , if for all smooth Ks.t. $K_0 \Subset \operatorname{int}(K) \Subset \Omega$ and any positive supersolution $v \in C((\Omega \setminus K) \cup \partial K)$ of Q(u) = 0 in $\Omega \setminus K$ we have $u \le v$ on $\partial K \Rightarrow u \le v$ in $\Omega \setminus K$.

Theorem

Let $Q \ge 0$ on $C_0^{\infty}(\Omega)$. Then $\forall x_0 \in \Omega$ the E-L equation Q(u) = 0 admits a unique positive solution u_{x_0} in $\Omega \setminus \{x_0\}$ of minimal growth in a neighborhood of infinity in Ω .

< 回 ト < 三 ト < 三 ト

$C^{1,\gamma}$ exterior domains

Theorem (Lamberti-YP (2016)) Let $\Omega \subset \mathbb{R}^n$ be an $C^{1,\gamma}$ exterior domain, and $p \neq n$. Let $c_{p,n} := \min\{c_p, c_{p,n}^*\} = \min\left\{\left(\frac{p-1}{p}\right)^p, \left|\frac{p-n}{p}\right|^p\right\}.$ $\widetilde{W}^{1,p}(\Omega) := \{u \in W^{1,p}_{loc}(\Omega) \mid ||u||_{L^p(\Omega;\delta^{-p})} + ||\nabla u||_{L^p(\Omega)} < \infty\}.$ Then $H_p(\Omega) < c_{p,n}$ iff the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in \widetilde{W}^{1,p}(\Omega).$

イロト イポト イヨト イヨト 二日

$C^{1,\gamma}$ exterior domains

Theorem (Lamberti-YP (2016)) Let $\Omega \subset \mathbb{R}^n$ be an $C^{1,\gamma}$ exterior domain, and $p \neq n$. Let $c_{p,n} := \min\{c_p, c_{p,n}^*\} = \min\left\{\left(\frac{p-1}{p}\right)^p, \left|\frac{p-n}{p}\right|^p\right\}.$ $\widetilde{W}^{1,p}(\Omega) := \{ u \in \mathcal{W}^{1,p}_{\mathrm{loc}}(\Omega) \mid \|u\|_{L^p(\Omega;\delta^{-p})} + \|\nabla u\|_{L^p(\Omega)} < \infty \}.$ Then $H_p(\Omega) < c_{p,n}$ iff the Rayleigh-Ritz variational problem admits a (unique) minimizer $u \in W^{1,p}(\Omega)$.

Remark

Chabrowski and Willem (2006) proved that if Ω is a C^2 exterior domain and $H_p(\Omega) < c_{p,n}$, then a minimizer exists (no asymptotic of the minimizer is given).

(日) (四) (王) (王) (王)

$C^{1,\gamma}$ exterior domains

Theorem (Lamberti-YP (2016)) Let $\alpha, \alpha_1 \in [(p-1)/p, 1)$ and $\alpha_2 \in (0, (p-1)/p]$ be s.t. $\lambda = \lambda_{\alpha} := (p-1)\alpha^{p-1}(1-\alpha), \ \lambda_{\alpha_1} = \lambda_{\alpha_2} = |(p-1)/(p-n)|^p \lambda$. If $p \neq n$ and $0 \leq \lambda \leq c_{p,n} := \min\{c_p, c_{p,n}^*\}$, then any positive solution u of the equation

$$-\Delta_{\rho}v - rac{\lambda}{\delta^{
ho}}\mathcal{I}_{
ho}v = 0 \quad ext{in } \Omega' = \Omega \setminus K, K \Subset \Omega,$$

of minimal growth in a neighbourhood of infinity in Ω satisfies (i) $u(x) \simeq \delta^{\alpha}(x)$ near $\partial \Omega$. (ii) If p < n, then $u(x) \simeq |x|^{\frac{\alpha_1(p-n)}{p-1}}$ for all |x| > M. (iii) If p > n, then $u(x) \simeq |x|^{\frac{\alpha_2(p-n)}{p-1}}$ for all |x| > M.

The supersolution construction

Lemma

Let G be a positive p-harmonic function in $U \subset \mathbb{R}^n$. Let $W := |\nabla G/G|^p$. Then for every $\alpha \in (0, 1)$ we have

$$(-\Delta_{\rho} - \lambda_{\alpha} W \mathcal{I}_{\rho}) G^{\alpha} = 0, \quad \text{in } U,$$

 $0 < \lambda_{\alpha} = (p-1)\alpha^{p-1}(1-\alpha) \leq c_p.$

• = • •

The supersolution construction

Lemma

Let G be a positive p-harmonic function in $U \subset \mathbb{R}^n$. Let $W := |\nabla G/G|^p$. Then for every $\alpha \in (0, 1)$ we have

$$(-\Delta_p - \lambda_\alpha W \mathcal{I}_p) G^\alpha = 0, \quad \text{in } U,$$

 $0 < \lambda_{\alpha} = (p-1)\alpha^{p-1}(1-\alpha) \leq c_p.$

Lemma

Let $\Omega \in C^1$. Let $\Omega' \subset \Omega$ be a nbd of $\partial\Omega$ and $0 \leq G \in C^1(\overline{\Omega'})$ s.t. $G(x) = 0, \nabla G(x) \neq 0$ on $\partial\Omega$. Then $\lim_{x \to \partial\Omega} \frac{|\nabla G(x)|}{G(x)} \delta(x) = 1.$ Moreover, if ω is the modulus of continuity of ∇G near $\partial\Omega$, then $\left|\frac{\nabla G(x)}{G(x)}\right| = \frac{1}{\delta(x)} + \frac{O(\omega(\delta(x)))}{\delta(x)}$ as $x \to \partial\Omega$.

Hopf's boundary point lemma

Lemma (Mikayelyan-Shahgholian (2015) (Li-Nirenberg (2007))) Hopf lemma holds for the *p*-Laplacian if $\partial\Omega$ is of class $C^{1,\gamma}$ or even $C^{1,\text{Dini}}$. In particular, if *G* is positive *p*-harmonic function in $\Omega \in C^{1,\gamma}$, and G = 0 on $\partial\Omega$, then $\nabla G(x) \neq 0$ on $\partial\Omega$.

< 回 ト < 三 ト < 三 ト

Agmon trick for bounded domains

Lemma

Consider a C^1 -domain $\Omega \subset \mathbb{R}^n$ with compact boundary, and a neighbourhood $U \subset \Omega$ of $\partial \Omega$. Let $0 < G \in C^{1,\gamma}(\overline{\Omega \cap U})$ be *p*-harmonic in U s.t. G = 0 and $\nabla G(x) \neq 0$ on $\partial \Omega$. Let $\frac{(p-1)}{p} \leq \alpha < \beta < \alpha + \gamma < 1$.

Agmon trick for bounded domains

Lemma

Consider a C^1 -domain $\Omega \subset \mathbb{R}^n$ with compact boundary, and a neighbourhood $U \subset \Omega$ of $\partial\Omega$. Let $0 < G \in C^{1,\gamma}(\overline{\Omega \cap U})$ be *p*-harmonic in U s.t. G = 0 and $\nabla G(x) \neq 0$ on $\partial\Omega$. Let $\frac{(p-1)}{p} \leq \alpha < \beta < \alpha + \gamma < 1$. Then in a neighbourhood $\mathcal{U} \subset U$ of $\partial\Omega$,

$$ig(-\Delta_{m{
ho}}m{v}-rac{\lambda_{lpha}}{\delta^{m{
ho}}}\mathcal{I}_{m{
ho}}ig)ig(G^{lpha}\pm G^{eta}ig) \ \ \stackrel{\leq}{\geq} \ \ 0 \qquad ext{ in } \mathcal{U},$$

where $0 < \lambda_{\alpha} = (p-1)\alpha^{p-1}(1-\alpha) \leq c_p$.

Allegretto-Piepenbrink theory The functional

$$\mathcal{Q}_{V}(u) := \int_{\Omega} |\nabla u|^{p} \,\mathrm{d}x + \int_{\Omega} V|u|^{p} \,\mathrm{d}x,$$

is nonnegative on $C_0^{\infty}(\Omega)$ iff the corresponding Euler-Lagrange equation admits a positive (super)solution.

Allegretto-Piepenbrink theory The functional

$$\mathcal{Q}_V(u) := \int_{\Omega} |\nabla u|^p \,\mathrm{d}x + \int_{\Omega} V|u|^p \,\mathrm{d}x,$$

is nonnegative on $C_0^{\infty}(\Omega)$ iff the corresponding Euler-Lagrange equation admits a positive (super)solution. Hence, the Hardy constant is given by

$$\begin{split} \mathcal{C}_{\mathcal{H}}(\Omega) &= \lambda_{p,0}(\Omega) := \sup \left\{ \lambda \in \mathbb{R} \mid \exists u \in W^{1,p}_{\mathrm{loc}}(\Omega) \text{ s.t.} \\ u &> 0 \text{ and } \big(-\Delta_p - \frac{\lambda}{\delta^p} \mathcal{I}_p \big) u \; \stackrel{=}{\geq} \; 0 \text{ in } \Omega \right\}. \end{split}$$

Allegretto-Piepenbrink theory The functional

$$\mathcal{Q}_V(u) := \int_{\Omega} |\nabla u|^p \,\mathrm{d}x + \int_{\Omega} V|u|^p \,\mathrm{d}x,$$

is nonnegative on $C_0^{\infty}(\Omega)$ iff the corresponding Euler-Lagrange equation admits a positive (super)solution. Hence, the Hardy constant is given by

$$\begin{split} \mathcal{C}_{\mathcal{H}}(\Omega) &= \lambda_{p,0}(\Omega) := \sup \left\{ \lambda \in \mathbb{R} \mid \exists u \in W^{1,p}_{\mathrm{loc}}(\Omega) \text{ s.t.} \\ u &> 0 \text{ and } \big(-\Delta_p - \frac{\lambda}{\delta^p} \mathcal{I}_p \big) u \; \stackrel{=}{_{\geq}} \; 0 \text{ in } \Omega \right\}. \end{split}$$

Define the Hardy constant at infinity

$$\begin{split} \lambda_{\rho,\infty}(\Omega) &:= \sup \left\{ \lambda \in \mathbb{R} \mid \exists K \Subset \Omega \text{ and } u \in W^{1,p}_{\text{loc}}(\Omega \setminus \bar{K}) \text{ s.t.} \\ u &> 0 \text{ and } \big(-\Delta_{\rho} - \frac{\lambda}{\delta^{\rho}} \mathcal{I}_{\rho} \big) u \stackrel{=}{\geq} 0 \text{ in } \Omega \setminus \bar{K} \right\}, \end{split}$$

Hardy constant at infinity

Under a mild smoothness assumption $\lambda_{p,\infty}(\Omega) \leq c_p$. Hence, Agmon's trick implies:

Corollary

If Ω is a C^1 bounded domain, then

 $0 < C_{\mathcal{H}}(\Omega) = \lambda_{p,0}(\Omega) \leq \lambda_{p,\infty}(\Omega) = c_p.$

.

Hardy constant at infinity

Under a mild smoothness assumption $\lambda_{p,\infty}(\Omega) \leq c_p$. Hence, Agmon's trick implies:

Corollary

If Ω is a C^1 bounded domain, then

 $0 < C_{\mathcal{H}}(\Omega) = \lambda_{p,0}(\Omega) \leq \lambda_{p,\infty}(\Omega) = c_p.$

Question: What happens if $\lambda_{p,0} < \lambda_{p,\infty}(\Omega)$ i.e. if there is a spectral gap.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Hardy constant at infinity

Under a mild smoothness assumption $\lambda_{p,\infty}(\Omega) \leq c_p$. Hence, Agmon's trick implies:

Corollary

If Ω is a C^1 bounded domain, then

 $0 < C_{\mathcal{H}}(\Omega) = \lambda_{p,0}(\Omega) \leq \lambda_{p,\infty}(\Omega) = c_p.$

Question: What happens if $\lambda_{p,0} < \lambda_{p,\infty}(\Omega)$ i.e. if there is a spectral gap. Answer: The corresponding operator is critical.

Spectral gap

Let Ω is a $C^{1,\gamma}$ bounded domain. Any positive solution u in a nbd U of $\partial \Omega$ which has minimal growth at infinity in Ω satisfies

 $u \leq G^{\alpha_{\lambda}} \asymp \delta^{\alpha_{\lambda}}$ in a nbd of $\partial \Omega$.

Note that $\delta^{\alpha_{\lambda}} \in L^{p}(U, \delta^{-p})$ iff $\lambda < c_{p}$.

(本語)と (本語)と (本語)と

Spectral gap

Let Ω is a $C^{1,\gamma}$ bounded domain. Any positive solution u in a nbd U of $\partial \Omega$ which has minimal growth at infinity in Ω satisfies

 $u \leq G^{\alpha_{\lambda}} \asymp \delta^{\alpha_{\lambda}}$ in a nbd of $\partial \Omega$.

Note that $\delta^{\alpha_{\lambda}} \in L^{p}(U, \delta^{-p})$ iff $\lambda < c_{p}$. Recall that if there is a spectral gap $0 < H(\Omega) < \lambda_{p,\infty}(\Omega) = c_{p}$, then $\Delta_{p}v - \frac{H_{p}(\Omega)}{\delta^{p}}\mathcal{I}_{p}$ is critical in Ω i.e. the equation $\left(\Delta_{p}v - \frac{H_{p}(\Omega)}{\delta^{p}}\mathcal{I}_{p}\right)u = 0$ in Ω admits unique positive (super)solution φ called the Agmon ground state, it has minimal growth at infinity in Ω .

・ロト ・聞 ト ・ 国 ト ・ 国 ト ・ 国

Spectral gap

Let Ω is a $C^{1,\gamma}$ bounded domain. Any positive solution u in a nbd U of $\partial \Omega$ which has minimal growth at infinity in Ω satisfies

 $u \leq G^{\alpha_{\lambda}} \asymp \delta^{\alpha_{\lambda}}$ in a nbd of $\partial \Omega$.

Note that $\delta^{\alpha_{\lambda}} \in L^{p}(U, \delta^{-p})$ iff $\lambda < c_{p}$. Recall that if there is a spectral gap $0 < H(\Omega) < \lambda_{p,\infty}(\Omega) = c_{p}$, then $\Delta_{p}v - \frac{H_{p}(\Omega)}{\delta^{p}}\mathcal{I}_{p}$ is critical in Ω i.e. the equation $\left(\Delta_{p}v - \frac{H_{p}(\Omega)}{\delta^{p}}\mathcal{I}_{p}\right)u = 0$ in Ω admits unique positive (super)solution φ called the Agmon ground state, it has minimal growth at infinity in Ω . Hence, $\varphi \leq C\delta^{\alpha_{\lambda}}$, where $\lambda = C_{H}(\Omega) < c_{p}$. Thus, φ is a minimizer.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Comparison principle or Phragmén-Lindelöf principle (Agmon, Marcus-Mizel-YP and Marcus-Shafrir)

If a positive subsolution near $\partial\Omega$ of the Euler-Lagrange equation does not grow too fast (i,e, it satisfies a certain growth condition),then it is bounded (up to a multiplicative constant) by any positive supersolution.

Comparison principle or Phragmén-Lindelöf principle (Agmon, Marcus-Mizel-YP and Marcus-Shafrir)

If a positive subsolution near $\partial\Omega$ of the Euler-Lagrange equation does not grow too fast (i,e, it satisfies a certain growth condition),then it is bounded (up to a multiplicative constant) by any positive supersolution.

The subsolutions obtained by Agmon's trick satisfy the growth condition.

Comparison principle or Phragmén-Lindelöf principle (Agmon, Marcus-Mizel-YP and Marcus-Shafrir)

If a positive subsolution near $\partial\Omega$ of the Euler-Lagrange equation does not grow too fast (i,e, it satisfies a certain growth condition),then it is bounded (up to a multiplicative constant) by any positive supersolution.

The subsolutions obtained by Agmon's trick satisfy the growth condition. Hence, any minimizer u satisfies

 $\delta^{\alpha_{\lambda}} \simeq G^{\alpha_{\lambda}} \leq Cu.$

But $\lambda = c_p$ iff $\delta^{\alpha_{\lambda}} \notin L^p(U, \delta^{-p})$. Hence, if $C_H(\Omega) = c_p$, then there is no minimizer.

イロト イポト イヨト イヨト 二日

Thank you for your attention!

(日) (同) (三) (三)