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The Hardy inequality

Let Ω be a domain in Rn, n ≥ 2, with compact nonempty boundary. Let
δ(x) := d(x , ∂Ω) be the distance function to the boundary. Fix
p ∈ (1,∞). The Lp Hardy inequality is satisfied in Ω if there exists c > 0
s.t. ∫

Ω
|∇u|p dx ≥ c

∫
Ω

|u|p

δp
dx for all u ∈ C∞0 (Ω).

The Lp Hardy constant Hp(Ω) of Ω is given by the Rayleigh-Ritz
variational problem

Hp(Ω) := inf
u∈W 1,2

0 (Ω)

∫
Ω |∇u|p dx∫

Ω
|u|p
δp dx

.

The associated Euler-Lagrange equation is given by(
−∆p −

Hp(Ω)

δp
Ip
)

u = 0 in Ω,

−∆pv := −div
(
|∇v |p−2∇v

)
is the p-Laplacian, and Ipv := |v |p−2v .
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Existence of minimizer

Theorem (Marcus-Mizel-YP (1998), Marcus-Shafrir (2000))

Let Ω be a bounded domain in Rn of class C 2, and denote cp :=
(
p−1
p

)p
.

Then 0 < Hp(Ω) ≤ cp.

Moreover, Hp(Ω) < cp if and only if the Rayleigh-Ritz variational problem

admits a (unique) minimizer u ∈W 1,p
0 (Ω).

Furthermore, if α ∈ ((p − 1)/p, 1) is such that
λα := (p − 1)αp−1(1− α) = Hp(Ω), then

u(x) � δα(x) ∀x ∈ Ω.

Remark

The proof relies heavily on the assumption Ω ∈ C 2, which implies the
tubular neighbourhood theorem and also that δ ∈ C 2 in a neighbourhood
of the boundary, so |∆δ| is bounded. Both properties do not hold for
Ω ∈ C 1,γ (δ is not necessarily differentiable near ∂Ω!).
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Properties of the Hardy constant

Theorem (Lewis-J. Li-Yanyan Li (2012) )

If Ω is convex, or weakly mean convex C 2 domain (i.e. −∆δ ≥ 0 in Ω),

then Hp(Ω) = cp =
(
p−1
p

)p
.

Remark

1. If Ω = Rn \ {0}, then
∫

Ω |∇u|p dx ≥ Hp(Ω)
∫

Ω
|u|p
|x |p dx for all

u ∈ C∞0 (Ω), where

Hp(Ω) = c∗p,n :=

∣∣∣∣p − n

p

∣∣∣∣p.
2. For C 2 domains such that Hp(Ω) < cp, the Hardy constant Hp(Ω)
depends continuously on p and on domain perturbations (Barbatis and
Lamberti).
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C 1,γ bounded domains

Theorem (Lamberti-YP (2016))

Let Ω ∈ C 1,γ be a bounded domain in Rn. Then Hp(Ω) < cp iff the
Rayleigh-Ritz variational problem admits a (unique) minimizer
u ∈W 1,p

0 (Ω).

Moreover, if α ∈ [(p − 1)/p, 1] is such that

0 ≤ λα := (p − 1)αp−1(1− α) ≤ cp =

(
p − 1

p

)p

,

then any positive solution u of the equation(
−∆p −

λα
δp
Ip
)

v = 0 in Ω′

of minimal growth in a neighbourhood Ω′ of ∂Ω satisfies

u(x) � δα(x) ∀x ∈ Ωβ.
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Minimal Growth

Definition

Let K0 b Ω. A positive solution u of the equation Q(u) = 0 in Ω \ K0 is
of minimal growth in a neighborhood of infinity in Ω, if for all smooth K
s.t. K0 b int(K ) b Ω and any positive supersolution
v ∈ C ((Ω \ K ) ∪ ∂K ) of Q(u) = 0 in Ω \ K we have

u ≤ v on ∂K ⇒ u ≤ v in Ω \ K .

Theorem

Let Q ≥ 0 on C∞0 (Ω). Then ∀x0 ∈ Ω the E-L equation Q(u) = 0 admits a
unique positive solution ux0 in Ω \ {x0} of minimal growth in a
neighborhood of infinity in Ω.
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C 1,γ exterior domains

Theorem (Lamberti-YP (2016))

Let Ω ⊂ Rn be an C 1,γ exterior domain, and p 6= n. Let

cp,n := min{cp, c∗p,n} = min

{(
p − 1

p

)p

,

∣∣∣∣p − n

p

∣∣∣∣p} .
W̃ 1,p(Ω) := {u ∈W 1,p

loc (Ω) | ‖u‖Lp(Ω;δ−p) + ‖∇u‖Lp(Ω) <∞}.

Then Hp(Ω) < cp,n iff the Rayleigh-Ritz variational problem admits a

(unique) minimizer u ∈ W̃ 1,p(Ω).

Remark

Chabrowski and Willem (2006) proved that if Ω is a C 2 exterior domain
and Hp(Ω) < cp,n, then a minimizer exists (no asymptotic of the minimizer
is given).
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C 1,γ exterior domains

Theorem (Lamberti-YP (2016))

Let α, α1 ∈ [(p − 1)/p, 1) and α2 ∈ (0, (p − 1)/p] be s.t.
λ = λα := (p − 1)αp−1(1− α), λα1 = λα2 = |(p − 1)/(p − n)|pλ. If
p 6= n and 0 ≤ λ ≤ cp,n := min{cp, c∗p,n}, then any positive solution u of
the equation

−∆pv − λ

δp
Ipv = 0 in Ω′ = Ω \ K ,K b Ω,

of minimal growth in a neighbourhood of infinity in Ω satisfies

(i) u(x) � δα(x) near ∂Ω.

(ii) If p < n, then u(x) � |x |
α1(p−n)

p−1 for all |x | > M.

(iii) If p > n, then u(x) � |x |
α2(p−n)

p−1 for all |x | > M.
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The supersolution construction

Lemma

Let G be a positive p-harmonic function in U ⊂ Rn. Let W := |∇G/G |p.
Then for every α ∈ (0, 1) we have

(−∆p − λαWIp)Gα = 0, in U,

0 < λα = (p − 1)αp−1(1− α) ≤ cp.

Lemma

Let Ω ∈ C 1. Let Ω′ ⊂ Ω be a nbd of ∂Ω and 0 ≤ G ∈ C 1(Ω′) s.t.
G (x) = 0, ∇G (x) 6= 0 on ∂Ω. Then

lim
x→∂Ω

|∇G (x)|
G (x)

δ(x) = 1.

Moreover, if ω is the modulus of continuity of ∇G near ∂Ω, then∣∣∣∣∇G (x)

G (x)

∣∣∣∣ =
1

δ(x)
+

O(ω(δ(x)))

δ(x)
as x → ∂Ω.
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Hopf’s boundary point lemma

Lemma (Mikayelyan-Shahgholian (2015) (Li-Nirenberg (2007)))

Hopf lemma holds for the p-Laplacian if ∂Ω is of class C 1,γ or even
C 1,Dini. In particular, if G is positive p-harmonic function in Ω ∈ C 1,γ ,
and G = 0 on ∂Ω, then ∇G (x) 6= 0 on ∂Ω.
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Agmon trick for bounded domains

Lemma

Consider a C 1-domain Ω ⊂ Rn with compact boundary, and a
neighbourhood U ⊂ Ω of ∂Ω. Let 0 < G ∈ C 1,γ(Ω ∩ U) be p-harmonic in

U s.t. G = 0 and ∇G (x) 6= 0 on ∂Ω. Let (p−1)
p ≤α<β<α + γ< 1.

Then in a neighbourhood U ⊂ U of ∂Ω,(
−∆pv − λα

δp
Ip
)(

Gα ± Gβ
) ≤
≥ 0 in U ,

where 0 < λα = (p − 1)αp−1(1− α) ≤ cp.
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Allegretto-Piepenbrink theory
The functional

QV (u) :=

∫
Ω
|∇u|p dx +

∫
Ω

V |u|p dx ,

is nonnegative on C∞0 (Ω) iff the corresponding Euler-Lagrange equation
admits a positive (super)solution.

Hence, the Hardy constant is given by

CH(Ω) = λp,0(Ω) := sup
{
λ ∈ R | ∃u ∈W 1,p

loc (Ω) s.t.

u > 0 and
(
−∆p −

λ

δp
Ip
)
u

=
≥ 0 in Ω

}
.

Define the Hardy constant at infinity

λp,∞(Ω) := sup
{
λ ∈ R | ∃K b Ω and u ∈W 1,p

loc (Ω \ K̄ ) s.t.

u > 0 and
(
−∆p −

λ

δp
Ip
)
u

=
≥ 0 in Ω \ K̄

}
,
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Hardy constant at infinity

Under a mild smoothness assumption λp,∞(Ω) ≤ cp. Hence, Agmon’s
trick implies:

Corollary

If Ω is a C 1 bounded domain, then

0 < CH(Ω) = λp,0(Ω) ≤ λp,∞(Ω) = cp.

Question: What happens if λp,0 < λp,∞(Ω) i.e. if there is a spectral gap.
Answer: The corresponding operator is critical.
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Spectral gap

Let Ω is a C 1,γ bounded domain.
Any positive solution u in a nbd U of ∂Ω which has minimal growth at
infinity in Ω satisfies

u ≤ Gαλ � δαλ in a nbd of ∂Ω.

Note that δαλ ∈ Lp(U, δ−p) iff λ < cp.

Recall that if there is a spectral gap 0 < H(Ω) < λp,∞(Ω) = cp, then

∆pv − Hp(Ω)
δp Ip is critical in Ω i.e. the equation

(
∆pv − Hp(Ω)

δp Ip
)

u = 0

in Ω admits unique positive (super)solution ϕ called the Agmon ground
state, it has minimal growth at infinity in Ω.
Hence, ϕ ≤ Cδαλ , where λ = CH(Ω) < cp. Thus, ϕ is a minimizer.
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Let Ω is a C 1,γ bounded domain.
Any positive solution u in a nbd U of ∂Ω which has minimal growth at
infinity in Ω satisfies

u ≤ Gαλ � δαλ in a nbd of ∂Ω.

Note that δαλ ∈ Lp(U, δ−p) iff λ < cp.
Recall that if there is a spectral gap 0 < H(Ω) < λp,∞(Ω) = cp, then
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Comparison principle or Phragmén-Lindelöf principle
(Agmon, Marcus-Mizel-YP and Marcus-Shafrir)

If a positive subsolution near ∂Ω of the Euler-Lagrange equation does not
grow too fast (i,e, it satisfies a certain growth condition),then it is
bounded (up to a multiplicative constant) by any positive supersolution.

The subsolutions obtained by Agmon’s trick satisfy the growth condition.

Hence, any minimizer u satisfies

δαλ � Gαλ ≤ Cu.

But λ = cp iff δαλ 6∈ Lp(U, δ−p). Hence, if CH(Ω) = cp, then there is no
minimizer.
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Thank you for your attention!
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