
Anabelian geometry

Grothendieck’s programme: K a field, Y /K a smooth connected
variety, y ∈ Y (K ) a basepoint. We have the profinite étale
fundamental group πét

1 (YK ; y), endowed with a Galois action; for
z ∈ Y (K ) we also have the profinite torsor of paths πét

1 (YK ; y , z),
endowed with a compatible Galois action. One can study the
Diophantine geometry of Y via the non-abelian Kummer map

Y (K )→ H1(GK , π
ét
1 (YK ; y)).

Kim’s variant: Un/Q` the n-step Q`-unipotent étale fundamental
group of (Y , y). Study the Diophantine geometry of Y via the
more computable non-abelian Kummer map

Y (K )→ H1(GK ,Un(Q`)).

Unipotent Kummer maps for small n

When n = 1 and Y is complete, U1 = V`Alb(Y ) is the Q`-linear
Tate module of the Albanese variety of Y , and the “non-abelian”
Kummer map is the composite

Y (K )→ Alb(Y )(K )→ H1(GK ,V`Alb(Y )).

The non-abelian Kummer maps for n > 1 are thought to see more
refined arithmetic information. In the particular case that n = 2,
the non-abelian Kummer map is thought to see information related
to archimedean and `-adic heights.



Local heights as functions on H1

Theorem (Balakrishnan–Dan-Cohen–Kim–Wewers, 2014)

Let E ◦ be the complement of 0 in an elliptic curve E over a p-adic
local field K, and U2 the 2-step Q`-unipotent fundamental group
(` 6= p) of E ◦. Then the natural map Q`(1) ↪→ U2 induces a
bijection on H1, and the composite map

E ◦(K )→ H1(GK ,U2(Q`))
∼← H1(GK ,Q`(1))

∼→ Q`

is a Q-valued Néron function on E with divisor 2[0], postcomposed
with the natural embedding Q ↪→ Q`.

Generalisation to abelian varieties: setup

In place of the elliptic curve E , we will consider an abelian variety
A over a local field K and a line bundle L/A, and let L× = L \ 0
denote the complement of the zero section. The natural anabelian
invariant associated to this setup is the Q`-unipotent fundamental
group of L× – this is a central extension of the Q`-linear Tate
module V`A by Q`(1).

The role of the local height in this setup is played by the Néron
log-metric

λL : L×(K )→ R,

namely the unique (up to additive constants) function which scales
like the log of a metric on the fibres of L and such that for any/all
non-zero section(s) s of L, λL ◦ s is a Néron function on A with
divisor div(s). This is even Q-valued when K is non-archimedean.



Conventions

Notation
Fix (for the rest of the talk) a prime p, a finite extension K/Qp,
and an algebraic closure K/K , determining an absolute Galois
group GK .
Later, we will denote by BdR, Bst, Bcris etc. the usual period rings
constructed by Fontaine, and will fix a choice of p-adic logarithm,
giving us an embedding Bst ↪→ BdR.

Generalisation to abelian varieties: the theorem

Theorem (B.)

Let A/K be an abelian variety, L×/A the complement of zero in a
line bundle L, and U the Q`-unipotent fundamental group (` 6= p)
of L×. Then the natural map Q`(1) ↪→ U induces a bijection on
H1, and the composite map

L×(K )→ H1(GK ,U(Q`))
∼← H1(GK ,Q`(1))

∼→ Q`

takes values in Q, and is the* Néron log-metric on L.



The p-adic analogue

We will define a certain natural subquotient H1
g/e(GK ,U(Qp)) of

the non-abelian Galois cohomology set H1(GK ,U(Qp)), allowing
us to state a p-adic analogue of the preceding theorem.

Theorem (B.)

Let A/K be an abelian variety, L×/A the complement of zero in a
line bundle L, and let U be the Qp-unipotent fundamental group of
L×. Then U is de Rham, the natural map Qp(1) ↪→ U induces a
bijection on H1

g/e , and the composite map

L×(K )→ H1
g/e(GK ,U(Qp))

∼← H1
g/e(GK ,Qp(1))

∼→ Qp

is (well-defined and) the Néron log-metric on L.

Local (abelian) Bloch–Kato Selmer groups

I S. Bloch and K. Kato define, for any de Rham representation
V of GK on a Qp-vector space, subspaces

H1
e(GK ,V ) ≤ H1

f (GK ,V ) ≤ H1
g (GK ,V )

of the Galois cohomology H1(GK ,V ).

I Their dimensions are easily computable, and H1
e(GK ,V ) can

be studied via an “exponential” exact sequence

0→ V GK → Dϕ=1
cris (V )→ DdR(V )/D+

dR(V )→ H1
e(GK ,V )→ 0.

I When V = VpA is the Qp Tate module of an abelian variety
A/K , these are all equal to the Qp-span of the image of the
Kummer map

A(K )→ H1(GK ,VpA).



Local non-abelian Bloch–Kato Selmer sets

I Following Kim, we will define, for any de Rham representation
U/Qp of GK on a unipotent group, pointed subsets

H1
e(GK ,U(Qp)) ⊆ H1

f (GK ,U(Qp)) ⊆ H1
g (GK ,U(Qp))

of the non-abelian Galois cohomology set H1(GK ,U(Qp)).

I We will also make sense of the relative quotients, including
H1

g/e(GK ,U(Qp)) = H1
g/H

1
e , which appears in the p-adic

main theorem.

I H1
e(GK ,U(Qp)) can be studied via an “exponential” exact

sequence generalising the abelian sequence (see later).

I When U is the Qp pro-unipotent* fundamental group of a
smooth connected variety Y /K (which is de Rham), H1

g

contains the image of the non-abelian Kummer map

Y (K )→ H1(GK ,U(Qp)).

Basic definitions

Definition (Galois representations on unipotent groups)

A representation of GK on a unipotent group U/Qp is an action of
GK on U (by algebraic automorphisms) such that the action on
U(Qp) is continuous.
We say that U is de Rham (resp. semistable, crystalline etc.) just
when the following equivalent conditions hold:

I Lie(U) is de Rham;

I O(U) is ind-de Rham;

I dimK (DdR(U)) = dimQp(U), where DdR(U)/K is the
unipotent group representing the functor

DdR(U)(A) := U(A⊗K BdR)GK .



Definition (Local non-abelian Bloch–Kato Selmer sets)

Let U/Qp be a de Rham representation of GK on a unipotent
group. We define pointed subsets

H1
e(GK ,U(Qp)) ⊆ H1

f (GK ,U(Qp)) ⊆ H1
g (GK ,U(Qp))

of the non-abelian cohomology H1(GK ,U(Qp)) to be the kernels

H1
e(GK ,U(Qp)) := ker

(
H1(GK ,U(Qp))→ H1(GK ,U(Bϕ=1

cris ))
)

;

H1
f (GK ,U(Qp)) := ker

(
H1(GK ,U(Qp))→ H1(GK ,U(Bcris))

)
;

H1
g (GK ,U(Qp)) := ker

(
H1(GK ,U(Qp))→ H1(GK ,U(Bst))

)
.

One can use BdR in place of Bst in the definition of H1
g .

Definition (Quotients of Bloch–Kato Selmer sets)

Let U/Qp be a de Rham representation of GK on a unipotent
group. We denote by ∼H1

e
, ∼H1

f
, ∼H1

g
the equivalence relations on

H1(GK ,U(Qp)) whose equivalence classes are the fibres of

H1(GK ,U(Qp))→ H1(GK ,U(Bϕ=1
cris ));

H1(GK ,U(Qp))→ H1(GK ,U(Bcris));

H1(GK ,U(Qp))→ H1(GK ,U(Bst)).

We then define, for instance, the Bloch–Kato quotient

H1
g/e(GK ,U(Qp)) := H1

g (GK ,U(Qp))/ ∼H1
e
.



Why a cosimplicial approach?

The abelian Bloch–Kato exponential for a de Rham representation
V arises from tensoring it with the exact sequence

0→ Qp → Bϕ=1
cris → BdR/B+

dR → 0

and taking the long exact sequence in Galois cohomology.
Equivalently, if we consider the cochain complex

C•
e : Bϕ=1

cris → BdR/B+
dR,

then the cohomology groups of the cochain (C•
e ⊗Qp V )GK are

canonically identified as

Hj
(

(C•
e ⊗Qp V )GK

)
∼=


V GK j = 0;

H1
e(GK ,V ) j = 1;

0 j ≥ 2.

The advantage of using cochain complexes is that we can perform
analogous constructions for H1

f and H1
g . For instance, taking the

cochain complex

C•
g : Bst → B⊕2

st ⊕ BdR/B+
dR → Bst,

the cohomology groups of the cochain (C•
g ⊗Qp V )GK are

canonically identified as

Hj
(

(C•
g ⊗Qp V )GK

)
∼=


V GK j = 0;

H1
g (GK ,V ) j = 1;

Dϕ=1
cris (V ∗(1))∗ j = 2;

0 j ≥ 3.



The cochain complexes C•
e , C•

f , C•
g themselves cannot be directly

be used in the non-abelian setting (as we cannot tensor a group by
a vector space), so we have to tweak them slightly to find a
non-abelian generalisation of the Bloch–Kato exponential.

For example, in place of C•
e , we consider the diagram

Bϕ=1
cris × B+

dR ⇒ BdR

of Qp-algebras. Taking points in U and then GK -fixed points, we
then obtain the diagram

Dϕ=1
cris (U)(Qp)× D+

dR(U)(K )⇒ DdR(U)(K ).

There is an action of Dϕ=1
cris (U)(Qp)× D+

dR(U)(K ) on DdR(U)(K )
by (x , y) : z 7→ y−1zx – we will see later that the orbit space is
canonically identified with H1

e(GK ,U(Qp)).

Non-abelian analogy

In order to extend the study of local Bloch–Kato Selmer groups to
the non-abelian context, we need to replace three abelian concepts
with non-abelian analogues.

I In place of the cochain complexes C•
∗ of GK -representations,

we will use cosimplicial Qp-algebras B•
∗ with GK -action.

I In place of the cochain complexes (C•
∗ ⊗Qp V )GK , we will

examine the cosimplicial groups U(B•
∗)GK .

I In place of the cohomology groups of these cochain
complexes, we will calculate the cohomotopy groups/sets of
the corresponding cosimplicial groups.



Cosimplicial groups

Definition (Cosimplicial objects)

A cosimplicial object of a category C is a covariant functor
X • : ∆→ C from the simplex category ∆ of non-empty finite
ordinals and order-preserving maps. We think of this as a
collection of objects X n together with coface maps d•

X 0 ⇒ X 1 →→→ X 2 · · ·

and codegeneracy maps s•

X 0 ← X 1 ⇔ X 2 · · ·

satisfying certain identities.

Definition (Cohomotopy groups/sets)

Let U• be a cosimplicial group

U0 ⇒ U1 →→→ U2 · · · .

We define the 0th cohomotopy group π0(U•) to be

π0 (U•) := {u0 ∈ U0 | d0(u0) = d1(u0)} ≤ U0.

We also define the pointed set of 1-cocycles to be

Z1(U•) := {u1 ∈ U1 | d1(u1) = d2(u1)d0(u1)} ⊆ U1

and the 1st cohomotopy (pointed) set π1(U•) := Z1(U•)/U0 to be
the quotient of Z1(U•) by the twisted conjugation action of U0,
given by u0 : u1 7→ d1(u0)−1u1d0(u0).



Definition (Cohomotopy groups/sets (cont.))

When U• is abelian, π0(U•) and π1(U•) are abelian groups, and
we can define the higher cohomotopy groups πj(U•) to be the
cohomology groups of the cochain complex

U0 → U1 → U2 · · ·

with differential
∑

k(−1)kdk .

Example (Non-abelian group cohomology)

Suppose G is a topological group acting continuously on another
topological group U. Then Cn(G ,U) := Mapcts(G

n,U) can be
given the structure of a cosimplicial group. Its cohomotopy
πj (C•(G ,U)) is canonically identified with the group cohomology
Hj(G ,U) for j = 0, 1, and for all j when U is abelian.

Long exact sequences in cohomotopy

Notation
When we assert that a sequence

· · · → U r−1 → U r y→ U r+1 → U r+2 → · · ·

is exact, we shall mean that:

I · · · → U r−1 → U r is an exact sequence of groups (and group
homomorphisms);

I U r+1 → U r+2 → · · · is an exact sequence of pointed sets;

I there is an action of U r on U r+1 whose orbits are the fibres of
U r+1 → U r+2, and whose point-stabiliser is the image of
U r−1 → U r .



Cosimplicial groups give us many ways of producing long exact
sequences of groups and pointed sets. For example:

Theorem (Bousfield–Kan, 1972)

Let
1→ Z • → U• → Q• → 1

be a central extension of cosimplicial groups. Then there is a
cohomotopy exact sequence

1 π0(Z •) π0(U•) π0(Q•)

π1(Z •) π1(U•) π1(Q•) π2(Z •).y

The cosimplicial models

Our general method for studying local Bloch–Kato Selmer sets and
their quotients will be to define various cosimplicial Qp-algebras
B•
e , B•

f , B•
g , B•

g/e , B•
f /e with GK -action such that, for any de Rham

representation of GK on a unipotent group U/Qp, we have a
canonical identification

π1
(
U(B•

∗)GK

)
∼= H1

∗(GK ,U(Qp)).



Cohomotopy of the cosimplicial Dieudonné functors

In fact, we can give a complete description of the cohomotopy
groups/sets of each U(B•

∗)GK . For instance, we have

πj
(
U(B•

e)GK

)
∼=


U(Qp)GK j = 0;

H1
e(GK ,U(Qp)) j = 1;

0 j ≥ 2 and U abelian;

πj
(
U(B•

g/e)GK

)
∼=


Dϕ=1

cris (U)(Qp) j = 0;

H1
g/e(GK ,U(Qp)) j = 1;

Dϕ=1
cris (U(Qp)∗(1))∗ j = 2 and U abelian;

0 j ≥ 3 and U abelian.

Construction of Bloch–Kato algebras

The cosimplicial algebras required to make this work are all built
from standard period rings. For example, the diagram

Bϕ=1
cris × B+

dR ⇒ BdR

(which we saw earlier) is a semi-cosimplicial Qp-algebra (that is, a
cosimplicial algebra without codegeneracy maps). B•

e is then the
universal cosimplicial Qp-algebra mapping to this semi-cosimplicial
algebra (the cosimplicial algebra cogenerated by it). Concretely,
this has terms

Bn
e = Bϕ=1

cris × B+
dR × Bn

dR.



The non-abelian Bloch–Kato exponential

The description of the cohomotopy of U(B•
e)GK in degrees 0 and 1

is equivalent to the existence of a non-abelian exponential exact
sequence

1 U(Qp)GK Dϕ=1
cris (U)(Qp)× D+

dR(U)(K )

DdR(U)(K ) H1
e(GK ,U(Qp)) 1.

y

exp

Remark
Concretely, the exponential exact sequence provides a canonical
identification of H1

e as a double-coset space

H1
e(GK ,U(Qp)) ∼= Dϕ=1

cris (U)(Qp)\DdR(U)(K )/D+
dR(U)(K ).

Construction of the non-abelian Bloch–Kato exponential

By induction along the central series of U, we see quickly that
π0 (U(B•

e)) = U(Qp) and π1 (U(B•
e)) = 1. Unpacking the

definition of B•
e , this says that

1→ U(Qp)→ U(Bϕ=1
cris )× U(B+

dR)
y→ U(BdR)→ 1

is exact (i.e. the action is transitive with point-stabiliser U(Qp)).
We then obtain a long exact sequence in Galois cohomology

1 U(Qp)GK Dϕ=1
cris (U)(Qp)× D+

dR(U)(K )

DdR(U)(K ) H1(GK ,U(Qp)) H1(GK ,U(Bϕ=1
cris )× U(B+

dR)),

y

exp

which is already most of the desired exponential sequence.



Construction of the non-abelian Bloch–Kato exponential
(cont.)

It remains to show that the image of exp is exactly H1
e(GK ,U(Qp)).

The exact sequence shows that the image is exactly the kernel of

H1(GK ,U(Qp))→ H1(GK ,U(Bϕ=1
cris ))×H1(GK ,U(B+

dR)),

which certainly is contained in H1
e(GK ,U(Qp)).

It is then not too hard to prove that in fact the kernel is exactly
H1

e(GK ,U(Qp)), using the fact that the map

H1(GK ,U(B+
dR))→ H1(GK ,U(BdR))

has trivial kernel (we omit the diagram-chase in the interests of
brevity). This establishes the desired exact sequence, and hence
the description of the cohomotopy of U(B•

e)GK .

Lemma
Let

1→ Z → U → Q → 1

be a central extension of de Rham representations of GK on
unipotent groups over Qp. Then there is an exact sequence

1 Dϕ=1
cris (Z )(Qp) Dϕ=1

cris (U)(Qp) Dϕ=1
cris (Q)(Qp)

H1
g/e(GK ,Z (Qp)) H1

g/e(GK ,U(Qp)) H1
g/e(GK ,Q(Qp))

Dϕ=1
cris (Z (Qp)∗(1))∗.

z

y



Proof of lemma.
From the construction of B•

g/e (out of Bst), it follows that

1→ Z (B•
g/e)GK → U(B•

g/e)GK → Q(B•
g/e)GK → 1

is a central extension of cosimplicial groups. The desired exact
sequence is then the cohomotopy exact sequence for these
cosimplicial groups.

If, as in the main theorem, U/Qp is the Qp-unipotent fundamental
group of L× = L \ 0, where L is a line bundle on an abelian variety
A/K , then U is a central extension

1→ Qp(1)→ U → VpA→ 1.

Applying the preceding lemma shows that Qp(1) ↪→ U induces a
bijection on H1

g/e , so that H1
g/e(GK ,U(Qp)) ∼= Qp.

Showing that the H1
g/e-valued non-abelian Kummer map is then

identified with the Néron log-metric requires some extra work, but
is largely straightforward.
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