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Hendrik LENSTRA (1987) :

Let k be a field, and let K/k be a Galois extension of finite degree.
Set G = Gal(K/k).

Let (ge)g∈G be a normal basis of K/k , for some e ∈ K×. Let

qK : K × K → k

qK (x , y) = TrK/k(xy)

be the trace form of K/k .
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We say that (ge)g∈G is a self-dual normal basis of K/k if for all
g , h ∈ G we have

qK (ge, ge) = 1

and
qK (ge, he) = 0 if g 6= h.
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Theorem. (Lenstra) Assume that G is abelian.

• char(k) 6= 2. Then K/k has a self-dual normal basis ⇐⇒ the
order of G is odd.

• char(k) = 2. Then K/k has a self-dual normal basis ⇐⇒ G

has no element of order 4.
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G non abelian ?? In particular,

G has odd order =⇒ K/k has a self-dual normal basis ??

Theorem. (E.B - Lenstra, 1990, 1989)

If the order of G is odd, then K/k has a self-dual normal basis.
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Theorem. (Serre, 2014) Assume that char(k) = 2. Then K/k has
a self-dual normal basis ⇐⇒ G is generated by elements of odd
order and elements of order 2.

Only depends of the group G , and not of the extension K/k !
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EXAMPLE

Example. (E.B. - Serre 1994) k = Q, G = A4. There exist Galois
extensions with and without self-dual normal basis.

E.B. - Serre 1994 : necessary and sufficient conditions for the
existence of a self-dual normal basis when the 2-Sylow subgroups
are elementary abelian, or quaternionian of order 8.

The conditions involve cohomological invariants.
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Assume from now on that char(k) 6= 2. Let G be a finite group.

Instead of only Galois extensions, consider more generally G -Galois
algebras :

• étale k-algebra L of finite rank,

• with a (left) action of G such that L ≃ k[G ].

Examples.

• Galois extension with group G ;

• Split G -Galois algebra k × · · · × k .
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G -GALOIS ALGEBRAS

ks : a separable closure of k , Γk = Gal(ks/k).

G -Galois algebra → continuous homomorphism φ : Γk → G .

Examples.

• φ surjective ⇐⇒ Galois extension;

• φ = 1 ⇐⇒ split G -Galois algebra.
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L a G-Galois algebra,

qL : L× L → k

qL(x , y) = TrL/k(xy)

the trace form of L. We say that (ge)g∈G is a self-dual normal
basis of L over k if for all g , h ∈ G we have

qL(ge, ge) = 1

and
qL(ge, he) = 0 if g 6= h.
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SELF-DUAL NORMAL BASES

Theorem. (E.B - Lenstra, 1990, 1989)

If the order of G is odd, then every G - Galois algebra has a
self-dual normal basis.

G abelian - Lenstra’s result does not hold in general for G -Galois
algebras, only for Galois extensions.

Question : Necessary and sufficient condition for the existence of
self-dual normal bases.

Open even for G abelian.
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COHOMOLOGICAL INVARIANTS

Γ a (finite or profinite) group, set Hn(Γ) = Hn(Γ,Z/2Z).

Hn(k) = Hn(Γk).

Cohomological invariants :

L a G -Galois algebra, corresponding to

φ : Γk → G .

We obtain

φ∗ : Hn(G ) → Hn(k)
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H
1-CONDITION

xL = 0 for all x ∈ H1(G ).

Theorem. (E.B. - Serre, 1994) : Assume that cd2(k) ≤ 1. Then

L has a self-dual normal basis ⇐⇒ the H1-condition holds.

E.B. - Parimala : Define H2-invariants, H2-condition.

Theorem. (E.B. - Parimala, 2017) : Assume that cd2(k) ≤ 2.

L has a self-dual normal basis ⇐⇒ the H1-condition holds

and the H2-condition holds.



COHOMOLOGICAL REFORMULATION

σ : k[G ] → k[G ] the canonical involution of k[G ],

σ(g) = g−1 for all g ∈ G .

UG : linear algebraic group

UG (E ) = {x ∈ E [G ] | xσ(x) = 1}

for all commutative k-algebras E .

L a G -Galois algebra

Γk −→ G → UG (ks )

u(L) ∈ H1(k ,UG ).



COHOMOLOGICAL REFORMULATION

u(L) ∈ H1(k ,UG ).

L has a self-dual normal basis ⇐⇒ u(L) = 0.

UG = ?

k[G ]/(radical) = product of simple algebras, stable or exchanged
by σ.

A simple algebra, σ(A) = A.

• σ | (center of A) = identity.

Then A is either orthogonal or symplectic. Set EA = center of A.



COHOMOLOGICAL REFORMULATION

• σ | (center of A) 6= identity.

Then A is unitary. Set FA = center of A, and let EA be the fixed
field of σ in FA.

In both cases, UA is a linear algebraic group over EA.

H1(k ,UG ) =
∏

A

H1(EA,UA)

u(L) 7→ (uA(L)).



STRATEGY

L a G -Galois algebra, φ : Γk → G .

• Assume that the H1-condition holds. This implies φ(Γk) ⊂ G 2.
Set

H = φ(Γk).

• Define H2-invariants, as follows :

• For each orthogonal and unitary factor A, define eA ∈ H2(H).

• Apply φ∗ : H2(H) → H2(k).
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A an orthogonal factor, UA.

U0
A : connected component of the identity, ŨA : Spin group,

1 → C2 → ŨA
s→ U0

A → 1.

L a G -Galois algebra, φ : Γk → G . Assume H1-condition. Set

H = φ(Γk).

Define
eA ∈ H2(H)



ORTHOGONAL

VA = ŨA(EA)×U0
A
(EA)

H,

central extension

1 → C2 → VA → H → 1,

gives

eA ∈ H2(H).
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ORTHOGONAL

ResEA/k : H2(k) → H2(EA) ≃ Br2(EA)

Theorem. The image of cA(L) in Br2(EA)/ < A > is clifA(qA).

L has self-dual normal basis =⇒

ResEA/k(cA(L)) = 0 in Br2(EA)/ < A >.
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A a unitary factor, FA : center of A.

F 1
A = {x ∈ F×

A |xσ(x) = 1},

s : F 1
A → F 1

A

x 7→ x2.

L a G -Galois algebra, φ : Γk → G . Assume H1-condition. Set

H = φ(Γk).

Define
eA ∈ H2(H)



UNITARY

VA = F 1
A ×F 1

A
H ,

central extension

1 → C2 → VA → H → 1,

gives

eA ∈ H2(H).
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UNITARY

dA(L) = φ∗(eA) ∈ H2(k).

Invariant of L, not necessarily of the trace form qL.

ResEA/k(dA(L)) = discA(qL) ∈ H2(EA).

L has self-dual normal basis =⇒

ResEA/k(dA(L)) = 0.
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H
2-CONDITION

ResEA/k(cA(L)) = 0 in Br2(EA)/ < A > for all orthogonal A,

and

ResEA/k(dA(L)) = 0 for all unitary A.

L has self-dual normal basis =⇒ H2-condition hold.
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L has a self-dual normal basis ⇐⇒ the H1-condition holds

and the H2-condition holds.

Theorem. (E.B. - Parimala, 2017) : If G is abelian, then

L has a self-dual normal basis ⇐⇒ the H1-condition holds

and the H2-condition holds.



(i) L has a self-dual normal basis;

(ii) xL = 0 for all x ∈ Hn(G ), all n > 0.



(i) L has a self-dual normal basis;

(ii) xL = 0 for all x ∈ Hn(G ), all n > 0.

• If cd2(k) ≤ 1, we have (i) ⇐⇒ (ii).



(i) L has a self-dual normal basis;

(ii) xL = 0 for all x ∈ Hn(G ), all n > 0.

• If cd2(k) ≤ 1, we have (i) ⇐⇒ (ii).

• If cd2(k) ≤ 2, there are examples with (i) but not (ii).



(i) L has a self-dual normal basis;

(ii) xL = 0 for all x ∈ Hn(G ), all n > 0.

• If cd2(k) ≤ 1, we have (i) ⇐⇒ (ii).

• If cd2(k) ≤ 2, there are examples with (i) but not (ii).

• If cd2(k) ≤ 3, there are examples with (ii) but not (i),

G quaternionian of order 8.

Invariant in H3(k), not xL.
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COHOMOLOGICAL DIMENSION 2

Assume that cd2(k) ≤ 2.

xL = 0 for all x ∈ H1(G ) and for all x ∈ H2(H) =⇒ L has a
self-dual normal basis.

Question. xL = 0 for all x ∈ H1(G) and for all x ∈ H2(G) =⇒ L

has a self-dual normal basis ?

Theorem. (E.B. - Serre, 1994) H1(G ) = H2(G ) = 0 =⇒ L has a
self-dual normal basis.
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G = C8 cyclic group of order 8,

k does not contain the 4th roots of unity.

A = k[X ]/(X 4 + 1) unitary, FA = A, EA = k(
√
2).

L = IndC8
C2
(K ), with K/k quadratic extension; K = k(

√
z).

dA(L) = (z)(−1) ∈ H2(k), ResEA/k(dA(L)) = (z)(−1) ∈ H2(EA).

dA(L) = 0 ⇐⇒ z is a sum of two squares in k ,
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EXAMPLE

G = C8 cyclic group of order 8,

k does not contain the 4th roots of unity.

A = k[X ]/(X 4 + 1) unitary, FA = A, EA = k(
√
2).

L = IndC8
C4
(K ), with K/k cyclic extension of degree 4.

a, b, c , ǫ ∈ k with a2 − b2ǫ = c2ǫ, c 6= 0, ǫ not a square.

x =
√
ǫ, K = k(

√
a + bx).

dA(L) = (−1)(a) + (2)(ǫ), ResEA/k(dA(L)) = Resk(
√
2)/k((−1)(a)).

L has a self-dual normal basis ⇐⇒ a is a sum of two squares in k(
√
2).



LOCAL FIELDS

Assume that k is a local field.

L has a self-dual normal basis ⇐⇒ the H1-condition holds, and

(i) For all orthogonal A such that [EA : k] is odd and A is split, we
have cA(L) = 0 in Br2(k).

(ii) For all unitary A such that [EA : k] is odd, we have dA(L) = 0
in Br2(k).



GLOBAL FIELDS

E.B - Parimala - Serre (2013) : The Hasse principle holds for the
existence of self-dual normal bases.



Thank you


