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SELF-DUAL NORMAL BASES

Hendrik LENSTRA (1987) :

Let k be a field, and let K/k be a Galois extension of finite degree.
Set G = Gal(K/k).

Let (ge)gcc be a normal basis of K/k, for some e € K*. Let
gk K XK — k

ak(x,y) = Trg /i(xy)

be the trace form of K/k.
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We say that (ge)gcc is a self-dual normal basis of K/k if for all
g,h € G we have

gk(ge,ge) =1

and
gk(ge,he) =0 if g # h.
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ABELIAN EXTENSIONS

Theorem. (Lenstra) Assume that G is abelian.

e char(k) # 2. Then K/k has a self-dual normal basis <= the
order of G is odd.

e char(k) = 2. Then K/k has a self-dual normal basis <— G
has no element of order 4.
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G non abelian 77 In particular,
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Theorem. (E.B - Lenstra, 1990, 1989)

If the order of G is odd, then K/k has a self-dual normal basis.
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CHARACTERISTIC 2

Theorem. (Serre, 2014) Assume that char(k) = 2. Then K /k has
a self-dual normal basis <= G is generated by elements of odd
order and elements of order 2.

Only depends of the group G , and not of the extension K /k !
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EXAMPLE

Example. (E.B. - Serre 1994) k = Q, G = A;. There exist Galois
extensions with and without self-dual normal basis.

E.B. - Serre 1994 : necessary and sufficient conditions for the
existence of a self-dual normal basis when the 2-Sylow subgroups
are elementary abelian, or quaternionian of order 8.

The conditions involve cohomological invariants.
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G-GALOIS ALGEBRAS

Assume from now on that char(k) # 2. Let G be a finite group.

Instead of only Galois extensions, consider more generally G-Galois
algebras :

e étale k-algebra L of finite rank,

e with a (left) action of G such that L ~ k[G].

Examples.
e Galois extension with group G;

e Split G-Galois algebra k x --- x k.
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G-GALOIS ALGEBRAS

ks : a separable closure of k, [y = Gal(ks/k).

G-Galois algebra — continuous homomorphism ¢ : [, — G.

Examples.
e ¢ surjective <= Galois extension;

e p =1 < split G-Galois algebra.
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L a G-Galois algebra,

g :LxL—k

qr(x,y) = Try i (xy)

the trace form of L. We say that (ge)gec¢ is a self-dual normal
basis of L over k if for all g, h € G we have

qi(ge ge) =1

and
q.(ge, he) =0 if g # h.
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SELF-DUAL NORMAL BASES

Theorem. (E.B - Lenstra, 1990, 1989)

If the order of G is odd, then every G - Galois algebra has a
self-dual normal basis.

G abelian - Lenstra's result does not hold in general for G-Galois
algebras, only for Galois extensions.

Question : Necessary and sufficient condition for the existence of
self-dual normal bases.

Open even for G abelian.
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COHOMOLOGICAL INVARIANTS

I a (finite or profinite) group, set H"(I") = H"(I', Z/2Z).

H"(k) = H"(Tx).

Cohomological invariants :

L a G-Galois algebra, corresponding to
o:Te—G.

We obtain

¢ H"(G) — H"(k)
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H-INVARIANTS

L a G-Galois algebra, ¢ : Ty — G.
¢* : HY(G) — H(k)
X = XL

Proposition. L has a self-dual normal basis = x; = 0 for all
x € HY(G).

H-CONDITION :

x; = 0 for all x € HY(G).
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H'-CONDITION

x; = 0 for all x € HY(G).

Theorem. (E.B. - Serre, 1994) : Assume that cda(k) < 1. Then

L has a self-dual normal basis <= the H'-condition holds.

E.B. - Parimala : Define H%-invariants, H2-condition.
Theorem. (E.B. - Parimala, 2017) : Assume that cda(k) < 2.

L has a self-dual normal basis <= the H!-condition holds

and the H2-condition holds.



COHOMOLOGICAL REFORMULATION
o+ k[G] — k[G] the canonical involution of k[G],
o(g) =g tforallgeG.
Ug : linear algebraic group
U(E) = {x € E[G] | xa(x) =1}
for all commutative k-algebras E.

L a G-Galois algebra

Mk — G — Ug(ks)

u(L) € HY(k, Ug).



COHOMOLOGICAL REFORMULATION

u(L) € H*(k, Ug).

L has a self-dual normal basis <= u(L)=0.
Us =7

k[G]/(radical) = product of simple algebras, stable or exchanged
by o.

A simple algebra, o(A) = A.
e o | (center of A) = identity.

Then A is either orthogonal or symplectic. Set E4 = center of A.



COHOMOLOGICAL REFORMULATION

e o | (center of A) # identity.

Then A is unitary. Set F4 = center of A, and let E4 be the fixed
field of o in Fj4.

In both cases, Uy, is a linear algebraic group over Ej4.

Yk, Ug) = HH (Ea, Ua)

u(L) = (ua(L))-



STRATEGY

L a G-Galois algebra, ¢ : Ty — G.

e Assume that the H'-condition holds. This implies ¢(Ix) C G2.
Set
H=¢(Tk).

e Define H?-invariants, as follows :
e For each orthogonal and unitary factor A, define es € H?(H).

e Apply ¢* : H?(H) — H?(k).
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ORTHOGONAL

A an orthogonal factor, Ua.
US\ : connected component of the identity, Uy - Spin group,

15 G—=U0> U5 —1.

L a G-Galois algebra, ¢ : I, — G. Assume H'-condition. Set

H = ¢(Tk).

Define
eq € H?(H)



ORTHOGONAL

VA = UA(EA) XUB‘(EA) H,

central extension

1-G—=>Vy > H—=1,

gives

ea € H*(H).
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ORTHOGONAL

Resg, / : H*(k) — H?*(Ea) ~ Bra(En)
Theorem. The image of ca(L) in Bra(Ea)/ < A > is clifa(qa).

L has self-dual normal basis —

ReSEA/k(CA(L)) =0in BI‘2(EA)/ < A>.
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A a unitary factor, F4 : center of A.
F}\ = {x € F; |xo(x) =1},
s:Fa— Fi

X = X2

L a G-Galois algebra, ¢ : I, — G. Assume H'-condition. Set

H = ¢(Tk).

Define
eq € H?(H)



UNITARY

Va = Fi xgi H,

central extension

1-G—=>Vy > H—=1,

gives

ea € H*(H).
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UNITARY

da(L) = 6" (ea) € H*(k).
Invariant of L, not necessarily of the trace form q;.
Rese, /k(da(L)) = disca(qL) € H2(EA).

L has self-dual normal basis —

Rese,/k(da(L)) = 0.
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H?-CONDITION

Resg, /k(ca(L)) = 0 in Bra(Ea)/ < A > for all orthogonal A,
and

Resg, /k(da(L)) = 0 for all unitary A.

L has self-dual normal basis = H?-condition hold.
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Theorem. (E.B. - Parimala, 2017) : Assume that cda(k) < 2.

L has a self-dual normal basis <= the H!-condition holds

and the H2-condition holds.

Theorem. (E.B. - Parimala, 2017) : If G is abelian, then

L has a self-dual normal basis <= the H!-condition holds

and the H2-condition holds.
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(i) L has a self-dual normal basis;

(ii) x, =0 for all x € H"(G), all n > 0.

o If cda(k) <1, we have (i) < (ii).

o If cda(k) < 2, there are examples with (i) but not (ii).

o If cda(k) < 3, there are examples with (ii) but not (i),
G quaternionian of order 8.

Invariant in H3(k), not x;.
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COHOMOLOGICAL DIMENSION 2

Assume that cdy(k) < 2.

x; = 0 for all x € H}(G) and for all x € H*(H) = L has a
self-dual normal basis.

Question. x; = 0 for all x € HY(G) and for all x € H*(G) = L
has a self-dual normal basis ?

Theorem. (E.B. - Serre, 1994) H1(G) = H>(G) =0 = L has a
self-dual normal basis.
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EXAMPLE

G = Cg cyclic group of order 8,

k does not contain the 4th roots of unity.

A = k[X]/(X* +1) unitary, Fa = A, Ex = k(/2).
L= Indgi(K), with K/k quadratic extension; K = k(1/z).
da(L) = (2)(=1) € H?(k), Resg,/k(da(L)) = (2)(—1) € H?*(En).

da(L) =0 <= =z is a sum of two squares in k,

Resg, k(da(L)) =0 <= zis a sum of two squares in Ep = k(v/2).

L has a self-dual normal basis <= zis a sum of two squares in k(1/2).
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EXAMPLE

G = (g cyclic group of order 8,

k does not contain the 4th roots of unity.

A = k[X]/(X* + 1) unitary, F4 = A, Ea = k(/2).

L =Ind@(K), with K/k cyclic extension of degree 4.

a,b,c,e € k with a> — b%c = c?¢, ¢ # 0, € not a square.

x = /€, K= k(va+ bx).

da(L) = (=1)(a) + (2)(€), Resg,/k(da(L)) = Res, 3 i ((—1)(a)).

L has a self-dual normal basis <= ais a sum of two squares in k(1/2).



LOCAL FIELDS

Assume that k is a local field.
L has a self-dual normal basis <= the H-condition holds, and

(i) For all orthogonal A such that [Ex : k] is odd and A is split, we
have ca(L) = 0 in Bra(k).

(ii) For all unitary A such that [Ea : k] is odd, we have da(L) =0
in Bro(k).



GLOBAL FIELDS

E.B - Parimala - Serre (2013) : The Hasse principle holds for the
existence of self-dual normal bases.



Thank you



