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Introduction

Q is a bounded open set of R”.

K is a closed convex subset of Wol’p(Q), p > 1 such that

{Oe K, (1)

uve K=uVvVv,uhveK.

Examples :
K= Wg’p(Q) the V.I. will be an equation.

K={veW,”(Q)] v(x) > V¥(x) a.e.} where ¥ <0 on dQ -
Obstacle problem.

K={veW,”(Q)]|Vv(x)] < C a.e.} - Elastic-plastic torsion
problem.

Michel Chipot



ai(x, &), (x,€) € AxR™ j=0,---,n
Carathéodory functions such that :
coerciveness : » ! o ai(x,8)& > ad i &P, a.e. x,VE,
monotonicity : >.7 o(aj(x,&) — ai(x,())(& — ¢) > 0, a.e. x,VE, ¢,
growth condition : for some v € LP(Q),

|ai(x, &)l < v(x) + BIEIPT, a.e. x,VE,Vi=0,--  n.
One can then set

(Au,v) = [qai(x,u, Vu)Oiv+ao(x, u, Vu)vdx  Yu,v € W, P(RQ).

Michel Chipot



Introduction

For f € L9(Q2), £+ + = = 1 there exists u solution to

1,1
p'q

{UGK, 2)

(Au,v —u) > [o f(v —u)dx Vv e K.

One has :

Theorem

Suppose that f > 0. Then there exists a minimal solution to (2)
i.e.
u(x) = min{v(x) | v is solution to (2)}

is solution to (2). Moreover, one has a comparison principle
between the minimal solutions.
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A “/ — 4+0o0” approach

Qg = (—f,f) x Q.
(v, x) € Qg will denote the points in .
Ki={veWyP() | viy,") € Kae ye (~£10)}

There exists a unique solution to

up € Ky,
Ja, |0y P20y updy (v — ug)dydx+ (3)
ff£<AUg, v — up)dy > er f(v—u)dydx Vv e K.

Michel Chipot



A “/ — 4+0o0” approach

Lemma
Under the assumptions above (f > 0)

(i) ug is a non decreasing “sequence” bounded by any
solution to (2).

(ii) Vlo > 0 there exists a constant C({y) independent of ¢
such that

| ue| W2 (Q4) < C(%),

e denotes a usual WP (Qy,)-norm.
WO (ng) 0 0
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A “/ — 4+0o0” approach

Proof : a) uy > 0.

Take v = uj =uy V0 € Kyin (3). Note that uZ' —ug=u,

—/Q 10, u; |P~20y u, O, u; dydx
£

Y4
= [ A Ca = [ f g dac=o
¢ Q

Changing the signs and using the coerciveness of the operator we
get

/ |8yu[|pdydx+oz/ |Vu, |Pdydx < 0.
Qp Q,

Hence uy > 0.
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A “/ — 4+0o0” approach
b) uy  with £ 7.

0 > (. Take v = up — (UZ_ Ug/)"’_ =uw Aup € Kpin (3) :

—/Q |ayUg’p_28yUgay(u€ — up) T dydx
£

Y/
o O e AU

—¢ Q

Take v = up + (up — up)™ = ug V up € Ky in (3) corresponding to
A

/ |0y upr|P~20, up Dy (up — up) T dydx

Q

Y4
+ / (A (o = o) )y > /Q (v )
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A “/ — 4+0o0” approach

Adding these two inequalities leads to

/Q {|0yu€|p_26yUg—|ayUg/|p_26yu£/}ay(Ug—Uy)—’_dde
¢

¢
+/ (Aug) — A(ug), (ug — up)*))dy <O0.
0

(Note that (ug — up)™ vanishes outside ).
From the monotonicity property of the operator we get

/Q {|ayuﬂp_28yu€ — ‘8},Ug/|p_28yu€/}ay(u€ — Ug/)+dydx <0
0

Since

(|alP=2a — [bIP~?b)(a — b) > C(|al + [b])P2|a — bf?
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A “/ — 4+0o0” approach

we derive
dy (ug — up)™ =0.
Thus
(ug—up)t =0
and

up < up.

c) ug is bounded by any solution u to (2)

u+ (uy,)—u)t = (w(y,)Vue K ae. ye(—£F). From (2)

(Au, (uily, ) — 0)*) > /Q F (uly, ) — u)tdx ae ye(—0,0).

Michel Chipot



A “/ — 4+0o0” approach

Integrating in y

0
/ (Au, (ug(y,-) — u)*)dy > / f (ue(y,-) — u)"dydx.
—

Q

up — (ug — u)™ = ug A u e Ky and by (3)

—/Q |0y u| P20y ugd, (up — )t dydx
£

l
_/ (A(ug), (ug — u)™))dy > —/ f (up — u)*dydx.

—/ QZ
Adding leads to
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A “/ — 4+0o0” approach

/ 10y u| P20, 18y, (up — u) Tdydx <0
Q,

/Q {10, ue|P~20y up — |0y ulP~20,u} 0y (up — u) T dydx < 0
4

and us above
(y—u)T=0 < w<u

d) Bound for ‘U€|W&,p(ﬂe0)

Let p € D(—20p,2{p) such that 0 < p <1, p =1 on (—4o, lo).
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A “/ — 4+0o0” approach

up — pP(up — u) € I

From (3) we derive

—/Q |6yUg|”_28yue0ypp(ué — u)dydx
Y4

l
- / (A(up), pP(ug — u)))dy > —/ fpP(up — u)dydx > 0.
) Q

We derive (recall that v is independent of y) :

¢
/Q pp|8yUg|pdde+/£<A(U[),Ug>ppdy
. _

l
< p/ pp_l\8yu@\p_28yw(u@—u)(?ypdydx—i—/K(A(Ug),u>ppdy.

Q,
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A “/ — 4+0o0” approach

Hence ,
/ pp\ayudpdydx—k/ (A(ug), ug)pPdy <
—t

Q,
J4

<c / P10, uglP (4 — ug)|dyelx + / (A(ue), u)pPdy
Qy —/

4
<C [ p0ule tudyder C [ pP(lulfy Do oy
Q —¢

From the ellipticity condition and the young inequality we obtain

0
| oourdaxia | plu
—¢

Q,

1,pdy <
0
e{/Q pp\ayudpdydx—l—/prluz\l,pd)’}
, _

4
et juPdxdy + / P(lul?, + 1)dy)}
i,

Qg
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A “/ — 4+0o0” approach

Since p =1 on(—4p, {y), choosing € small enough we get
el weq,,) < Clbo).

This achieves the proof of Lemma.

Next we have :

The solution uy of (3) converges to i, as { goes to +o0, a solution

of (2).

Proof : We start by applying the previous Lemma. It follows that
ug is converging towards some function .

(i) d is independent of y.



A “/ — 4+0o0” approach

Let h € R.
The function Thug (v, x) = ug (y + h, x) is supported in the closure
of

Q= (=0 —h,t—h)x Q.
From (3), we have by a change of variable

{—h

/Qh |8yThuz\p72 Oy Thuedy (v — Thug) dxdy + /e (AThug, v — Thug)dy
—0—h
4

> / f(x) (v — Thue) dxdy, Vv e Kgp, (4)
Q
where

/C&h = {77,V | v € /Cg}
- {ve WP (Qg) v (y,.) €K ae. in (—e—h,e—h)}.



A “/ — 4+0o0” approach

Choosing v = Thuy — (Thue — ugep) ™ € Kepin (4) we get

/Qh |ay771U€|p_2 3y777Ug3y (Thue — U£+h)+ dxdy
14

l—h
+/£ h<A777U€a(771UZ_ upn) ") dy
< [ 100 o= wn) by (9)

14

+
V= tprn + (Thtg — uern)” € Kegn.

(Note that the support of (Tpuy — ugp)™ is contained in Q?)

From (3) written for uyy, we obtain :
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A “/ — 4+0o0” approach

o R T C

(4

t—h
_/e (Augyp, (Thue — ugrn))dy
—t—h

<= [ F6O The— ) . (0
Qh

(4

Adding (5), (6) we get

/Qh (|8y777“4|p728y777“€ - ’ay”@rh’pizay“ﬂh) Oy (Thug — UHh)+ dxdy
4

t—h
+/€ h(A771Uz — Augin, (Thue — ugrp) ) dy <O0.

And by the monotonicity condition the first integral above is non
positive.
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A “/ — 4+0o0” approach

This implies
Ug(}/“‘ h7X) < uﬁ-‘rh(yax)‘

Passing to the limit as £ — oo, we get
i(y+hx)<i(y,x).

Since h is arbitrary we derive

i(y,x)=1id(x).
(i) @ is solution to (2).

Let ¢y € R, for £ large enough, from our preceding Lemma :

|0y ug|P~20, up and {a; (x, ug, Vue)}i_g ...
are bounded in L9(y,). Therefore

,n



A “/ — 4+0o0” approach

up— i, Vu — Vi inLP(Qy),

(7)
fayudp_2 8yUg —d, a (X, Uy, VU@) —d;in L9 (ng).

The two first convergences hold for the whole sequence since
(ue) g is nondecreasing. (Once the limit are uniquely identified,
the previous convergences will take place for the whole sequence).
Let ¢ be a nonnegative function in D (—£g, o), up to subsequence :

Lo
im_ [ olAuuidy= [ oY dogiddy,  (8)
0 Q

oo )y % o<i<n
(Ox, 0 = ).
lim / ¢ |0y ug|P dxdy = 0. (9)
Q,

l——+o0

The last limit means that d = 0.



A “/ — 4+0o0” approach

Indeed, using the monotonicity condition
<AU€, U[> <AU€, > <Aa) Ug — ﬁ>

Thus one easily derives

éo EO
lim inf d(Aug, ug)dy > I|m inf P(Aup, T)dy =
f—+00 4 =+ J_y,

I|m|nf/ qbz (x, ug, Vug)Oy iidy = / 1) Z d;Oy; lidxdy.

=0 Ly 0<i<n
(10)

On the other hand, since u; — ﬁ (up — ) € Ky, from (3)
[ 18,0172 8,0, (6 (us — 3)) dcy
£

0

Lo
+ [ ot - aidy < [ of (- 5)day <0
Lo QZO
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A “/ — 4+0o0” approach

Thus
Lo
/ 610, unl? dxdy + [ blAug, ug)dy
Qg )
Lo
< [ 10,ul 20,y (i - u) dedy+ [ olAun i)y,
Qg —Lo

Passing to the limsup as £ — oo, we get

Lo
lim sup ¢ |0y up|P dxdy +
Qg

{——+o0

d(Aug, Ug>dy]

—4

< / ¢ > didylidxdy.
Qq,

0<ign

Combining this with (10) we end up with (8) and (9).



A “l — +o0” approach

Forl/JGICandqﬁeD(—%o,%o) with ¢ >0, ¢ £0,

Ug—f'W( —Ug)EK:g.
From (3)
/ \(9yu€|P*2 Oy ey {¢ (Y — up)} dxdy + /jo &(Aug, b — ug)dy

> / fé (1 — ug) dxdy = (monotonicity)
ey
o 0,ud, (0 (v —Uz)}dXder/ BLAV, ¥ — u)dy

2o

> /Q fé (v — up) dxdy.



A “/ — 4+0o0” approach

From (9) 0 u; — 0 in LP (970) . Passing to the limit in the above
inequality as £ — oo yields ’

/_¢Aw¢—udy>/_¢/ W — i) dxdy.

This implies
(A, — ) 2/ F (v — ) dx, Vi € K.
Q

Choosing ¢ = i+ t(v — ), where 0 < t <1and v € K we
deduce

<A(ﬁ+t(v—ﬁ)),v—ﬁ)Z/Qf(v—ﬁ)dx, Vv e K.
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A “/ — 4+0o0” approach
Passing to the limit as t — 0, taking into account the fact that the
operator is defined with Carathéodory functions we get
(Ad,v — i) Z/ f(v—i)dx, Vvek.
Q

Then the Lemma is proved.
By using the above lemmas, we can now turn to the proof of
our first theorem which we rephrase as

Theorem

Suppose that f € L9(Q2),f > 0. Then, under the assumptions
above there exists a minimal solution of (2) i.e.

i(x) =min{u(x), u solution to (2)}, Ge€K

is solution to (2). Moreover, if 4y and (> are the minimal solutions
of (2) obtained by replacing f with fi and f, respectively, then, if
fi < f, we have (7 < .

—
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A “/ — 4+0o0” approach

Proof : Let u be an arbitrary solution of the problem (2) and uy be
the solution to (3). Then from the Lemma above we have

up (v, x) < u(x) forae. (y,x)e€Qy.

Passing to the limit as £ — oo, we derive from that u (y,.)
converges towards some i € K solution to (2). Thus

id<ua.e. inQQ.

This means that & is the minimal solution of the problem (2).

Let up1 and ug» be the solutions of (3), obtained if we replace f
by fi and f» respectively.

Take v =up1 — (ug1 — Ug,2)+ and v = upp + (ug1 — Ug’2)+ in (3)
for f1 and £, respectively, we get
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A “l — +o0” approach

/ (19 ealP™ Byues — 10y ealP ™ Byue) By (ury — ug2) " dxdy

Q,

‘
+/ (Augy — Auga, (up1 — ug2)™)dy
¢

< [ (= ) (s — ) by <0
Q

By our monotonicity condition we obtain
-2 -2
/ (|3yu12,1|p Oyugy — |0y ug | ayue,z) Oy (g1 — Ue,z)Jr dxdy < 0.
Q

This implies
ug < upp in £2p.
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An Example

Passing to the limit as £ — oo, using the above argument we get
L71 < L72 in Q.
This completes the proof of our Theorem.

An Example

For n=1and p=2, let v € H} (0,1) be the nonnegative function
defined by

v(x) = 3\2@X><(07§) + sin (mx) X(3.1)

where x4 denotes the characteristic function of the set A. Consider
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An Example

K={weHj0,1): w>vae in (0,1)},
ag =0 and a: R — R is a single-valued function whose graph is
depicted in the following figure

|
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An example

It is easy to see (by taking a = %, f=1and ¥ =7%)that Ais
monotone and satisfies the coerciveness and growth conditions
above. Hence, the solution to (2) exists and moreover it is not
necessary unique. Indeed, it is enough to check that the functions

uy = Asin(mx)+ (1= A) v, VAe|[0,1]
satisfy (2) for
f (x) = w2 sin (7x) X(11):

Indeed, it is clear that uy € KC, for all A € [0,1]. Now, since the
derivatives of these functions belong to (5, ) for every x € (0, 3)

and v} = 7 cos (mx) on (3,1), it follows that

a(uy) = gX(O%) + 7 cos (7x) X(1.1)-
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An example

This implies

d d
Auy(x) := 0l (dqu> =f,

which means that u) is the solution to (2) and moreover up = v is
the minimal solution.
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