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Introduction The discrete model Conclusions

Nematic shells

Nematic liquid crystals:
intermediate phase of matter

B Rod-shaped molecules

B Directional order, but no
positional order

Nematic shell: small particle
coated with a thin

nematic film

[Figure: Bates, Skačej,
Zannoni, ’10]
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Defects in nematic shells

The alignment of the molecules is not perfect,
as defects arise.

[Figures: Nelson, ’02; . . . ]
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Continuum variational models

• Smooth, compact surface M ⊆ R3 without boundary, with smooth unit normal
γ : M → R3.

• Oseen-Franck energy (in its simplest form):

E(v) :=
κ

2

ˆ
M
|∇v|2 dS

on a space of unit-norm, tangent fields:

A0 :=
{

v ∈ W1,2(M, R3) : |v| = 1, v · γ = 0 a.e.
}

∇ = R3-gradient, restricted to tangent directions

[Napoli, Vergori, ’10–’12;
Segatti, Snarski, Veneroni, ’14-’15. . . ]

Is the space A0 non-empty?
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The Poincaré-Hopf Theorem

For any unit-norm, tangent field v on M that is smooth
except at the points x1, x2, . . . xp, there holds

p∑
i=1

ind(v, xi) = χ(M)

where χ(M) is the Euler characteristic, χ(M) = 2−2g.

In particular,

A0 6= ∅ ⇔ M ' T2

Extension to Sobolev setting

[Bethuel, ’91; Brezis, Nirenberg, ’95–’96;
C., Segatti, Veneroni, ’15]
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The XY-model

• Introduced by Heisenberg as a model for spins.

• Defects-mediated phase transition (ferromagnetism, superconductors. . . )
[Kosterlitz, Thouless, ’73]

• Lattices in Rn

• Discrete-to-continuum limit (equilibrium configurations)
[Alicandro, Cicalese, ’09; Alicandro, Cicalese, Ponsiglione, ’14; Alicandro,
De Luca, Garroni, Ponsiglione, ’16. . . ]

• Dynamics [Alicandro, De Luca, Garroni, Ponsiglione, ’16. . . ]
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XY-model on a surface

B Tε triangulation on M, M̂ε := ∪T∈TεT

B T 0
ε := {vertices of Tε} ⊆ M

B Discrete vector fields:

Aε :=
{

v : T 0
ε → R3, |v(i)| = 1, v(i) · γ(i) = 0

for any i ∈ T 0
ε

}
B v̂ : M̂ε → R3 piecewise-affine interpolant

• Discrete energy: for v ∈ Aε,

XYε(v) :=
1
2

ˆ
M̂ε
|∇v̂|2 dS =

1
2

∑
i,j∈T 0

ε

κi,j
ε |v(i)− v(j)|2
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Assumptions on Tε

(H1) Tε is quasi-uniform of size ε: for any T ∈ Tε,

C−1ε ≤ diameter(T) ≤ Cε, αmin(T) ≥ C−1

(H2) Tε is weakly acute: for any i, j ∈ T 0
ε with i 6= j,

κi,j
ε := −

ˆ
M̂ε
∇ϕ̂i

ε · ∇ϕ̂j
ε dS ≥ 0

(H3) The projection P : M̂ε → M is well-defined and a bijection.

Allowed Not allowed
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B Due to Poincaré-Hopf Theorem,

inf
Aε

XYε → +∞ as ε→ 0

unless M ' T2.

B In fact, by comparison we have

inf
Aε

XYε ' C |log ε|

(discretisation of x 7→ x/|x|).

B Compare with the analysis of Ginzburg-Landau functional [Bethuel, Brezis,
Hélein, ’94; Sandier, Serfaty, ’07. . . ]; [Ignat, Jerrard, ’16] for the analysis on a
surface.

How to detect the topological information in the discrete setting?
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Jacobians of vector fields

Identify R2 ' R2 × {0} ⊆ R3. For u ∈ C2(R2, R2), we define the “pre-jacobian”

#(u) := (e3 · (u× ∂1u), e3 · (u× ∂2u)) , curl #(u) = 2 det∇u

We will work in the language of differential forms:

(u) : w ∈ R2 7→ #(u) ·w = e3 · (u×∇wu),

in short (u) = e3 · (u ∧ du).

For u ∈ (W1,1 ∩ L∞)(M, R3), define

(u) := γ · (u ∧ du)

If u is a unit-norm, tangent field, locally we can write

u = cosα e1 + sinα e2, (u) = dα− A

where A is a smooth form that only depends on (e1, e2). (Also [Ignat, Jerrard, ’16])
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Properties of the Jacobian

Lemma
Let u ∈ W1,1(M, R3) be s.t. |u| = 1, u · γ = 0 a.e. Suppose that
u ∈ C2(M \ {x1, . . . , xK}). Then

?d(u) = 2π
K∑

i=1

ind(u, xi)δxi − G dS in D ′(M).

• Discrete vorticity measure:

v ∈ Aε  v̂ : M̂ε → R3  ̂ε(v) := γ̂ε · (v̂ε ∧ dv̂ε)

µ̂ε(v) :=
∑

T∈Tε

(ˆ
T

d̂ε(v)

)
δx(T)

µ̂ε(v)[T] =
2∑

k=0

γ(ik) + γ(ik+1)

2
· v(ik)× v(ik+1)

i0 = i3
i1

i2

T
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Energetics: Leading order terms

Theorem (C., Segatti, ’17)

Let vε ∈ Aε be such that XYε(vε) ≤ C |log ε|.

(i) Up to subsequences, µ̂ε(vε)
flat−−→ µ where

µ = 2π
K∑

i=1

diδxi − G dS, xi ∈ M, di ∈ Z,
K∑

i=1

di = χ(M). (?)

(ii) If µ̂ε(vε)
flat−−→ µ as in (?), then

π
K∑

i=1

|di| ≤ lim inf
ε→0

XYε(vε)
|log ε|

.

(iii) For any µ of the form (?), there exist vε ∈ Aε such that µ̂ε(vε)
flat−−→ µ and

π
K∑

i=1

|di| = lim
ε→0

XYε(vε)
|log ε|

.

Here, flat = dual of C1.
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• Warning: in general, the sequence of fields vε is not strongly precompact!

B Role of the Jacobian — compensated compactness

• However, if v∗ε is a minimiser of XYε, then

B v∗ε → v∗ in W1,2
loc (M \ {x1, . . . , xK}, R3), where K = |χ(M)|

B ind(v∗, xi) = sign(χ(M))

so we control the number and local degree of defects.

Can one characterize the position of defects?
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We need an additional assumption on the sequence of tri-
angulations, namely, for any x ∈ M and small δ > 0, there
is a triangulation S(x) on R2 such that

ϕ∗
(
Tε|Bδ(x)

)
≈ εS(x) as ε→ 0,

where ϕ : M → TxM ' R2 are geodesic coordinates at x.

S(x) S(y)
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Energetics: Second-to-leading order terms

Theorem (C., Segatti, ’17)

Let K := |χ(M)| and vε ∈ Aε be such that XYε(vε) ≤ πK |log ε|+ C. Then, up to
subsequences, vε → v in W1,2

loc (M \ {x1, . . . , xK}) and

XYε(vε) = πK |log ε|+ W(v) +
K∑

i=1

γ(xi) + oε→0(1).

B W(v) = Renormalised Energy,

W(v) := lim
δ→0

(
1
2

ˆ
Mδ
|∇v|2 dS− πK |log δ|

)
where Mδ := M \ ∪iBδ(xi) [Bethuel, Brezis, Hélein, ’94]

B γ(xi) = core energy, localised in a ball of radius Cε around the defect. Depends
on the triangulation
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• The local properties of the triangulation may trigger the position of the defects!
6= continuous case, uniform grid on R2

• Question. For µ = 2π
∑

i diδxi − GdS, can we characterise

W(µ) := inf
v : ?d(v)=µ

W(v)?

If ∇ is replaced by covariant derivative D, we have

Wintr(µ) = 4π2
∑
i6=j

didjΓ(xi, xj) + 2π
∑

i

(
πd2

i H(xi)− diV(xi)
)

+ const

where−∆MΓ(·, x0) = δx0 − |M|
−1ˆ

M
Γ(·, x0) dS = 0,

−∆MV = G− 2πχ(M) |M|−1ˆ
M

V dS = 0,

H(x0) := lim
x→x0

Γ(x, x0) +
1

2π
log dist(x, x0).

[Vitelli, Nelson, ’04; Ignat, Jerrard, ’16].
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Conclusions

• Use of Jacobian: compactness + topological information

• Energetics of defects: Renormalised Energy + sensitivity to the mesh

• More physically realistic models (non-oriented models. . . ) ?

• Numerics?
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