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Liquid Crystal Phases



SmecticA < 6=0 (de Gennes)

SmecticC < 6 #0 (Chen- Lubensky)

The level curves of w represent layers.
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n is the director field



frn(n)— Frank-Oseen energy
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The material is ”chiral” however the domain (2 will be thin
and due to this the specific elastic features are not significant.



fe(n,1)— Electrostatic energy
Chirality induces a spontaneous polarization field, P = F, (Vw X n).

If E is an applied electric field then
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fs(n, ¥)— Smectic C energy density
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Let ¢ = /) n =mn(x).

“f = ~{a (v (Vo — (- Vom)’ + 0y div (0 V) = cost)m))’

+ Q{CLJ_(‘VJ_CUP — Sin2 9)2

+  a)((Vw-n) — cos 0)* + c|(Vw - n — cos 9)2} + const

For g large we see:
e vanishing costs of specific curvatures for the smectic layers (w = const)
o Vw- -n — cosf (fixed tilt)

e |Vw| — 1 (uniform spacing)






In surface-stabilized cells where the liquid crystals are confined
between close glass plates with fixed boundary conditions.
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The layer thickness on the boundary is given by d.



In surface-stabilized cells where the liquid crystals are confined
between close glass plates with fixed boundary conditions.

Bookshelf Geometry

The layer thickness on the boundary is given by dy.

We assume initially that the l.c. is in the smectic A phase.



e When the temperature is reduced the material enters the smectic C phase
and the bookshelf structure deforms into V-shaped (chevron) layers.

e [t is caused by two effects. The layers thin as the l.c. molecules tilt. The
boundary layer spacing ds does not change.

e [t causes distortions in director pattern.

J——




>H><

fAAN
w2z

b= tan[cosl ij
d,

X; —0O(X
a)(xl’ Xz): . /rg_é;)
> X2




>H><

FEANNN
N2

slope = +b
/b = tan[cosl ij
d,

dS
X; —0O(X
a)(xl’XZ): 1/71_?_5322)
> X2




We consider a reduced setting such that:

e The domain is
() = {(ZEl,aiz)l — L <x9 < L}

® N — (nl(:ﬁg),nz(iﬁz),ns(@))a

o Lot w(zy,x2) = 931_11(2322), where g(x2) is the layer displacement,
and b = lan(cos 1-L).

e E=(0,F,0)



We consider a reduced setting such that:

e The domain is
Q={(z1,22)| — L <z2 < L}.

e N — (nl(ﬂig),HQ(mQ)anfﬂ(mQ))?

z1—g(w2)
b2’

and b = tan(cos™' -4 ).

8

o Let w(xy,xo) = where g(zs) is the layer displacement,

:

e E=(0,F,0)
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Now the total energy can be simplified into
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Our goal is to analyze the minimizers for F, and their limiting behavior.

The admissible set:

X={(¢",n)|g € L*(~L,L), g(~L) = g(L),
necl*-L,L), |n=1}

e Can we find the function pairs (g;,nq) in the admissible set X that
minimize the energy for ¢ > 07

o If yes, what do the minimizers look like?

e Is there a limiting problem as ¢ — oc?



Establishing the I'—Convergence result for (Fy)

Theorem 1 (L.Cheng-D.P.) (2015) For every q > 0, set

F (g’ Il) — { f—LL FQ‘(gl?n) dxo Zf (glan) S X? g,an S Wl,z(_L?L)
q ’ o

00 elsewhere in X

Then as q — oo, the functionals (F,) I'—converge in X to

00 elsewhere in X
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We can show that

front

o b if 2 € (—L,0)
(x)_{—b if z € (0, L)
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e The reduced energy F,, does not have a path allowing switching from
F — —F with finite energy. This means for large ¢ it takes a very large
E to induce switching for the gradient fow for F,.



e The reduced energy F., however does not have a path allowing switching
from ¥ — —F with finite energy. This means for large ¢ it takes a very
large E to induce switching for the gradient flow for F,.

e To get a theory with a reduced energy that allows switching with a finite

energy barrier one needs to work with f replacing the ansatz ¥ (x1,x2) =
q(iz) —g(=z2)) igz

e ViH?  with ¢(z1, 22) = eVi+? )(x3) such that 1(xs) € C and can
vanish.
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Mathematical Model

3f5<n,w> = G(n, ) + H(|¢])

2 2

a| C|q a 2 € 2

Gn,p) = — D Dy + ——1) +—g |D - Dy + 4 1D
q 2a | q q

1 1
H([¢]) = g(|e]* — 1)* + [V[2*]° + ?IVWIQI2 + q—(f_;IV?’IWI2

G(n,v): describes how n relates to the layers

H(|1y]): describes the energetic cost leaving the smectic phase



We consider a 2-D cross-section of the cell.

Periodicity: Reduce to 1-D model as first suggested by Sluckin et al.,

e . glr] —g(zo)]

D(x1,10) = pe V192

Main difference: We reduce the model but keep the 1-D complex-valued

1qT]
parameter in general form: evi=t*(x5), allowing for || = 0.




O (Y,n) = —0F (1, n)

—iqg(xa)

where (¢(x2,0),n(z2,0)) is close to (e vVi+* ng(x2))
such that

(¢',np) € A={(¢',n)|g’ € BV,n2 =0 at jumps of ¢', |¢'|=b,

ny —nag =cosf/1+b% on (—L,L)}



Existence and uniqueness results for continuous L?— gradient flows

(¢(z2,t), n(x2,t)) for:
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Statics

e We prove cocercivity and lower semi-continuity of the energy

Fq(naw)'

e We construct well-prepared initial data, ind. of ¢q. (A specific
(n,v) = (ng,9,) for which F,(n,¢) < C where C is ind. of ¢.)



Statics

e We prove coercivity and lower semi-continuity of the energy

Fo(n, ).

e We construct well-prepared initial data, ind. of ¢. (A specific
(n,v) = (ng,,) for which F,(n,¢) < C where C is ind. of q.)

e This is a large class of initial conditions {(n,, v¢,)} that can
approximate states with finite numbers of chevrons.



Dynamics: Gradient Flow

To study the dynamic behavior, we construct a discrete-in-time
gradient How following Rothe’s method.

_ 0[2
Jo(ﬂ,lb) :/L{‘n 27_11 ‘ ‘w Q;p ‘ }dlEﬁL./—"q(l’l,?,b)

e Minimize JY over [0, 7| with initial conditions (n’, ¢").

e Get minimizer (n', !).

e Use (n',4!') as an initial condition for [r, 27], minimize J*
and iterate.

o Get a sequence of minimizers {(n™,¢¥™)}.

e Connect these minimizers in a piecewise costant fashion to get
the discretized minimizers {(n",¢7)} over [0, T].



We consider a 2-D cross-section of the cell with a piecewise constant in time solution.

Energy Dissipation:

1 m
5 2 T3 + [[6:07115) + Fy(n™, 9™ < Fy(n®,¢%) for 1 <m < M where M7 <T.
k=1

With well-prepared initial data, energy at any later time is controlled (independent of ¢).



smectic elastic term
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term determining the bulk phase
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electrostatic forcing term
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front

The idea is to have a flow that can go from here at t=0
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front

to here for t >> 0.
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As opposed to tending to this...

front O

EP,



Idea of Proof:

We need to prove the convergence of the discrete gradient flow.

T L
/ / (0-n+ Ul Ju+ UJu dxdt =0
0o J-L

To get an idea of the nonlinearity of U7 :

U’I‘ 2§R{aj_ ( 1 TIW_‘_ ) (wﬂ’ + )} +
' ¢ \VpZ+1 ° q
O3S [T 4
It is enough to prove:

Uf — U1 in Ll(QT)
UT is bounded in L?(Q2r)

= Uf — [J; in LQ(QT)

7T—0



e We get this convergence with two types of estimates.

e Higher order estimates in x:

We can show there are constants qo(C) and M (C, q) so that

T L
/ / ™2 [T T PO dadt < M(C,q), uniformly in 7 > 0
0o J-r

provided that F,(n°, ¢") < C and ¢o(C) < q.



e We get this convergence with two types of estimates.

e Higher order estimates in x:

We can show there are constants go(C') and M (C), g) so that

T L
/ / In™" 2+ |7 2+ |72 |2 daedt < M(C,q), uniformly in 7 > 0
0 J-rL

provided that F,(n", ¢") < C and ¢o(C) < q.

e An estimate on |¢|.



e This is due to a Modica-Mortola type estimate:

There is a K(C') so that if F,(n,7) < C and 1 < g then 1< K.

q

e We need this to show the energy is coercive.

e In the static problem we assumed the ansatz ¥(z) = €*49%*) and showed
9'(z)] < K.



This came from:

/i {3(9"(%))2 + qCo [((9'(93))2 — bZ)T 2} de < C1F, + Cs < Cs

g'(x)] < K



e For this case note that since F(n,v) < F(n?, ") we have

- 1 1
[l QP + P72 + (P2 de < .

—L

o [t follows that |

be? [v|? < M where C and M are independent
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of g for ¢ > 1.
e If (o,8) C [—L,L]is a maximal interval on which |¢| > 0 we get
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Using the fact that the initial energy is bounded, and after carrying out some

algebraic manipulations on the encrgy, we get

e From these inequalities we have a Modica-Mortola type estimate,

/: (%{;ﬁ’f‘})/ (%{w%})ZQM]+ do < C

qlv|
o If ® is such that ®'(y) = [y* — 2M]™T, then

|¢’) _ ( Y'Y )
0SC <I>( = (gfg) o %{q‘w} <C.




o If |¥(a)| = |¥(B)| = 0 it follows that |¢(x)|" = 0 for some = € («, 3).

o If either « = —L or 8 = L then it follows from the boundary conditions
that |¢|" = 0 at that point.

e In cither case it follows that \%| is uniformly bounded independent of ¢

and the interval {«, 3).



If [¢(e)| = |9(8)] = 0 it follows that [¢(x)|" = 0 for some = € (a, 3).

If either « = —L or 8 = L then it follows from the boundary conditions
that |¢|" = 0 at that point.

In either case it follows that ]%] is uniformly bounded independent of ¢

and the interval (o, ).

A similar reasoning can be applied to the imaginary part %%{ ;bl;?'}



If [¢p(ar)] = |(B)| = 0 it follows that [(x)|" = 0 for some = € (a, 3).

If either « = —L or 8 = L then it follows from the boundary conditions
that |¢|" = 0 at that point.

In either case it follows that ]%] is uniformly bounded independent of ¢

and the interval (a, 3).

A similar reasoning can be applied to the imaginary part {G’| w|}
—L, L]\ {Ul|ej, 5]} are accumulation points for {¢ = O} so ¥ = 0 on
J

this set.



e How does this relate to prior work?

e Copié ctal. consider

L
Fy(n, ) = /_ {a0,0) + full) + fulna)) da

with ¢ fixed and choose sufficiently small elasticity constants for f, in their
simulations so that the three terms are of the same order.



e (opic etal. consider

L
Fy(n, ) = f {0,0) + fal) + fon)} da,

with ¢ fixed and choose sufficiently small elasticity constants for f in their
simulations so that the three terms are of the same order.

e We use ¢ as a parameter

Fq(n,9) = /L {éfs(n, ) + fa(n) + fe(ns)} dr,

—L

where
1

= — 00.
1 layer thickness

With this weighting the three energies have the same order for large q.



Results

® existence

e uniqueness (independent of the choice of minimizers as
well as the particular discretization used)

e a simple picture when the wave number ¢ is a sufficiently
large constant.



How can we use 1t?

Characterization of and the dynamics for the limiting problem
i.e. when ¢ — oc.

We now have a sct-up allowing switching at the chevron tip.

We expect to identity regions of melting
around the chevron tip, where n decouples from the cone
and switches continuously.
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