The Persistent Homotopy Type Distance

Claudia Landi

Università di Modena e Reggio Emilia

jointly with Patrizio Frosini and Facundo Mémoli

Motivation

Definition and stability of d_{HT}

Connection to interleaving distance

Supremum Distance

For $\varphi_X, \varphi'_X : X o \mathbb{R}$,

$$\| \varphi_X - \varphi_X' \|_\infty := \sup_{x \in X} | \varphi_X(x) - \varphi_X'(x) |.$$

Supremum Distance

For $\varphi_X, \varphi'_X : X \to \mathbb{R}$,

$$\|\varphi_X-\varphi_X'\|_{\infty}:=\sup_{x\in X}|\varphi_X(x)-\varphi_X'(x)|.$$

Natural Pseudo-Distance

For $\varphi_X : X \to \mathbb{R}$, $\varphi_Y : Y \to \mathbb{R}$, X and Y homeomorphic,

$$d_{NP}(\varphi_X,\varphi_Y) := \inf_{h \in Homeo(X,Y)} \|\varphi_X - \varphi_Y \circ h\|_{\infty}.$$

Supremum Distance

For $\varphi_X, \varphi'_X : X \to \mathbb{R}$,

$$\|\varphi_X-\varphi'_X\|_{\infty}:=\sup_{x\in X}|\varphi_X(x)-\varphi'_X(x)|.$$

Natural Pseudo-Distance

For $\varphi_X : X \to \mathbb{R}$, $\varphi_Y : Y \to \mathbb{R}$, X and Y homeomorphic,

$$d_{NP}(\varphi_X,\varphi_Y) := \inf_{h \in Homeo(X,Y)} \|\varphi_X - \varphi_Y \circ h\|_{\infty}.$$

 d_{NP} extends $\|\cdot\|_{\infty}$: for X = Y, $d_{NP}(\varphi_X, \varphi'_X) \leq \|\varphi_X - \varphi'_X\|_{\infty}$.

Supremum Distance

For $\varphi_X, \varphi'_X : X o \mathbb{R}$,

$$\|\varphi_X-\varphi'_X\|_{\infty}:=\sup_{x\in X}|\varphi_X(x)-\varphi'_X(x)|.$$

Natural Pseudo-Distance

For $\varphi_X: X \to \mathbb{R}$, $\varphi_Y: Y \to \mathbb{R}$, X and Y homeomorphic,

$$d_{NP}(\varphi_X,\varphi_Y) := \inf_{h \in Homeo(X,Y)} \|\varphi_X - \varphi_Y \circ h\|_{\infty}.$$

 d_{NP} extends $\|\cdot\|_{\infty}$: for X=Y, $d_{NP}(\varphi_X,\varphi_X') \leq \|\varphi_X-\varphi_X'\|_{\infty}.$

1st Goal:

Extend d_{NP} to the case when X and Y are only homotopy equivalent.

3 of 17

Lifting stability results

Stability of Persistence (I)

 $\text{For } \varphi_X, \varphi_X': X \to \mathbb{R}, \ d_B(\textit{dgm}(\varphi_X), \textit{dgm}(\varphi_X')) \leq \|\varphi_X - \varphi_X'\|_{\infty}.$

Lifting stability results

Stability of Persistence (I)

For $\varphi_X, \varphi'_X : X \to \mathbb{R}$, $d_B(dgm(\varphi_X), dgm(\varphi'_X)) \le \|\varphi_X - \varphi'_X\|_{\infty}$. Stability of Persistence (II)

For $\varphi_X:X o\mathbb{R},\ \varphi_Y:Y o\mathbb{R},$ with X homeomorphic to Y,

 $d_B(dgm(\varphi_X), dgm(\varphi_Y)) \leq d_{NP}(\varphi_X, \varphi_Y).$

Lifting stability results

Stability of Persistence (I)

For $\varphi_X, \varphi'_X : X \to \mathbb{R}$, $d_B(dgm(\varphi_X), dgm(\varphi'_X)) \le \|\varphi_X - \varphi'_X\|_{\infty}$. Stability of Persistence (II)

For $\varphi_X : X \to \mathbb{R}$, $\varphi_Y : Y \to \mathbb{R}$, with X homeomorphic to Y,

 $d_B(dgm(\varphi_X), dgm(\varphi_Y)) \leq d_{NP}(\varphi_X, \varphi_Y).$

2nd Goal: Stability of Persistence (III) For $\varphi_X : X \to \mathbb{R}$, $\varphi_Y : Y \to \mathbb{R}$, with X homotopy equivalent to Y,

$$d_B(dgm(\varphi_X), dgm(\varphi_Y)) \leq d_{HT}(\varphi_X, \varphi_Y)$$

and, for X, Y homeomorphic,

 $d_{HT}(\varphi_X,\varphi_Y) \leq d_{NP}(\varphi_X,\varphi_Y)$

Motivation

Definition and stability of d_{HT}

Connection to interleaving distance

Let \mathbf{S} be the category such that:

- objects are bounded continuous functions $\varphi_X: X \to \mathbb{R}$,
- morphisms from φ_X to φ_Y are all continuous maps $f: X \to Y$ such that $\varphi_Y \circ f \leq \varphi_X$.

Let ${\boldsymbol{\mathsf{S}}}$ be the category such that:

- objects are bounded continuous functions $\varphi_X : X \to \mathbb{R}$,
- morphisms from φ_X to φ_Y are all continuous maps $f: X \to Y$ such that $\varphi_Y \circ f \leq \varphi_X$.

Let $\alpha \geq 0$. Any $f: X \to Y$ such that $\varphi_Y \circ f \leq \varphi_X + \alpha$ is called an α -map with respect to (φ_X, φ_Y) .

Let ${\boldsymbol{\mathsf{S}}}$ be the category such that:

- objects are bounded continuous functions $\varphi_X : X \to \mathbb{R}$,
- morphisms from φ_X to φ_Y are all continuous maps $f: X \to Y$ such that $\varphi_Y \circ f \leq \varphi_X$.

Let $\alpha \geq 0$. Any $f: X \to Y$ such that $\varphi_Y \circ f \leq \varphi_X + \alpha$ is called an α -map with respect to (φ_X, φ_Y) .

Given two α -maps $f_1 : X \to Y$ and $f_2 : X \to Y$, an α -homotopy between f_1 and f_2 with respect to the pair (φ_X, φ_Y) is a homotopy that is an α -map at every instant. φ_X and φ_Y are α -homotopy equivalent if there exist α -maps

$$f: X \to Y$$
 and $g: Y \to X$

w.r.t. (φ_X, φ_Y) and (φ_Y, φ_X) such that:

- $g \circ f : X \to X$ is 2α -homotopic to id_X with respect to (φ_X, φ_X) ;
- $f \circ g : Y \to Y$ is 2α -homotopic to id_Y with respect to (φ_Y, φ_Y) .

The persistent homotopy type distance

Definition

 $d_{HT}(\varphi_X,\varphi_Y) := \inf \left\{ \alpha \in \mathbb{R} : \varphi_X \text{ and } \varphi_Y \text{ are } \alpha \text{-homotopy equivalent} \right\}$

Proposition

- d_{HT} is an extended pseudo-metric.
- If X and Y are homeomorphic, then

$$d_{HT}(\varphi_X, \varphi_Y) \leq d_{NP}(\varphi_X, \varphi_Y)$$

• X and Y are homotopy equivalent iff $d_{HT}(\varphi_X, \varphi_Y) < \infty$.

.

Comments on the definition of d_{HT}

- What about defining α -homotopies w/out the condition to be an α -map at each instant?
 - The stability property would not lift.

Comments on the definition of d_{HT}

- What about defining α -homotopies w/out the condition to be an α -map at each instant?
 - The stability property would not lift.
- Is it possible to define d_{HT} via a minimum instead of an infimum? Is d_{HT} only a pseudo-metric or actually a metric?
 - $\circ~$ Examples where the infimum is 0 and it is not attained.

Comments on the definition of d_{HT}

- What about defining α -homotopies w/out the condition to be an α -map at each instant?
 - The stability property would not lift.
- Is it possible to define d_{HT} via a minimum instead of an infimum? Is d_{HT} only a pseudo-metric or actually a metric?
 - $\circ~$ Examples where the infimum is 0 and it is not attained.
- Is d_{HT} different from d_{NP} ?
 - X contractible, $x \in X$, $c \in \mathbb{R}$: $d_{HT}((X,c),(\{x\},c)) = 0$, $d_{NP} = \infty$.
 - Cylinder C and strip M twisted of 2π radians: $d_{HT}(C, M) = 1$, $d_{NP}((C, z), (M, z)) = 2$.

Lifting stability results via d_{HT}

Stability Theorem

X, Y compact polyhedra, φ_X, φ_Y continuous functions.

 $d_B(dgm(\varphi_X), dgm(\varphi_Y)) \leq d_{HT}(\varphi_X, \varphi_Y).$

Lifting stability results via d_{HT}

Stability Theorem

X, Y compact polyhedra, φ_X, φ_Y continuous functions.

$$d_B(dgm(\varphi_X), dgm(\varphi_Y)) \leq d_{HT}(\varphi_X, \varphi_Y).$$

Idea of the proof

- Any *α*-homotopy equivalence induces an *α*-interleaving of *q*-tame persistence modules.
- Any α-interleaving of q-tame persistence modules induces a bottleneck matching with cost ≤ α (Algebraic Stability Theorem).

Restricting d_{HT} to subcategories

We can restrict d_{HT} to any sub-category **C** of **S** closed with respect to the α -shift functor. Denote it d_{HT}^{C} .

• Let X be fixed. Take **C** whose objects are functions $\varphi : X \to \mathbb{R}$, and between any two objects φ, φ' there is at most one morphism, $\operatorname{id}_X : X \to X$, then

$$d_{HT}^{\mathsf{C}}(\varphi, \varphi') = \| \varphi - \varphi' \|_{\infty}.$$

• Take **C** whose objects are those of **S**, while morphisms from φ_X to φ_Y are the homeomorphisms f such that $\varphi_Y \circ f \leq \varphi_X$. Then

$$d_{HT}^{\mathbf{C}}(\varphi_X,\varphi_Y)=d_{NP}(\varphi_X,\varphi_Y).$$

• Take **C** be the PL or C^{∞} subcategory. Then

$$d_{HT}^{\mathsf{C}}(\varphi_X,\varphi_Y) = d_{HT}^{\mathsf{S}}(\varphi_X,\varphi_Y).$$

11 of 17

Use d_{HT} to compare merge trees: $mrg(\varphi_X)$ is the Reeb graph of

 $ar{arphi}_X: epi(arphi_X) = \{(x,t) \in X imes \mathbb{R}: arphi_X(x) \le t\} o \mathbb{R}, \quad ar{arphi}_X(x,t) = t$ and is endowed with $\hat{arphi}_X([x,t]) := t$.

Use d_{HT} to compare merge trees: $mrg(\varphi_X)$ is the Reeb graph of

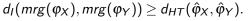
 $ar{\varphi}_X : epi(\varphi_X) = \{(x,t) \in X \times \mathbb{R} : \varphi_X(x) \le t\} \to \mathbb{R}, \quad ar{\varphi}_X(x,t) = t$ and is endowed with $\hat{\varphi}_X([x,t]) := t$.

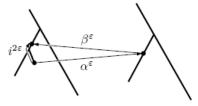
Thm.

Use d_{HT} to compare merge trees: $mrg(\varphi_X)$ is the Reeb graph of

 $ar{arphi}_X: epi(arphi_X) = \{(x,t) \in X imes \mathbb{R}: arphi_X(x) \le t\} o \mathbb{R}, \quad ar{arphi}_X(x,t) = t$ and is endowed with $\hat{arphi}_X([x,t]) := t$.

Thm.

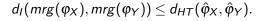


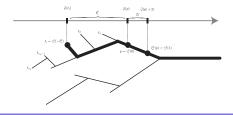


Use d_{HT} to compare merge trees: $mrg(\varphi_X)$ is the Reeb graph of

 $ar{arphi}_X: epi(arphi_X) = \{(x,t) \in X imes \mathbb{R}: arphi_X(x) \le t\} o \mathbb{R}, \quad ar{arphi}_X(x,t) = t$ and is endowed with $\hat{arphi}_X([x,t]) := t$.

Thm.





Use d_{HT} to compare merge trees: $mrg(\varphi_X)$ is the Reeb graph of

 $ar{arphi}_X: epi(arphi_X) = \{(x,t) \in X imes \mathbb{R}: arphi_X(x) \le t\} o \mathbb{R}, \quad ar{arphi}_X(x,t) = t$ and is endowed with $\hat{arphi}_X([x,t]) := t$.

Thm.

$$d_I(mrg(\varphi_X), mrg(\varphi_Y)) = d_{HT}(\hat{\varphi}_X, \hat{\varphi}_Y).$$

Motivation

Definition and stability of d_{HT}

Connection to interleaving distance

The category $hTop/\mathbb{R}^{\leq}$

Let $hTop/\mathbb{R}^{\leq}$ be the category with

- objects: topological spaces X endowed with functions $\varphi_X:X o\mathbb{R}$
- morphisms: 0-homotopy classes of 0-maps between X and Y
- composition of morphisms: the 0-homotopy class of the composition of 0-maps:

$$[g]_{(\varphi_Y,\varphi_Z)} \circ [f]_{(\varphi_X,\varphi_Y)} = [g \circ f]_{(\varphi_X,\varphi_Z)}.$$

The category $hTop/\mathbb{R}^{\leq}$

Let $hTop/\mathbb{R}^{\leq}$ be the category with

- objects: topological spaces X endowed with functions $\varphi_X:X o\mathbb{R}$
- morphisms: 0-homotopy classes of 0-maps between X and Y
- composition of morphisms: the 0-homotopy class of the composition of 0-maps:

$$[g]_{(\varphi_Y,\varphi_Z)} \circ [f]_{(\varphi_X,\varphi_Y)} = [g \circ f]_{(\varphi_X,\varphi_Z)}.$$

Every $\varphi_X : X \to \mathbb{R}$ defines a functor $hT^{\varphi_X} : \mathbf{R} \to \mathbf{hTop}/\mathbb{R}^{\leq}$:

• For
$$u \in \mathbb{R}$$
, $hT^{\varphi_X}(u) := (X^u, \varphi_X^u)$;

• For
$$u \leq v \in \mathbb{R}$$
, $hT^{\varphi_X}(u \leq v) := [i_X^{u,v}]_{(\varphi_X^u, \varphi_X^v)}$.

0-maps and natural transformations

Let φ_X , φ_Y be bounded functions and let hT^{φ_X} , hT^{φ_Y} be the induced functors.

Lemma

Every map $f: X \to Y$ such that $\varphi_Y \circ f \leq \varphi_X$ induces a natural transformation

$$h\xi^{f}:hT^{\varphi_{X}}\Rightarrow hT^{\varphi_{Y}}$$

such that for every $u \in \mathbb{R}$.

$$h\xi_u^f = [f_{|X^u|}^{|Y^u}]_{(\varphi_X^u, \varphi_Y^u)}$$

0-maps and natural transformations

Let φ_X , φ_Y be bounded functions and let hT^{φ_X} , hT^{φ_Y} be the induced functors.

Lemma

Every map $f:X \to Y$ such that $\varphi_Y \circ f \leq \varphi_X$ induces a natural transformation

$$h\xi^{f}:hT^{\varphi_{X}}\Rightarrow hT^{\varphi_{Y}}$$

such that for every $u \in \mathbb{R}$.

$$h\xi_u^f = [f_{|X^u}^{|Y^u}]_{(\varphi_X^u, \varphi_Y^u)}$$

Reciprocally, for every natural transformation $h\xi : hT^{\varphi_X} \Rightarrow hT^{\varphi_Y}$ there exists a continuous map $f : X \to Y$ such that $\varphi_Y \circ f \leq \varphi_X$ and, for every $u \in \mathbb{R}$, $h\xi_u = [f_{|X^u}^{|Y^u}]_{(\varphi_X^u, \varphi_Y^u)}$.

15 of 17

 d_{HT} as interleaving distance

Define interleaving distance $d_I^{hTop/\mathbb{R}^{\leq}}$ on functors

```
hT^{\varphi_X}: \mathbf{R} \to \mathbf{hTop}/\mathbb{R}^{\leq}
```

following [Bubenik & Scott].

 d_{HT} as interleaving distance

Define interleaving distance $d_l^{hTop/\mathbb{R}^{\leq}}$ on functors

```
hT^{\varphi_X}: \mathbf{R} \to \mathbf{hTop}/\mathbb{R}^{\leq}
```

following [Bubenik & Scott].

Theorem

For every bounded functions $\varphi_X : X \to \mathbb{R}$, $\varphi_Y : Y \to \mathbb{R}$,

$$d_I^{\mathsf{hTop}/\mathbb{R}^{\leq}}(hT^{\varphi_X},hT^{\varphi_Y}) = d_{HT}(\varphi_X,\varphi_Y).$$

 d_{HT} as interleaving distance

Define interleaving distance $d_I^{h \operatorname{Top}/\mathbb{R}^{\leq}}$ on functors

$$hT^{\varphi_X}: \mathbf{R} \to \mathbf{hTop}/\mathbb{R}^{\leq}$$

following [Bubenik & Scott].

Theorem

For every bounded functions $\varphi_X: X \to \mathbb{R}$, $\varphi_Y: Y \to \mathbb{R}$,

$$d_I^{\mathsf{hTop}/\mathbb{R}^{\leq}}(hT^{\varphi_X},hT^{\varphi_Y}) = d_{HT}(\varphi_X,\varphi_Y).$$

Corollary

$$d_I^{\mathsf{Vect}_{\mathbb{F}}}(\mathit{PM}(\varphi_X), \mathit{PM}(\varphi_Y)) \leq d_I^{\mathsf{hTop}/\mathbb{R}^{\leq}}(hT^{\varphi_X}, hT^{\varphi_Y}).$$

16 of 17

Open questions

- Possible applications: quantify error in passing from a grayscale 3D image as a cubical complex to its skeleton?
- Utility of subcategories: applications to Frosini's group invariant persistence?
- Further lifting of stability, i.e. tighter upper bounds for bottleneck distance?
- Tighter lower bounds for *d_{HT}*?