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Nerves

Covers and Nerves
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Nerves

Nerves and 1-cycles
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(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 3 / 24



Nerves

Nerves and 1-cycles

UX

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 3 / 24



Nerves

Nerves and 1-cycles

N(U)UX

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 3 / 24



Topological analysis of H1-classes

From space to nerve and H1-classes

X a path connected,
paracompact space

U = {Uα}α∈A, a path
connected cover, XU : blowup
space

φU : X → |N(U)| is a map
where φU = π ◦ ζ

XU
π

##
X

ζ
??

φU // |N(U)|

Theorem (Space-Nerve)

φU∗ : H1(X )→ H1(|N(U)|) is a surjection.
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Topological analysis of H1-classes

Maps between covers

Consider covers U = {Uα}α∈A and V = {Vβ}β∈B and a map of
sets ξ : A→ B satisfying Uα ⊆ Vξ(α) for all α ∈ A

ξ induces a simplicial map N(ξ) : N(U)→ N(V)

if U ξ1→ V ξ2→W , then N(ξ2 ◦ ξ1) = N(ξ2) ◦ N(ξ1)
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Topological analysis of H1-classes

Nerve to nerve and H1-classes

U1

N(U1)

X
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Topological analysis of H1-classes

Nerve to nerve and H1-classes

U1
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X
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Topological analysis of H1-classes

Nerve to nerve and H1-classes

Proposition

U and V be two covers of X with a cover map U θ→ V . Then,
φV = τ̂ ◦ φU where τ : N(U)→ N(V) is induced by θ.

Corollary

The maps φU∗ : Hk(X )→ Hk(|N(U)|), φV∗ : Hk(X )→ Hk(|N(V)|),
and τ̂∗ : Hk(|N(U)|)→ Hk(|N(V)|) commute, that is,
φV∗ = τ̂∗ ◦ φU∗.

Theorem (Nerve-Nerve)

Let τ : N(U)→ N(V) be induced by a cover map U → V . Then,
τ∗ : H1(N(U))→ H1(N(V)) is a surjection.

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 7 / 24



Quantification of persistent H1-classes

Persistent H1-classes

Equip X with a pseudometric d

For X ′ ⊆ X , size s(X ′) = diamd X
′

Let z1, z2, . . . , zn be k-cycles whose classes form a basis of
Hk(X ).

z1, z2, . . . , zk is a minimal generator basis if Σn
i=1s(zi) is minimal

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 8 / 24
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Quantification of persistent H1-classes

Lebesgue number of a cover

Lebesgue number of a cover:

λ(U) = sup{δ | ∀X ′ ⊆ X with s(X ′) ≤ δ, ∃Uα ∈ U where Uα ⊇ X ′}

U
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Quantification of persistent H1-classes

Persistent H1-classes

Theorem (Persistent H1-classes)

Let z1, z2, . . . , zg be a minimal generator basis of H1(X ) ordered with
increasing sizes.

i. Let ` ∈ [1, g ] be the smallest integer so that s(z`) > λ(U). If
` 6= 1, the class φ̄U∗[zj ] = 0 for j = 1, . . . , `− 1. Moreover, the
classes {φ̄U∗[zj ]}j=`,...,g generate H1(N(U)).

ii. The classes {φ̄U∗[zj ]}j=`′,...,g are linearly independent where
s(z`′) > 4smax(U).

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 10 / 24



Quantification of persistent H1-classes

Maps and pseudometric

f : X → Z where (Z , dZ ) a metric space

df (x , x ′) := infγ∈ΓX (x ,x ′) diam Z (f ◦ γ).

X ′

X ′′

X
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df (x , x ′) := infγ∈ΓX (x ,x ′) diam Z (f ◦ γ).

X ′

X ′′

X

f

f(X ′)
f(X ′′)

(Z, dZ)

df(X′) df(X′′) = size(X ′′)
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Applications:Reeb space

Reeb graph/space

H1(X ) = Hv
1 ⊕ Hh

1

c ∈ Hh
1 iff c = [z ] where z ∈ f −1(a)

Reeb graphs capture only vertical homology classes [D.-Wang 14]

f
R

X R(f )

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 12 / 24



Applications:Reeb space

Surviving H1-classes in Reeb space

Theorem (Persistent H1-classes)

Let z1, z2, . . . , zg be a minimal generator basis of H1(X ) ordered with
increasing sizes (defined by df ); q : X → Rf quotient map.

Let ` ∈ [1, g ] be the smallest s.t. s(z`) 6= 0. If no ` exists,
H1(Rf ) is trivial, otherwise {[q(zi)]}i=`...g is a basis of H1(Rf ).

Implication: Just like in Reeb graphs, only vertical homology classes
survive in Reeb spaces (extension of a result of [D.-Wang 14])

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 13 / 24



Applications: Intrinsic Čech complex

Surviving H1-classes in intrinsic Čech complex

C δ(Y ): Čech complex of (Y , dY )

z1, . . . , zg : a minimal generator basis for H1(Y )

Theorem (Persistent H1-classes)

{ΦU∗(zi)}i=`...g generate H1(C δ(Y ))) where ` is the smallest s.t.
s(z`) > δ.

{ΦU∗(zi)}i=`′...g are linearly independent if s(z ′`) > 8δ
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Applications: mapper and multiscale mapper

Maps and covers

f

X Z

Let f : X → Z continuous, well-behaved and U a finite cover of
Z .

Connected components of f −1(Uα) =
⋃jα

i=1 Vα,i form a cover
f ∗(U) of X .
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Applications: mapper and multiscale mapper

Mapper

U1 U2 U3 U4 U5

Definition (Mapper)

[Singh-Carlsson-Mémoli] Let f : X → Z be continuous and
U = {Uα}α∈A be a finite open covering of Z . The Mapper is

M(U , f ) := N(f ∗(U))

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 16 / 24



Applications: mapper and multiscale mapper

Tower of covers and complexes

Tower of Covers, ToC

U =
{
Uε
}
ε≥r , r = resolution(U), Uε finite

U =
{
Uε

uε,ε′−→ Uε′
}
r≤ε≤ε′ , uε,ε = id , uε′,ε′′ ◦ uε,ε′ = uε,ε′′

Tower of Simplicial complexes, ToS

S =
{
Sε
}
ε≥r , Sε finite,

S =
{
Sε

sε,ε′−→ Sε′
}
r≤ε≤ε′ , sε,ε = id , sε′,ε′′ ◦ sε,ε′ = sε,ε′′

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 17 / 24
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Applications: mapper and multiscale mapper

Multiscale Mapper

f : X → Z continuous, well-behaved, U= ToC of Z

Then, f ∗(U) is ToC of X and N(f ∗(U))is ToS

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 18 / 24
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Multiscale Mapper:

MM(U, f ) := N(f ∗(U))
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Applications: mapper and multiscale mapper

Persistence diagram of MM

• DkMM(U, f )= persistence diagram of:

Hk

(
N(f ∗(Uε1))

)
→ Hk

(
N(f ∗(Uε2))

)
→ · · · → Hk

(
N(f ∗(Uεn))

)

ToC(Z)

Uε

Uε′
uε,ε′

Ur

f ∗Uε

f ∗Uε′
f ∗(uε,ε′)

f ∗Ur

f−1

ToS

N(f ∗Uε)

N(f ∗Uε′)
N(f ∗(uε,ε′))

N(f ∗Ur)

Nerve

ToC(X)

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 19 / 24



Applications: mapper and multiscale mapper

Implication for multiscale mapper

Theorem

Consider the following multiscale mapper:

N(f ∗U0)→ N(f ∗U1)→ · · · → N(f ∗Un)

surjection from H1(X ) to H1(N(f ∗Ui)) for each i ∈ [0, n].

For H1-persistence module:

H1

(
N(f ∗U0)

)
→ H1

(
N(f ∗U1)

)
→ · · · → H1

(
N(f ∗Un)

)
all connecting maps are surjections.
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Applications: mapper and multiscale mapper

Persistent H1-classes in MM

Theorem

Consider a H1-persistence module of a multiscale mapper
induced by a tower of path connected covers:

H1

(
N(f ∗Uε0)

) s1∗→ H1

(
N(f ∗Uε1)

) s2∗→ · · · sn∗→ H1

(
N(f ∗Uεn)

)
Let ŝi∗ = si∗ ◦ s(i−1)∗ ◦ · · · ◦ φ̄Uε0∗. Then, ŝi∗ renders the small
classes of H1(X ) trivial in H1(N(f ∗Uεi )) as detailed in previous
theorem.
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Conclusions

Open Question

Uαf−1Uα

R3 R2f N(f−1U)

Conjecture: If t-wise intersections in U for all t > 0 have H̃≤k−t = 0,
then φU∗ is surjective for Hk
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Conclusions

Thank You

N(U)UX

(Dey,Memoli,Wang 2017) Topological Analysis of Nerves BIRS, TDA 23 / 24
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