Nerves Can Only Kill, and Also Serially!

(Dey, Memoli, Wang 2017)

Topological Analysis of Nerves

am

•
$$\mathcal{U} = \{U_{\alpha}\}_{\alpha \in \mathcal{A}}$$
, a cover of X

▲ ■ ▶ ■ シ۹ペ BIRS, TDA 2 / 24

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

•
$$\mathcal{U} = \{U_{\alpha}\}_{\alpha \in \mathcal{A}}$$
, a cover of X

<ロ> (日) (日) (日) (日) (日)

(Dey,Memoli,Wang 2017)

▲ ■ ● ■ 一 つ へ へ
BIRS, TDA 2 / 24

- $\mathcal{U} = \{U_{lpha}\}_{lpha \in \mathcal{A}}$, a cover of X
- Nerve of \mathcal{U} : $N(\mathcal{U})$ with vertex set A, iff $U_{\alpha_0} \cap U_{\alpha_1} \cap \ldots \cap U_{\alpha_k} \neq \emptyset$.

(日) (同) (三) (三)

- $\mathcal{U} = \{U_{lpha}\}_{lpha \in \mathcal{A}}$, a cover of X
- Nerve of \mathcal{U} : $N(\mathcal{U})$ with vertex set A, iff $U_{\alpha_0} \cap U_{\alpha_1} \cap \ldots \cap U_{\alpha_k} \neq \emptyset$.

(日) (同) (三) (三)

- $\mathcal{U} = \{U_{lpha}\}_{lpha \in \mathcal{A}}$, a cover of X
- Nerve of \mathcal{U} : $N(\mathcal{U})$ with vertex set A, iff $U_{\alpha_0} \cap U_{\alpha_1} \cap \ldots \cap U_{\alpha_k} \neq \emptyset$.

Nerves and 1-cycles

Nerves and 1-cycles

▲ ■ ▶ ■ つへで BIRS, TDA 3 / 24

Nerves and 1-cycles

From space to nerve and H_1 -classes

- X a path connected, paracompact space
- $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in \mathcal{A}}$, a path connected cover, $X_{\mathcal{U}}$: blowup space
- $\phi_{\mathcal{U}}: X \to |N(\mathcal{U})|$ is a map where $\phi_{\mathcal{U}} = \pi \circ \zeta$

• • = • • = •

From space to nerve and H_1 -classes

- X a path connected, paracompact space
- $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in \mathcal{A}}$, a path connected cover, $X_{\mathcal{U}}$: blowup space

•
$$\phi_{\mathcal{U}}: X \to |\mathcal{N}(\mathcal{U})|$$
 is a map
where $\phi_{\mathcal{U}} = \pi \circ \zeta$

Theorem (Space-Nerve)

$$\phi_{\mathcal{U}*}:H_1(X) o H_1(|\mathcal{N}(\mathcal{U})|)$$
 is a surjection.

A B F A B F

Consider covers U = {U_α}_{α∈A} and V = {V_β}_{β∈B} and a map of sets ξ : A → B satisfying U_α ⊆ V_{ξ(α)} for all α ∈ A

(日) (周) (三) (三)

- Consider covers U = {U_α}_{α∈A} and V = {V_β}_{β∈B} and a map of sets ξ : A → B satisfying U_α ⊆ V_{ξ(α)} for all α ∈ A
- ξ induces a simplicial map $N(\xi) : N(\mathcal{U}) \to N(\mathcal{V})$

(日) (周) (三) (三)

- Consider covers U = {U_α}_{α∈A} and V = {V_β}_{β∈B} and a map of sets ξ : A → B satisfying U_α ⊆ V_{ξ(α)} for all α ∈ A
- ξ induces a simplicial map $N(\xi) : N(\mathcal{U}) \to N(\mathcal{V})$

- Consider covers U = {U_α}_{α∈A} and V = {V_β}_{β∈B} and a map of sets ξ : A → B satisfying U_α ⊆ V_{ξ(α)} for all α ∈ A
- ξ induces a simplicial map $N(\xi) : N(\mathcal{U}) \to N(\mathcal{V})$

- Consider covers U = {U_α}_{α∈A} and V = {V_β}_{β∈B} and a map of sets ξ : A → B satisfying U_α ⊆ V_{ξ(α)} for all α ∈ A
- ξ induces a simplicial map $N(\xi) : N(\mathcal{U}) \to N(\mathcal{V})$

- Consider covers U = {U_α}_{α∈A} and V = {V_β}_{β∈B} and a map of sets ξ : A → B satisfying U_α ⊆ V_{ξ(α)} for all α ∈ A
- ξ induces a simplicial map $N(\xi) : N(\mathcal{U}) \to N(\mathcal{V})$

- Consider covers U = {U_α}_{α∈A} and V = {V_β}_{β∈B} and a map of sets ξ : A → B satisfying U_α ⊆ V_{ξ(α)} for all α ∈ A
- ξ induces a simplicial map $N(\xi) : N(\mathcal{U}) \to N(\mathcal{V})$
- if $\mathcal{U} \xrightarrow{\xi_1} \mathcal{V} \xrightarrow{\xi_2} \mathcal{W}$, then $N(\xi_2 \circ \xi_1) = N(\xi_2) \circ N(\xi_1)$

▲ ■ ▶ ■ つへへ BIRS, TDA 6 / 24

BIRS, TDA 6 / 24

Proposition

 \mathcal{U} and \mathcal{V} be two covers of X with a cover map $\mathcal{U} \xrightarrow{\theta} \mathcal{V}$. Then, $\phi_{\mathcal{V}} = \hat{\tau} \circ \phi_{\mathcal{U}}$ where $\tau : \mathcal{N}(\mathcal{U}) \rightarrow \mathcal{N}(\mathcal{V})$ is induced by θ .

Corollary

The maps $\phi_{\mathcal{U}*} : H_k(X) \to H_k(|N(\mathcal{U})|), \phi_{\mathcal{V}*} : H_k(X) \to H_k(|N(\mathcal{V})|),$ and $\hat{\tau}_* : H_k(|N(\mathcal{U})|) \to H_k(|N(\mathcal{V})|)$ commute, that is, $\phi_{\mathcal{V}*} = \hat{\tau}_* \circ \phi_{\mathcal{U}*}.$

Theorem (Nerve-Nerve)

Let $\tau : N(\mathcal{U}) \to N(\mathcal{V})$ be induced by a cover map $\mathcal{U} \to \mathcal{V}$. Then, $\tau_* : H_1(N(\mathcal{U})) \to H_1(N(\mathcal{V}))$ is a surjection.

• Equip X with a pseudometric d

• For
$$X' \subseteq X$$
, size $s(X') = \operatorname{diam}_d X'$

< ロ > < 同 > < 三 > < 三

- Equip X with a pseudometric d
- For $X' \subseteq X$, size $s(X') = \operatorname{diam}_d X'$
- Let z_1, z_2, \ldots, z_n be k-cycles whose classes form a basis of $H_k(X)$.

< 回 > < 三 > < 三 >

- Equip X with a pseudometric d
- For $X' \subseteq X$, size $s(X') = \operatorname{diam}_d X'$
- Let z_1, z_2, \ldots, z_n be k-cycles whose classes form a basis of $H_k(X)$.
- z_1, z_2, \ldots, z_k is a minimal generator basis if $\sum_{i=1}^n s(z_i)$ is minimal

・ 「 ・ ・ ・ ・ ・ ・ ・

- Equip X with a pseudometric d
- For $X' \subseteq X$, size $s(X') = \operatorname{diam}_d X'$
- Let z_1, z_2, \ldots, z_n be k-cycles whose classes form a basis of $H_k(X)$.
- z_1, z_2, \ldots, z_k is a minimal generator basis if $\sum_{i=1}^n s(z_i)$ is minimal

・ 「 ・ ・ ・ ・ ・ ・ ・

Lebesgue number of a cover

Lebesgue number of a cover:

 $\lambda(\mathcal{U}) = \sup\{\delta \mid \forall X' \subseteq X \text{ with } s(X') \leq \delta, \exists U_{\alpha} \in \mathcal{U} \text{ where } U_{\alpha} \supseteq X'\}$

(Dey, Memoli, Wang 2017)

BIRS, TDA 9 / 24 Lebesgue number of a cover

Lebesgue number of a cover:

 $\lambda(\mathcal{U}) = \sup\{\delta \,|\, \forall X' \subseteq X \text{ with } s(X') \leq \delta, \exists U_{\alpha} \in \mathcal{U} \text{ where } U_{\alpha} \supseteq X'\}$

Theorem (Persistent H_1 -classes)

Let z_1, z_2, \ldots, z_g be a minimal generator basis of $H_1(X)$ ordered with increasing sizes.

- i. Let $\ell \in [1, g]$ be the smallest integer so that $s(z_{\ell}) > \lambda(\mathcal{U})$. If $\ell \neq 1$, the class $\bar{\phi}_{\mathcal{U}*}[z_j] = 0$ for $j = 1, \dots, \ell 1$. Moreover, the classes $\{\bar{\phi}_{\mathcal{U}*}[z_j]\}_{j=\ell,\dots,g}$ generate $H_1(N(\mathcal{U}))$.
- ii. The classes $\{\bar{\phi}_{\mathcal{U}*}[z_j]\}_{j=\ell',\dots,g}$ are linearly independent where $s(z_{\ell'}) > 4s_{max}(\mathcal{U})$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Maps and pseudometric

- $f: X \to Z$ where (Z, d_Z) a metric space
- $d_f(x, x') := \inf_{\gamma \in \Gamma_X(x, x')} \operatorname{diam}_Z(f \circ \gamma).$

イロト イポト イヨト イヨト 二日

Maps and pseudometric

- $f: X \to Z$ where (Z, d_Z) a metric space
- $d_f(x, x') := \inf_{\gamma \in \Gamma_X(x, x')} \operatorname{diam}_Z(f \circ \gamma).$

< ロト < 同ト < ヨト < ヨト

Reeb graph/space

- $H_1(X) = H_1^v \oplus H_1^h$
- $c \in H_1^h$ iff c = [z] where $z \in f^{-1}(a)$

• Reeb graphs capture only vertical homology classes [D.-Wang 14]

(Dey, Memoli, Wang 2017)

Topological Analysis of Nerves

BIRS, TDA 12 / 24

Surviving H_1 -classes in Reeb space

Theorem (Persistent H_1 -classes)

Let $z_1, z_2, ..., z_g$ be a minimal generator basis of $H_1(X)$ ordered with increasing sizes (defined by d_f); $q : X \to R_f$ quotient map.

 Let l ∈ [1, g] be the smallest s.t. s(z_l) ≠ 0. If no l exists, H₁(R_f) is trivial, otherwise {[q(z_i)]}_{i=l...g} is a basis of H₁(R_f).

Implication: Just like in Reeb graphs, only vertical homology classes survive in Reeb spaces (extension of a result of [D.-Wang 14])

Surviving H_1 -classes in intrinsic Čech complex

- $C^{\delta}(Y)$: Čech complex of (Y, d_Y)
- z_1, \ldots, z_g : a minimal generator basis for $H_1(Y)$

イロト 不得下 イヨト イヨト 二日

Surviving H_1 -classes in intrinsic Čech complex

- $C^{\delta}(Y)$: Čech complex of (Y, d_Y)
- z_1, \ldots, z_g : a minimal generator basis for $H_1(Y)$

Theorem (Persistent H_1 -classes)

- $\{\Phi_{\mathcal{U}*}(z_i)\}_{i=\ell\ldots g}$ generate $H_1(C^{\delta}(Y))$ where ℓ is the smallest s.t. $s(z_{\ell}) > \delta$.
- $\{\Phi_{\mathcal{U}*}(z_i)\}_{i=\ell'\ldots g}$ are linearly independent if $s(z'_\ell) > 8\delta$

• • = • • = •

Maps and covers

• Let $f: X \to Z$ continuous, well-behaved and \mathcal{U} a finite cover of Z.

< ∃ >

Maps and covers

- Let $f: X \to Z$ continuous, well-behaved and \mathcal{U} a finite cover of Z.
- Connected components of $f^{-1}(U_{\alpha}) = \bigcup_{i=1}^{j_{\alpha}} V_{\alpha,i}$ form a cover $f^*(\mathcal{U})$ of X.

★ ∃ ▶ ★

Maps and covers

- Let $f: X \to Z$ continuous, well-behaved and \mathcal{U} a finite cover of Z.
- Connected components of $f^{-1}(U_{\alpha}) = \bigcup_{i=1}^{j_{\alpha}} V_{\alpha,i}$ form a cover $f^*(\mathcal{U})$ of X.

→ ∃ →

Mapper

Definition (Mapper)

[Singh-Carlsson-Mémoli] Let $f : X \to Z$ be continuous and $\mathcal{U} = \{U_{\alpha}\}_{\alpha \in A}$ be a finite open covering of Z. The Mapper is

 $\mathrm{M}(\mathcal{U},f):=N(f^*(\mathcal{U}))$

• Tower of Covers, ToC

-

• • • • • • • • • • • •

• Tower of Covers, ToC

•
$$\mathfrak{U} = \{\mathcal{U}_{\varepsilon}\}_{\varepsilon \geq r}$$
, $r = resolution(\mathfrak{U})$, $\mathcal{U}_{\varepsilon}$ finite

-

• • • • • • • • • • • •

• Tower of Covers, ToC

•
$$\mathfrak{U} = \{\mathcal{U}_{\varepsilon}\}_{\varepsilon \geq r}$$
, $r = resolution(\mathfrak{U})$, $\mathcal{U}_{\varepsilon}$ finite
• $\mathfrak{U} = \{\mathcal{U}_{\varepsilon} \xrightarrow{u_{\varepsilon,\varepsilon'}} \mathcal{U}_{\varepsilon'}\}_{r \leq \varepsilon \leq \varepsilon'}$, $u_{\varepsilon,\varepsilon} = \mathrm{id}$, $u_{\varepsilon',\varepsilon''} \circ u_{\varepsilon,\varepsilon'} = u_{\varepsilon,\varepsilon''}$

-

< ∃ > <

Image: A matrix

• Tower of Covers, IoC
•
$$\mathfrak{U} = \{\mathcal{U}_{\varepsilon}\}_{\varepsilon \geq r}, r = resolution(\mathfrak{U}), \mathcal{U}_{\varepsilon} \text{ finite}$$

• $\mathfrak{U} = \{\mathcal{U}_{\varepsilon} \xrightarrow{u_{\varepsilon,\varepsilon'}} \mathcal{U}_{\varepsilon'}\}_{r \leq \varepsilon \leq \varepsilon'}, u_{\varepsilon,\varepsilon} = \mathrm{id}, u_{\varepsilon',\varepsilon''} \circ u_{\varepsilon,\varepsilon'} = u_{\varepsilon,\varepsilon''}$
• Tower of Simplicial complexes, ToS
• $\mathfrak{S} = \{S_{\varepsilon}\}_{\varepsilon \geq r}, S_{\varepsilon} \text{ finite},$
• $\mathfrak{S} = \{S_{\varepsilon}\}_{\varepsilon \geq r}, S_{\varepsilon} \text{ finite},$
• $\mathfrak{S} = \{S_{\varepsilon} \xrightarrow{s_{\varepsilon,\varepsilon'}} S_{\varepsilon'}\}_{r \leq \varepsilon \leq \varepsilon'}, s_{\varepsilon,\varepsilon} = \mathrm{id}, s_{\varepsilon',\varepsilon''} \circ s_{\varepsilon,\varepsilon'} = s_{\varepsilon,\varepsilon''}$
• DevMemoli, Wang 2017 Topological Analysis of Nerves

17 / 24

• Tower of Covers, ToC
•
$$\mathfrak{U} = \{\mathcal{U}_{\varepsilon}\}_{\varepsilon \geq r}, r = resolution(\mathfrak{U}), \mathcal{U}_{\varepsilon} \text{ finite}$$

• $\mathfrak{U} = \{\mathcal{U}_{\varepsilon} \xrightarrow{u_{\varepsilon,\varepsilon'}} \mathcal{U}_{\varepsilon'}\}_{r \leq \varepsilon \leq \varepsilon'}, u_{\varepsilon,\varepsilon} = \mathrm{id}, u_{\varepsilon',\varepsilon''} \circ u_{\varepsilon,\varepsilon'} = u_{\varepsilon,\varepsilon''}$
• $\mathfrak{U}_{\varepsilon} \xrightarrow{u_{\varepsilon,\varepsilon'}} \underbrace{u_{\varepsilon'}}_{v_{\varepsilon'}} \xrightarrow{u_{\varepsilon'}} \underbrace{u_{\varepsilon'}}_{v_{\varepsilon'}} \underbrace{u_{\varepsilon'}} \underbrace{u_{\varepsilon'}}_{v_{\varepsilon'}} \underbrace{u_{\varepsilon'$

•
$$\mathfrak{S} = \left\{ \mathcal{S}_{\varepsilon} \stackrel{s_{\varepsilon,\varepsilon'}}{\longrightarrow} \mathcal{S}_{\varepsilon'} \right\}_{r \le \varepsilon \le \varepsilon'}, s_{\varepsilon,\varepsilon} = \mathrm{id}, s_{\varepsilon',\varepsilon''} \circ s_{\varepsilon,\varepsilon'} = s_{\varepsilon,\varepsilon''}$$

• $\mathfrak{S} = \left\{ \mathcal{S}_{\varepsilon} \stackrel{s_{\varepsilon,\varepsilon'}}{\longrightarrow} \mathcal{S}_{\varepsilon'} \right\}_{r \le \varepsilon \le \varepsilon'}, s_{\varepsilon,\varepsilon} = \mathrm{id}, s_{\varepsilon',\varepsilon''} \circ s_{\varepsilon,\varepsilon'} = s_{\varepsilon,\varepsilon''}$

• Tower of Covers, ToC
•
$$\mathfrak{U} = \{\mathcal{U}_{\varepsilon}\}_{\varepsilon \geq r}, r = resolution(\mathfrak{U}), \mathcal{U}_{\varepsilon} \text{ finite}$$

• $\mathfrak{U} = \{\mathcal{U}_{\varepsilon} \xrightarrow{u_{\varepsilon,\varepsilon'}} \mathcal{U}_{\varepsilon'}\}_{r \leq \varepsilon \leq \varepsilon'}, u_{\varepsilon,\varepsilon} = \mathrm{id}, u_{\varepsilon',\varepsilon''} \circ u_{\varepsilon,\varepsilon'} = u_{\varepsilon,\varepsilon''}$
• $\mathfrak{U}_{\varepsilon} \xrightarrow{u_{\varepsilon'}} \mathcal{U}_{\varepsilon'} \xrightarrow{u_{\varepsilon'}} \xrightarrow{u_{\varepsilon'}} \mathcal{U}_{\varepsilon'} \xrightarrow{u_{\varepsilon'}} \xrightarrow{u_{\varepsilon'}} \mathcal{U}_{\varepsilon'} \xrightarrow{u_{\varepsilon'}} \mathcal{U}_{\varepsilon'} \xrightarrow{u_{\varepsilon'}} \xrightarrow{u_{$

•
$$\mathfrak{S} = \left\{ \mathcal{S}_{\varepsilon} \xrightarrow{s_{\varepsilon,\varepsilon'}} \mathcal{S}_{\varepsilon'} \right\}_{r \le \varepsilon \le \varepsilon'}, s_{\varepsilon,\varepsilon} = \mathrm{id}, s_{\varepsilon',\varepsilon''} \circ s_{\varepsilon,\varepsilon'} = s_{\varepsilon,\varepsilon''}$$

- $f: X \to Z$ continuous, well-behaved, $\mathfrak{U}=$ ToC of Z
- Then, $f^*(\mathfrak{U})$ is ToC of X and $N(f^*(\mathfrak{U}))$ is ToS

(日) (周) (三) (三)

- $f: X \to Z$ continuous, well-behaved, $\mathfrak{U}=$ ToC of Z
- Then, $f^*(\mathfrak{U})$ is ToC of X and $N(f^*(\mathfrak{U}))$ is ToS

< ∃ >

- $f: X \to Z$ continuous, well-behaved, $\mathfrak{U}=$ ToC of Z
- Then, $f^*(\mathfrak{U})$ is ToC of X and $N(f^*(\mathfrak{U}))$ is ToS

- $f: X \to Z$ continuous, well-behaved, $\mathfrak{U}=$ ToC of Z
- Then, $f^*(\mathfrak{U})$ is ToC of X and $N(f^*(\mathfrak{U}))$ is ToS

★ ∃ ► ★

f: X → Z continuous, well-behaved, 𝔅= ToC of Z
Then, f*(𝔅) is ToC of X and N(f*(𝔅))is ToS

Multiscale Mapper:

 $\mathrm{MM}(\mathfrak{U}, f) := N(f^*(\mathfrak{U}))$

★ ∃ ►

Persistence diagram of MM

• $D_kMM(\mathfrak{U}, f)$ = persistence diagram of:

 $\mathrm{H}_{k}\big(N(f^{*}(\mathcal{U}_{\varepsilon_{1}}))\big) \to \mathrm{H}_{k}\big(N(f^{*}(\mathcal{U}_{\varepsilon_{2}}))\big) \to \cdots \to \mathrm{H}_{k}\big(N(f^{*}(\mathcal{U}_{\varepsilon_{n}}))\big)$

∃ >

< ∃ > <

Implication for multiscale mapper

Theorem

Consider the following multiscale mapper:

$$N(f^*\mathcal{U}_0) \to N(f^*\mathcal{U}_1) \to \cdots \to N(f^*\mathcal{U}_n)$$

- surjection from $H_1(X)$ to $H_1(N(f^*U_i))$ for each $i \in [0, n]$.
- For H₁-persistence module:

$$\mathrm{H}_1(N(f^*\mathcal{U}_0)) \to \mathrm{H}_1(N(f^*\mathcal{U}_1)) \to \cdots \to \mathrm{H}_1(N(f^*\mathcal{U}_n))$$

all connecting maps are surjections.

Persistent H_1 -classes in MM

Theorem

Consider a H_1 -persistence module of a multiscale mapper induced by a tower of path connected covers:

$$\mathrm{H}_{1}(N(f^{*}\mathcal{U}_{\varepsilon_{0}})) \xrightarrow{s_{1*}} \mathrm{H}_{1}(N(f^{*}\mathcal{U}_{\varepsilon_{1}})) \xrightarrow{s_{2*}} \cdots \xrightarrow{s_{n*}} \mathrm{H}_{1}(N(f^{*}\mathcal{U}_{\varepsilon_{n}}))$$

Let $\hat{s}_{i*} = s_{i*} \circ s_{(i-1)*} \circ \cdots \circ \bar{\phi}_{\mathcal{U}_{\varepsilon_0}*}$. Then, \hat{s}_{i*} renders the small classes of $H_1(X)$ trivial in $H_1(N(f^*\mathcal{U}_{\varepsilon_i}))$ as detailed in previous theorem.

Open Question

Conjecture: If *t*-wise intersections in \mathcal{U} for all t > 0 have $\tilde{H}_{\leq k-t} = 0$, then $\phi_{\mathcal{U}*}$ is surjective for H_k

▶ ४ ॾ ▶ ॾ ् ् ० ० ० BIRS, TDA 22 / 24

(日) (周) (三) (三)

Thank You

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ BIRS, TDA 23 / 24

<ロ> (日) (日) (日) (日) (日)