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Motivation
Suppose we have spatially referenced data and want to make inference about the
underlying spatial process. The process has breakpoints, sharp local features, or
varying smoothness, which are all difficult features to capture with standard
methods. We want a fully Bayesian method that can accurately estimate the
surface, yet is easy to understand and straight forward to implement.

Current Bayesian methods
Some methods developed to deal with such situations include:

Non-stationary Gaussian processes (e.g., Paciorek and Schervish 2006)

Non-Gaussian processes (e.g., Bolin 2014)

Adaptive Gaussian Markov random fields (GMRF; e.g. Yue et al. 2010,
2014)

We propose a type of adaptive GMRF that uses shrinkage priors to provide a
balance of local sensitivity global smoothing.

Basic GMRF smoothing prior
Assume there is a process in continuous space that follows an unknown function
f (s), where s ∈ R2. Let θi = f̃ (ai) be the expected value of the surface over
some discrete areal unit ai .Then a simple kth-order GMRF prior for θ is induced
by letting:

∆kθj ∼ N(0, γ2)

where ∆kθj is a kth-order spatial difference operator. The resulting joint
distribution for θ is

θ | µ,Q ∼ N(µ,Q−1)

The precision matrix Q for the first-order (k = 1) model is given by,

Qij =
1

γ2

wi+ j = i
−wij j 6= i
0 otherwise.

Let dij be either the Euclidean distance between units i and j or a simple binary
adjacency indicator. Then for neighbors of unit i ,

wij =
1

dij
and

wi+ =
∑
j∼i

1

dij
.

To make Q positive-definite and make p(θ) proper, we set

Q11 = 1/ω2 + w1+,

where ω is a scale parameter related to the marginal variance of the θ’s. We let
the global scale parameter γ follow a half-Cauchy distribution:

γ ∼ C+(0, ζ)

Adaptive SPMRF smoothing prior
We can allow locally-adaptive behavior and increase smoothing properties by
putting a shrinkage prior on ∆kθi :

∆kθi ∼ Horseshoe(0, γ)

γ ∼ C+(0, ζ)

where γ is the global smoothing parameter. The result is non-Gaussian Markov
random field for θ, which we call a shrinkage-prior Markov random field
(SPMRF), where in this case the shrinkage prior is the horseshoe distribution.

Adaptive SPMRF continued
There is no closed form for the marginal joint distribution of θ for the horseshoe
SPRMF, but we can introduce a set of latent variables τ that allow a
hierarchical representation where the joint distribution of θ is normal conditional
on τ :

θ | Q(τ ) ∼ N(µ,Q(τ )−1)

τij | γ ∼ C+(0, γ)

γ ∼ C+(0, ζ)

For the first-order model the τij can be seen as scale parameters for the
distributions of the pairwise differences θi − θj . Here the precision matrix is
specified as in the GMRF but without γ and now

wij =
1

dijτ 2
ij

Shrinkage priors
A good shrinkage prior will:

Shrink weak signals: high
mass near zero

Let strong signals through:
long tails −4 −2 0 2 4
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Posterior inference
We use Hamiltonian Monte Carlo (HMC) for posterior inference. HMC uses
Hamiltonian dynamics to generate joint parameter proposals. This proposal
mechanism results in improved mixing and high acceptance rates, but the
gradient calculations can be costly for some models. The sparse precision
matrices allow the use of sparse matrix operations to reduce computation costs.

Simulated spatial processes
We investigate two scenarios, each on a 10 x 10 uniform grid with a single
observation per grid cell. Observations are conditionally independent where
yi | θ ∼ N(θi , σ

2) and σ2 = 4 in each scenario. We only investigate results for a
single realization for each process.

Scenario 1:

Truth Observed
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Scenario 2:

Truth Observed
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Data example: SIDS
Data are counts of incidence of sudden infant death syndrome (SIDS) by county
for 100 counties of North Carolina for 1974-1978. Additional data on number of
births by county. Interest in estimating probability of SIDS spatially. Note that
this is not an ideal data example for exploring this method and is being used as
a temporary exercise to demonstrate proof of concept.
Data
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Models

Let yi be the number of SIDS deaths and Ni be the number of births for
county i over the time period. Then we assume

yi | θ ∼ Poisson(exp(θi)Ni)

GMRF model
θ | γ ∼ N(µ,Q−1)

SPMRF model:
θ | γ, τ ∼ N(µ,Q(τ )−1)

τij | γ ∼ C+(0, γ)

For both models γ ∼ C+(0, 0.1)

Results
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WAIC: 442 (GMRF) vs. 435 (SPMRF)

Anson County: 0.0044 (GMFRF) vs. 0.0075 (SPMRF)

Next steps
Compare to other locally-adaptive methods with simulations.

Develop more computationally efficient methods to allow faster inference
and larger data sets.

Investigate how models respond to spatial confounding issues (e.g., Hughes
and Haran 2013).

Extend to continuous space.
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