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Peter has had a great influence on my life

» 2000 : Two PhD students working on the Bayesian approach
of the Sampson & Guttorp spatial deformation — Invited me
to give a talk in a session at the JSM 2000, followed by a
Discussion group in Seattle

» Final Workshop of the HSSS (Luminy 2000), | ended up
being a discussant because Peter couldn’t make it = Alan
Gelfand hired me to be his Post-Doc

» Our papers on “cov in cov’ (Environmetrics, 2011 and JRSS
Series C, 2014)

» Organization of PASI 2014

» Most recent one, my move from Rio de Janeiro to Montreal



Discussion about organizing PASI (2012)

» Let’s do it during the World Cup in 2014? (IN???@#@#@#)

» Peter’s flexibility (schedule, Brazil's crazy bureaucracy,
high prices)



PASI 2014 - And we did it!!!

http://www.stat.washington.edu/peter/PASI/PASI_2014.html

80 participants (more than a half were Graduate students) from
various parts of the world: Brazil, Canada, Chile, Germany,
Norway, Sweden, Switzerland, USA, Venezuela...



Geostatistics

- Estacoes de Chuva - Geo-Rio
[ ] Bairros do Municipio do Rio de Janeiro o

Figure: Rainfall monitoring stations in the city of Rio de Janeiro.



Stochastic Processes

Basic Model: Data (Y) are a (partial) realization of a random
process (stochastic process or random field)

{Y(s):seD}

where D is a fixed subset of R? with positive d-dimensional
volume. In other words, the spatial index s varies continously
throughout the region D.



Gaussian Processes

A function Y(-) taking values y(s) for s € D has a Gaussian
process distribution with mean function m(-) and covariance
function c(+,-), denoted by

Y(:) ~ GP(m(-),c(-,-))

if for any s4,--- ,s, € D, and any n=1,2,---, the joint distribution
of Y(s1),---, Y(sn) is multivariate Normal with parameters given
by

E{Y(sj)} = m(s;) and Cov(Y(s)), Y(s))) = c(si,S))

Advantages:

» Once you specify m(.) and c(.,.), the distribution of Y(-) is
fully specified

» “Easy” interpretation of associations between outcome and
covariates

» Spatial interpolation follows easily from properties of the
multivariate normal distribution



Intrinsic Stationarity

It is defined through first differences:

E(Y(s+h)-Y(s)) = 0,
Var(Y(s+h)—Y(s)) = 2y(h)

» The quantity 2y(h) is known as the variogram.
» ¥(.) is known as the semi-variogram.

» In geostatistics, 2y(.) is treated as a parameter of the random
process {Y(s):se D}



Second Order Stationarity

A random function Y/(.) satisfying:
E(Y(s)) = u vseD
Cov(Y(s),Y(s')) = c(s—s') vs,s'eD
is defined to be second-order stationary. Furthermore, if c(s — ')

is a function only of || s — s’ || (it is not a function of the locations),
then C(.) is said to be isotropic.



A standard approach

In the analysis of most spatio-temporal processes in
environmental studies, observations present skewed distributions,
with a heavy right or left tail. Commonly it is assumed

» a transformation of the response variable to follow a GP (the
same one at all sampling locations)

» the process to be stationary and isotropic — distribution is
unchanged when the origin of the index set is translated, and
the process is invariant under rotation about the origin

Is this a reasonable approach?



Effect of data transformation

» Wallin and Bolin (2015) point out that a transformation
Y(s) = g(Z(s)) of the spatial process may induce
dependence between the mean and covariance structures of
Z(s)

» E.g.: v/Z(s), such that Y(s) = X(s)'B + S(s) + &(s), then
Wallin and Bolin (2015) show that

E(Z(s)) = Cs(0)+2(X(s)B)>
C(Z(s),Z(s)) = 2Cs(s—8')2+4(X(s)B)(X(s')B)Cs(s — )

» Covariance structure depends on the mean structure =
nonstationary = gets more complicated when we assume
more complex models (nonlinear mean, nonstationary
covariance...)

Maybe we should model the process in its original scale



Transformed Gaussian Random Fields

De Oliveira et. al (1997)
Let {Z(s),s € D}, D c R? be the random field of interest. They
propose to model

{Y(s) = 91(£(s)), s€ D}

where each g, (+) is a nonlinear monotone transformation, g (-)
exists and is continuous in A x R — a possible family is the
Box-Cox family of power transformations

»
> inference procedure is performed under a single framework —
A is jointly estimated with other model parameters
» spatial interpolation is performed integrating out the posterior
distribution of the parameters

» Cons
» Fall back into the problem mentioned by Wallin and Bolin
(2015)
» How to describe the estimated spatial correlation? And what
about the association between covariates and the outcome?



Gaussian-log-Gaussian model - Palacios and
Steel (2006)

Z(s)=w(s))p +o )(f(;) L 18(s),

> £ =(g(s1), -, &(8n))' ~ N(0,Co)
» log(A) = (log(A1), -+ ,log(2n)) ~ N (31,vCs)
» E(A(s)) =1
» Var(A(s)) =exp(v)—
» Large values of v induce thicker tails, and as v — 0 Normal
tails are retrieved
» O(sj) ~ N(0,1)i.i.d’s
Properties:
» Cov(d) =02 Ce(d)exp (v{1+ 1[Ce(d)—1]})
» small values of A(s) are regions of the space where the
observations tend to be relatively far away from the estimated
mean surface — spatial heteroskedasticity



Fonseca and Steel (Environmetrics and
Biometrika 2011)

» Fonseca and Steel (Environmetrics, 2011) propose
non-separable, stationary covariance functions through
mixing over separable models

» Fonseca and Steel (Biometrika 2011) extend Palacios and
Steel (2006) and Fonseca and Steel (2011) to construct
non-Gaussian with non-separable covariance structures —
allows to identify regions in space and time with large
variances

» Zareifard and Kaledi (2013) combine the Unified
Skew-Normal representation of Arellano-Valle and Azzalini
(2006) with the model by Palacios and Steel to propose the
unified skew Gaussian-log Gaussian (SUGLG) to account for
skewness and heavy-tails

» Bueno, Fonseca, and Schmidt (under revision, 2017) allows
v to depend on covariates



Multivariate skew-normal distribution

Definition (Azzalini & Dalla Valle, 1996)

A random vector H follows a multivariate skew normal distribution
if each element of H can be written as
L

)

Hy=&no| +(1-88)"2e, 1=1,--

where 1ng ~ N(0,1), e=(ey,---,€.) is a random vector following a
multivariate normal distribution with correlation matrix M, and with
standard normal marginals, the elements of e are independent of
Mo

Some references that use this distribution: Kim & Mallick(2004)
and Frihwirth-Schnatter & Pyne(2010).



Multivariate skew-normal distribution

» Some care must be taken when using the multivariate
skew-normal of Azzalini & Dalla Valle (1996) for spatial
observations

» Zhang & El-Shaarawi (2010) mention that, when the
asymmetry is high, the spatial correlation between 2 locations
gets close to 1 regardless of the distance between these two
locations

» When there is a single realization of the spatial process,
Genton & Zhang (2012) mention that the parameters are not
well identified, even if the number of locations is high. They
also show that the model proposed by Zhang & El-Shaarawi
(2010) avoids this problem



Zhang & El-Shaarawi (2010)

Let Z(s) be a process defined in a continuous region, s € G C RP.
Assume

Z(s) = m(s)+cn(s) +e(s)

where
»ceR
» 1n(s) is independent of e(s+r), V{s,s+r € G},
> {n(s) ~ PG(0,1,py(d)),s € D},
» {e(s) ~ PG(0,1,7/(d =0)+ Vp(d)),s €D}

» Itis also challenging to estimate models’ parameters if there
is only a single partial-realization of the process



Schmidt, Gongalves and Velozo (2017)

Let {Zi(s);s € G;t=1,2,...} be a stochastic process in discrete
time t and location s € G, with G C RP, p=1, 2, or 3. Let

Zi(s) = my(s)+o(s)ni(s)|+ v/ Viax(s) +ve(s)

m(s) = Xi(s)8:+Ai(s)Y,
0: = Gi0;_1+e, e ~NgO W)



Schmidt, Gongalves and Velozo (2017)

Let {Zi(s);s € G;t=1,2,...} be a stochastic process in discrete
time t and location s € G, with G C RP, p=1, 2, or 3. Let

Zi(s) = my(s)+0(s)|ni(s)|+ v Viax(s) + Vrel(s)

» o(s)eR
> o(s)=0= GP model
> A priori, we assume

o(s) | to, Vo ~id N(us, Vo)

> o ~ N(mgo, Cop), and Vi ~ exp(Cv)
» Then, marginally, the prior for o(s) has
E(o(s))=my and  V(o(s))=1/C,+ Coo

Coo
1/Cy + Coo

Cov(o(s),0(s'))=Coo and ps= Corr(co(s),o(s')) =

» Fix Cy according to its 1-to-1 relationship with ps, as C, = #‘ipg)



Schmidt, Gongalves and Velozo (2017)

Let {Zi(s);s € G;t=1,2,...} be a stochastic process in discrete
time t and location s € G, with G C RP, p=1, 2, or 3. Let

Zi(s) = my(s)+o(s)ni(s)|+ v/ Viax(s) +ve(s)

» V. 7> 0 are scale parameters

» n; and ®; are independent, zero mean GPs, with variance
equals 1 and spatial correlation functions p; and p,
respectively

> &(s) ~N(0,1) i.i.d.



Schmidt, Gongalves and Velozo (2017)

Let {Zi(s);s € G;t=1,2,...} be a stochastic process in discrete
time t and location s € G, with G C RP, p=1, 2, or 3. Let

Zi(s) = my(s)+o(s)ni(s)|+ v/ Viax(s) +ve(s)

|Og Vi = loQ Vt—1 + e;/? et“/ ~ N(07 VV)



Resultant Covariance Structure
Let Wi(s) = a(s)In:(s)| + v Viar(s) + /7ei(S), Vs € G, then

If o(s) and V;
cov(Wi(s), Wy (s))

_ { 26(8)a(s') (/1 - P3(d) + py(d)arcsin(pn (d)) 1) + Vip(d) + 7/(d),
07

d =||s—¢||, and I(d) is an indicator function, such that /(d) =1, if d = 0.

» Parameter for asymmetry o4(s) = St(f)r — process at different

locations might have different distributions
» GP is a particular case
» Nonstationary covariance structure

» Cons:

» There are two spatial processes — two covariance matrices

» Estimated spatial correlation seems smoother than the
empirical one

» How much skewness can it handle?

t=t
t£t



Xu and Genton (2017)

» Spatial process based on Tukey’s g-and-h transformation,
that assumes

Tq.n(2) = g~ {exp(9z) — 1} exp(hz?/2)

» Let Z(-) be a standard Gaussian random field with some
correlation function pz(||h||), and

T(s) = 7g.n(Z(s))
they define a general random field Y(s) as
Y(s) = Po+X(s)B+@T(s)

o > 0 is a scale parameter, 8 € RP



Xu and Genton (2017)

Properties:

» E(T(s)) is a function of g and h, and Cr(s,s’) is a function of
pz(s,s’), g, hand E(T(s))

» If g=h=0 Y(s) reduces to a Gaussian random field

» For h=0and g > 0 Y(s) is a shifted log-Gaussian random

field
» For g=0and h> 0 Y(s) becomes a Pareto-like marginal
random field

» It can model left-skewed data with g < 0

» If h<1/2 and Z(s) is a second-order stationary, then T(s) is
also second-order stationary; (b) T(s) is mean-square
continuous iff Z(s) is; (c) T(s) is m-times mean-square
differentiable if Z(s) is

» Inference is via MLE, and if measurement error is present it
only allows inference for the model

Y(s) = Po+X(s)B+o1s(V(s)+e(s))



Bolin (2014) and Wallin and Bolin (2015)

» Based on the fact that a Matérn field X(s) can be viewed as
a solution to the SPDE

(K2 —N)*2X =M

The Gaussian Matérn fields are recovered by choosing M as
a Gaussian white noise scaled by a variance parameter ¢

» Bolin (2014) extends this for the case where M is
non-Gaussian, focused on SPDE’s driven by generalized
asymmetric Laplace noise

» Proposed model

y = BB+Aw+e
= Kg' (Byy+1,Buu+0VVZ)

» Xu and Genton (2017) mention that “Although this provides
an interesting alternative, their approach is mathematically
involved and its statistical properties are much less
understood than the transGaussian random field.”



Discussion

» Exploratory Data Analysis
» Interpretation of fixed effects under different distributions

» Are we able to estimate parameters from these complex
models from a single partial realization of the field?

» Approaches based on Copulas

» Random effects in Generalized Spatial Models: should we
explore non-Gaussian random effects?

» Big data
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