BPS state counting in K3 string theories Roberto Volpato

Dipartimento di Fisica, Università di Padova \& INFN sezione di Padova

Banff, November 1, 2017

Based on

arXiv 1702.05095
in collaboration with:

Natalie Paquette

Max Zimet

Introduction

* String models with 16 supersymmetries arising from type IIA/B on $K 3 \times T^{2}$ and their orbifolds (CHL models)

Introduction

* String models with 16 supersymmetries arising from type IIA/B on $K 3 \times T^{2}$ and their orbifolds (CHL models)
* Goal: Calculate space-time index counting 1/4 BPS states for each value of electric-magnetic charges

Introduction

* String models with 16 supersymmetries arising from type IIA/B on $K 3 \times T^{2}$ and their orbifolds (CHL models)
* Goal: Calculate space-time index counting 1/4 BPS states for each value of electric-magnetic charges
* Some of the first examples of matching BH black hole entropy vs microscopic degeneracy [Strominger, Vafa 95; Dijkgraaf, Verlinde² 96 Shih, Strominger, Yin 2005; David, Sen 2006; ...]

Introduction

* Goal: Calculate space-time index counting $1 / 4$ BPS states for each value of electric-magnetic charges

Introduction

* Goal: Calculate space-time index counting $1 / 4$ BPS states for each value of electric-magnetic charges
* All these indices organized into a generating function $1 / \Phi$

Introduction

* Goal: Calculate space-time index counting 1/4 BPS states for each value of electric-magnetic charges
* All these indices organized into a generating function $1 / \Phi$
* Meromorphic Siegel modular form of genus 2

Introduction

* Goal: Calculate space-time index counting $1 / 4$ BPS states for each value of electric-magnetic charges
* All these indices organized into a generating function $1 / \Phi$
* Meromorphic Siegel modular form of genus 2
* For type IIA/K3 $\times T^{2}$, Φ is Igusa cusp form of weight 10

Introduction

* Non-linear sigma model (NLSM) on K3 2-dim superconformal field theory

Introduction

* Non-linear sigma model (NLSM) on K3 2-dim superconformal field theory
※ Elliptic genus of $\mathrm{K} 3 \phi(\tau, z)$

Introduction

* Non-linear sigma model (NLSM) on K3 2-dim superconformal field theory
* Elliptic genus of K3 $\phi(\tau, z)$
* If NLSM on K3 has a symmetry g, we can define a twining genus ϕ_{g}
* ϕ_{g} is weak Jacobi form wt 0 ind 1

Introduction

※ Φ is the Borcherds lift of ϕ_{g}

Introduction

* Φ is the Borcherds lift of ϕ_{g}
* some ϕ_{g} cannot be computed directly in the NLSM

Introduction

* Φ is the Borcherds lift of ϕ_{g}
* some ϕ_{g} cannot be computed directly in the NLSM
* Idea: use consistency conditions on $1 / \Phi$ from wall-crossing

Introduction

* Φ is the Borcherds lift of ϕ_{g}
* some ϕ_{g} cannot be computed directly in the NLSM
* Idea: use consistency conditions on $1 / \Phi$ from wall-crossing
* Result: for almost all g, ϕ_{g} is uniquely determined, otherwise only 2 possibilities

Overview

Introduction

NLSM on K3

Strings on $K 3 \times T^{2}$
CHL models

NLSM on K3

NLSM on K3

Basic facts about NLSM on K3
※ 2- $\operatorname{dim} \mathcal{N}=(4,4)$ superconformal at $c=\bar{c}=6$

NLSM on K3

Basic facts about NLSM on K3

* 2- $\operatorname{dim} \mathcal{N}=(4,4)$ superconformal at $c=\bar{c}=6$
* Depends on the choice of metric and B-field (80-dim moduli space of theories).
[Aspinwall, Morrison '95; Nahm, Wendland '99]

NLSM on K3

Basic facts about NLSM on K3

* 2- $\operatorname{dim} \mathcal{N}=(4,4)$ superconformal at $c=\bar{c}=6$
* Depends on the choice of metric and B-field (80-dim moduli space of theories).
[Aspinwall, Morrison '95; Nahm, Wendland '99]
* Elliptic genus of K3:

$$
\phi_{K 3}(\tau, z)=\operatorname{Tr}_{R R}\left(q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right)
$$

where $(\tau, z) \in \mathbb{H} \times \mathbb{C}, q=e^{2 \pi i \tau}, y=e^{2 \pi i z}$
J_{0}, \bar{J}_{0} are generators in $\operatorname{su}(2)$ in $\mathcal{N}=4$
[Schellekens, Warner '86; Witten '87;
Eguchi, Ooguri, Taormina, Yang '88]

Elliptic genus of K3: properties

$\phi_{K 3}(\tau, z)=\operatorname{Tr}_{R R}\left(q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}}-\frac{\bar{c}}{24} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right)$
※ Only right-moving ground states contribute
\rightarrow holomorphic in τ and z

Elliptic genus of K3: properties

$\phi_{K 3}(\tau, z)=\operatorname{Tr}_{R R}\left(q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}}-\frac{\bar{c}}{24} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right)$
※ Only right-moving ground states contribute \rightarrow holomorphic in τ and z

* Independent of the metric and B-field

Elliptic genus of K3: properties

$\phi_{K 3}(\tau, z)=\operatorname{Tr}_{R R}\left(q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}}-\frac{\bar{c}}{24} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right)$
※ Only right-moving ground states contribute \rightarrow holomorphic in τ and z

* Independent of the metric and B-field
* Elliptic and modular properties:

$$
\begin{aligned}
& \phi\left(\tau, z+\ell \tau+\ell^{\prime}\right)=e^{-2 \pi i\left(\ell^{2} \tau+2 \ell z\right)} \phi(\tau, z) \quad \ell, \ell^{\prime} \in \mathbb{Z} \\
& \phi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right)=e^{\frac{2 \pi i c z^{2}}{c \tau+d}} \phi(\tau, z) \quad\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z}) \\
& \equiv \text { (weak) Jacobi form of weight } 0 \text { and index } 1
\end{aligned}
$$

Elliptic genus of K3: properties

$$
\phi_{K 3}(\tau, z)=\operatorname{Tr}_{R R}\left(q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right)
$$

* Only right-moving ground states contribute \rightarrow holomorphic in τ and z
* Independent of the metric and B-field
* Elliptic and modular properties:
$\phi\left(\tau, z+\ell \tau+\ell^{\prime}\right)=e^{-2 \pi i\left(\ell^{2} \tau+2 \ell z\right)} \phi(\tau, z) \quad \ell, \ell^{\prime} \in \mathbb{Z}$
$\phi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right)=e^{\frac{2 \pi i c z^{2}}{c \tau+d}} \phi(\tau, z) \quad\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})$
\equiv (weak) Jacobi form of weight 0 and index 1
* $\phi(\tau, z)=\sum_{n \geq 0, l} c(n, l) q^{n} y^{l}$

Symmetries of NLSM on K3

* NLSM on K3 can have (finite) group G of symmetries commuting with $\mathcal{N}=(4,4)$ and spectral flow

Symmetries of NLSM on K3

* NLSM on K3 can have (finite) group G of symmetries commuting with $\mathcal{N}=(4,4)$ and spectral flow
* For each $g \in G$, define twining genus

$$
\begin{aligned}
& \phi_{g}(\tau, z)=\operatorname{Tr}_{R R}\left(g q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right) \\
& \text { Weak Jacobi form wt } 0 \text { ind } 1 \mathrm{wrt} \\
& \Gamma_{g} \subseteq S L(2, \mathbb{Z})
\end{aligned}
$$

Symmetries of NLSM on K3

* NLSM on K3 can have (finite) group G of symmetries commuting with $\mathcal{N}=(4,4)$ and spectral flow
* For each $g \in G$, define twining genus
$\phi_{g}(\tau, z)=\operatorname{Tr}_{R R}\left(g q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right)$
Weak Jacobi form wt 0 ind 1 wrt
$\Gamma_{g} \subseteq S L(2, \mathbb{Z})$
* Classification: at most 81 independent twining genera ϕ_{g}
[Cheng, Harrison, Volpato, Zimet 2016]

Symmetries of NLSM on K3

* NLSM on K3 can have (finite) group G of symmetries commuting with $\mathcal{N}=(4,4)$ and spectral flow
* For each $g \in G$, define twining genus
$\phi_{g}(\tau, z)=\operatorname{Tr}_{R R}\left(g q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right)$
Weak Jacobi form wt 0 ind 1 wrt
$\Gamma_{g} \subseteq S L(2, \mathbb{Z})$
* Classification: at most 81 independent twining genera ϕ_{g}
[Cheng, Harrison, Volpato, Zimet 2016]
Can we find all of them?

※ In NLSM(K3) with symmetry g, define

$\mathcal{H}_{r, s}:=\left\{v\right.$ in g^{r}-twisted sector

$$
\text { s.t. } \left.g(v)=e^{\frac{2 \pi i s}{N}} v\right\}
$$

for $r, s \in \mathbb{Z} / N \mathbb{Z}$

* In NLSM(K3) with symmetry g, define

$\mathcal{H}_{r, s}:=\left\{v\right.$ in g^{r}-twisted sector

$$
\text { s.t. } \left.g(v)=e^{\frac{2 \pi i s}{N}} v\right\}
$$

for $r, s \in \mathbb{Z} / N \mathbb{Z}$

* N^{2} equivariant elliptic genera

$$
\phi_{r, s}^{(g)}(\tau, z)=\operatorname{Tr}_{\mathcal{H}_{r, s}}^{R R}\left(q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right)
$$

* In NLSM(K3) with symmetry g, define
$\mathcal{H}_{r, s}:=\left\{v\right.$ in g^{r}-twisted sector

$$
\text { s.t. } \left.g(v)=e^{\frac{2 \pi i s}{N}} v\right\}
$$

for $r, s \in \mathbb{Z} / N \mathbb{Z}$

* N^{2} equivariant elliptic genera

$$
\phi_{r, s}^{(g)}(\tau, z)=\operatorname{Tr}_{\mathcal{H}_{r, s}}^{R R}\left(q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right)
$$

* $\left\{\phi_{r, s}^{(g)}\right\}$ are vector-valued weak Jacobi forms
* In NLSM(K3) with symmetry g, define
$\mathcal{H}_{r, s}:=\left\{v\right.$ in g^{r}-twisted sector

$$
\text { s.t. } \left.g(v)=e^{\frac{2 \pi i s}{N}} v\right\}
$$

for $r, s \in \mathbb{Z} / N \mathbb{Z}$

* N^{2} equivariant elliptic genera

$$
\phi_{r, s}^{(g)}(\tau, z)=\operatorname{Tr}_{\mathcal{H}_{r, s}}^{R R}\left(q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{\bar{c}}{24}} y^{J_{0}}(-1)^{J_{0}+\bar{J}_{0}}\right)
$$

* $\left\{\phi_{r, s}^{(g)}\right\}$ are vector-valued weak Jacobi forms
$※ \phi_{g^{n}}=\sum_{s \in \mathbb{Z}_{N}} e^{\frac{2 \pi i n s}{N}} \phi_{r, s}$

Strings on $K 3 \times T^{2}$

Strings on K3

het $/ T^{6} \quad \leftrightarrow \quad\left\|\mathrm{~A} / K 3 \times T^{2} \quad \leftrightarrow \quad\right\| \mathrm{B} / K 3 \times T^{2}$

* $4-\operatorname{dim} \mathcal{N}=4$ with generic gauge group $U(1)^{28}$

Strings on K3

het $/ T^{6} \quad \leftrightarrow \quad\left\|\mathrm{~A} / K 3 \times T^{2} \quad \leftrightarrow \quad\right\| \mathrm{B} / K 3 \times T^{2}$

* 4- $\operatorname{dim} \mathcal{N}=4$ with generic gauge group $U(1)^{28}$
* electric-magnetic charges $(Q, P) \in \Gamma^{6,22} \oplus \Gamma^{6,22}$

Strings on K3

het $/ T^{6} \quad \leftrightarrow \quad\left\|\mathrm{~A} / K 3 \times T^{2} \quad \leftrightarrow \quad\right\| \mathrm{B} / K 3 \times T^{2}$

* 4- $\operatorname{dim} \mathcal{N}=4$ with generic gauge group $U(1)^{28}$
* electric-magnetic charges $(Q, P) \in \Gamma^{6,22} \oplus \Gamma^{6,22}$
* Duality group $O\left(\Gamma^{6,22}\right) \times S L(2, \mathbb{Z})$
[Sen '94; Witten '94]

Strings on K3

het $/ T^{6} \quad \leftrightarrow \quad\left\|\mathrm{~A} / K 3 \times T^{2} \quad \leftrightarrow \quad\right\| \mathrm{B} / K 3 \times T^{2}$

* 4- $\operatorname{dim} \mathcal{N}=4$ with generic gauge group $U(1)^{28}$
* electric-magnetic charges $(Q, P) \in \Gamma^{6,22} \oplus \Gamma^{6,22}$
* Duality group $O\left(\Gamma^{6,22}\right) \times S L(2, \mathbb{Z})$
[Sen '94; Witten '94]
* 134-dim moduli space

1/4 BPS index

* For each (Q, P) consider $1 / 4$ BPS index $D(Q, P)$
$D(Q, P)=\#\{$ 'bosonic' supermultiplets $\}$ - \# \{'fermionic' supermultiplets\}

1/4 BPS index

* For each (Q, P) consider $1 / 4$ BPS index $D(Q, P)$
* Locally constant on the moduli space, but 'jumps' at walls of marginal stability (wall-crossing)

1/4 BPS index

* For each (Q, P) consider $1 / 4$ BPS index $D(Q, P)$
* Locally constant on the moduli space, but 'jumps' at walls of marginal stability (wall-crossing)
* Invariant under duality group $O\left(\Gamma^{6,22}\right) \times S L_{2}(\mathbb{Z})$

1/4 BPS index

* For each (Q, P) consider $1 / 4$ BPS index $D(Q, P)$
* Locally constant on the moduli space, but 'jumps' at walls of marginal stability (wall-crossing)
* Invariant under duality group $O\left(\Gamma^{6,22}\right) \times S L_{2}(\mathbb{Z})$
※ Describe as function of $O\left(\Gamma^{6,22}\right)$-invariants

$$
D(Q, P)=(-1)^{Q \cdot P+1} d\left(\frac{Q^{2}}{2}, \frac{P^{2}}{2}, P \cdot Q\right)
$$

1/4 BPS index

* For each (Q, P) consider $1 / 4$ BPS index $D(Q, P)$
* Locally constant on the moduli space, but 'jumps' at walls of marginal stability (wall-crossing)
* Invariant under duality group $O\left(\Gamma^{6,22}\right) \times S L_{2}(\mathbb{Z})$
※ Describe as function of $O\left(\Gamma^{6,22}\right)$-invariants

$$
D(Q, P)=(-1)^{Q \cdot P+1} d\left(\frac{Q^{2}}{2}, \frac{P^{2}}{2}, P \cdot Q\right)
$$

* Goal: Find $d(n, m, l)$ for all $n, m, l \in \mathbb{Z}$

1/4 BPS index

Organize into a generating function

$$
\frac{1}{\Phi\left(\begin{array}{c}
\underset{z}{z} \underset{\tau}{z})
\end{array}=\sum_{n, m, l} d(n, m, l) e^{2 \pi i(m \sigma+n \tau+l z)}, ~(m)\right.}
$$

for some complex 'chemical potentials' σ, τ, z

1/4 BPS index

* Organize into a generating function

$$
\frac{1}{\Phi\left(\begin{array}{cc}
\underset{z}{z} & z \\
\tau
\end{array}\right)}=\sum_{n, m, l} d(n, m, l) e^{2 \pi i(m \sigma+n \tau+l z)}
$$

for some complex 'chemical potentials' σ, τ, z

* Given by exp-lift of elliptic genus

$$
\frac{1}{\Phi\left(\begin{array}{c}
\sigma \\
z \\
\tau
\end{array}\right)}=\prod_{n, m \geq 0, l}\left(1-e^{2 \pi i(m \sigma+n \tau+l z)}\right)^{-c(m n, l)}
$$

($l<0$ if $m=n=0$)
where $c(m n, l)$ are Fourier coeffs of $\phi_{K 3}$
[Dijkgraaf, Verlinde, Verlinde '96; Shih, Strominger, Yin 2005; David, Sen 2006]

Wall crossing

* Some $1 / 4$ BPS states can decay into pair of $1 / 2$ BPS in subregions of the moduli space $\Rightarrow D(Q, P)$ 'jumps' across wall of marginal stability [Bergman '97; Bergman, Kol '98; Denef '00]

Wall crossing

* Some 1/4 BPS states can decay into pair of $1 / 2$ BPS in subregions of the moduli space
$\Rightarrow D(Q, P)$ 'jumps' across wall of marginal stability [Bergman '97; Bergman, Kol '98; Denef '00]
* Fourier coefficients of $1 / \Phi$

$$
d(n, m, l)=\oint_{\mathcal{C}} \frac{e^{-2 \pi i(m \sigma+n \tau+l z)}}{\Phi\left(\begin{array}{cc}
\sigma & z \\
z
\end{array}\right)}
$$

where

$$
\mathcal{C}:=\left\{0 \leq \sigma_{1}, \tau_{1}, z_{1} \leq 1,\left(\begin{array}{c}
\sigma_{2} z_{2} \\
z_{2} \\
\tau_{2}
\end{array}\right) \text { fixed }\right\}
$$

Wall crossing

* Some $1 / 4$ BPS states can decay into pair of $1 / 2$ BPS in subregions of the moduli space
$\Rightarrow D(Q, P)$ 'jumps' across wall of marginal stability [Bergman '97; Bergman, Kol '98; Denef '00]
* Fourier coefficients of $1 / \Phi$

$$
d(n, m, l)=\oint_{\mathcal{C}} \frac{e^{-2 \pi i(m \sigma+n \tau+l z)}}{\Phi\left(\begin{array}{c}
\sigma \\
z
\end{array} \underset{\tau}{z}\right)}
$$

where

$$
\mathcal{C}:=\left\{0 \leq \sigma_{1}, \tau_{1}, z_{1} \leq 1,\binom{\sigma_{2} z_{2}}{z_{2} \tau_{2}} \text { fixed }\right\}
$$

* $1 / \Phi$ is meromorphic $\Rightarrow d(n, m, l)$ ambiguous

Wall crossing

Contour prescription: \mathcal{C} depends on moduli and charges
$\mathcal{C}:=\left\{0 \leq \sigma_{1}, \tau_{1}, z_{1} \leq 1,\left(\begin{array}{cc}\sigma_{2} & z_{2} \\ z_{2} & \tau_{2}\end{array}\right)=\epsilon^{-1} \mathcal{Z}(Q, P, \mu)\right\}$ where $\epsilon \ll 1$ and Z is the 'central charge vector'
[Cheng, Verlinde 2007]

Wall crossing

Contour prescription: \mathcal{C} depends on moduli and charges
$\mathcal{C}:=\left\{0 \leq \sigma_{1}, \tau_{1}, z_{1} \leq 1,\left(\begin{array}{c}\sigma_{2} \\ z_{2} \\ z_{2} \\ \tau_{2}\end{array}\right)=\epsilon^{-1} \mathcal{Z}(Q, P, \mu)\right\}$ where $\epsilon \ll 1$ and z is the 'central charge vector' [Cheng, Verlinde 2007]

* Poles of $1 / \Phi$ exactly at walls of marginal stability

Wall crossing

Contour prescription: \mathcal{C} depends on moduli and charges
$\mathcal{C}:=\left\{0 \leq \sigma_{1}, \tau_{1}, z_{1} \leq 1,\left(\begin{array}{c}\sigma_{2} \\ z_{2} \\ z_{2} \\ \tau_{2}\end{array}\right)=\epsilon^{-1} \mathcal{Z}(Q, P, \mu)\right\}$ where $\epsilon \ll 1$ and z is the 'central charge vector' [Cheng, Verlinde 2007]

* Poles of $1 / \Phi$ exactly at walls of marginal stability
* Residue at pole matches the 'jump' of $D(Q, P)$

Wall crossing

Contour prescription: \mathcal{C} depends on moduli and charges
$\mathcal{C}:=\left\{0 \leq \sigma_{1}, \tau_{1}, z_{1} \leq 1,\left(\begin{array}{c}\sigma_{2} z_{2} \\ z_{2} \\ \tau_{2}\end{array}\right)=\epsilon^{-1} \mathcal{Z}(Q, P, \mu)\right\}$ where $\epsilon \ll 1$ and z is the 'central charge vector'
[Cheng, Verlinde 2007]

* Poles of $1 / \Phi$ exactly at walls of marginal stability
* Residue at pole matches the 'jump' of $D(Q, P)$
* Independent interpretations
[Banerjee, Sen, Srinistava 2008; Bossard,
Cosnier-Horeau, Pioline 2016]

CHL models

CHL model definition

* Consider type II/K3 $\times S^{1} \times \tilde{S}^{1}$

[Chaudhuri,Hockney,Lykken 95; Sen,Vafa 95]

CHL model definition

* Consider type II/K3 $\times S^{1} \times \tilde{S}^{1}$
* Orbifold by (δ, g), where

当 g is symmetry of NLSM on K3, $\operatorname{ord}(g)=N$, preserving $\mathcal{N}=4$ SUSY

* δ is a shift by $1 / N$ period along S^{1}

CHL model definition

* Consider type $\mathrm{II} / K 3 \times S^{1} \times \tilde{S}^{1}$
* Orbifold by (δ, g), where
* g is symmetry of NLSM on K3, ord $(g)=N$, preserving $\mathcal{N}=4$ SUSY
* δ is a shift by $1 / N$ period along S^{1}

Obtain 4-d $\mathcal{N}=4$ theory with

* reduced gauge group $U(1)^{d}(6 \leq d \leq 28)$
* reduced moduli space
※ e-m charges $(Q, P) \in \Lambda_{e} \oplus \Lambda_{m}\left(r k \Lambda_{e, m}=d\right)$
* Duality group $\supset O\left(\Lambda_{e}\right)$
[Chaudhuri,Hockney, Lykken 95; Sen, Vafa 95]

1/4 BPS states

* $1 / 4$ BPS index depends on $O\left(\Lambda_{e}\right)$-invariants

$$
D_{g}(P, Q)=(-1)^{P \cdot Q+1} d_{g}\left(P^{2} / 2, Q^{2} / 2, P \cdot Q\right)
$$

1/4 BPS states

* $1 / 4 \mathrm{BPS}$ index depends on $O\left(\Lambda_{e}\right)$-invariants

$$
D_{g}(P, Q)=(-1)^{P \cdot Q+1} d_{g}\left(P^{2} / 2, Q^{2} / 2, P \cdot Q\right)
$$

* Generating function $1 / \Phi_{g}$ of $d_{g}(n, m, l)$ is exponential lift of twining genera [Jatkar, Sen 05]

$$
\frac{1}{\Phi_{g}\left(\begin{array}{c}
\underset{z}{z} \\
\underset{\tau}{z})
\end{array}\right.}=\prod_{(n, m, l)}\left(1-e^{2 \pi i\left(m \sigma+\frac{n \tau}{N}+l z\right)}\right)^{-c_{n, m}^{(g)}\left(\frac{n m}{N}, l\right)}
$$

$c_{n, m}^{(g)}\left(\frac{n m}{N}, l\right)$: linear combinations of Fourier coeffs of $\phi_{g^{d},}$, for $d \mid N$, and their $S L(2, \mathbb{Z})$ transformations

Wall crossing in CHL models

* Similar wall-crossing for 'decaying' of $1 / 4$ BPS to pair of $1 / 2 \mathrm{BPS}$ states [sen 2007]

Wall crossing in CHL models

* Similar wall-crossing for 'decaying' of 1/4 BPS to pair of $1 / 2 \mathrm{BPS}$ states [Sen 2007]

Main assumption: Contour prescription provides the correct $d_{g}(n, m, l)$ at all points in moduli space $\Rightarrow 1 / \Phi_{g}$ has only poles at the walls

How to compute the remaining $1 / \Phi_{g}$?

* We can determine walls of marginal stability
[Paquette, Volpato, Zimet 2017]

How to compute the remaining $1 / \Phi_{g}$?

* We can determine walls of marginal stability * By contour prescription \rightarrow poles of $1 / \Phi_{g}$
[Paquette, Volpato, Zimet 2017]

How to compute the remaining $1 / \Phi_{g}$?

* We can determine walls of marginal stability
* By contour prescription \rightarrow poles of $1 / \Phi_{g}$
* Via exponential lift $\rightarrow \operatorname{sign~of~} c_{m, n}^{(g)}\left(\frac{m n}{N}, l\right)$ for $4 \frac{m n}{N}-l^{2}<0$
[Paquette, Volpato, Zimet 2017]

How to compute the remaining $1 / \Phi_{g}$?

* We can determine walls of marginal stability
* By contour prescription \rightarrow poles of $1 / \Phi_{g}$
* Via exponential lift $\rightarrow \operatorname{sign~of~} c_{m, n}^{(g)}\left(\frac{m n}{N}, l\right)$ for $4 \frac{m n}{N}-l^{2}<0$

This info + modularity $+q^{0}$ Fourier coeffs \downarrow
ϕ_{g} and $1 / \Phi_{g}$ determined almost completely (either uniquely or up to 2 possibilities)

Open questions

* Can all $1 / \Phi_{g}$ be determined exactly?
* Can $1 / \Phi_{g}$ be fixed without passing through NLSM(K3)?
* Relations to Umbral + Conway moonshine

