Duality for Metaplectic Ice

Ben Brubaker Valentin Buciumas Daniel Bump Nathan Gray

October 30, 2017

Also:

Brubaker, Bump, Chinta, Friedberg, Gunnells (arXiv:1009.1741) Brubaker, Buciumas and Bump (arXiv:1604.02206) Brubaker, Buciumas, Bump and Friedberg (arXiv:1704.00701)

Partition functions

In statistical mechanics, we consider an ensemble of many states. If s is a state let E(s) be its energy.

More energetic states become more probable if the system is at a higher temperature.

In Maxwell-Boltzmann statistics the probability of state s is proportional to $e^{-E(s)/k_BT}$ where k_B is Boltzmann's constant.

Thus the probability of state s is

$$\frac{1}{Z} e^{-E(s)/k_BT}$$
 where $Z = \sum_s e^{-E(s)/k_BT}$.

This Z is the partition function. Its significance goes beyond this probabilistic fact. In some sense it contains complete thermodynamic information about the system.

Solvable Lattice Models

- It was found that certain 2-dimensional lattice models can be analyzed completely.
- The first such solvable lattice model to be fully analyzed was the Ising model (Onsager, 1944).
- An identity that Onsager and Baxter called the "star-triangle relation" was used powerfully by Baxter. It was renamed the Yang-Baxter equation by Faddeev.
- For us, the Yang-Baxter equation characterizes solvability of the model.
- Fitting it into an algebraic framework led to the invention of quantum groups (Drinfeld, Jimbo).

Analytic continuation of the partition function

There is utility in considering nonreal Boltzmann weights. A spin is ± 1 . A state of the Ising model consists of an assignment of spins $s = \{s_i\}$ at vertices v_i of a lattice.

$$Z = \sum_{s} e^{-E(s)/k_BT}, \qquad -E(s) = \sum_{i,j \text{ adjacent}} Js_i s_j + \sum_i ts_i.$$

Here *t* is a parameter corresponding to an external field. It may be fruitfully be regarded as a complex parameter.

Theorem

(Lee-Yang) The zeros of Z lie on the line re(t) = 0.

This is a kind of Riemann hypothesis. (There are other similarities between partition functions and L-functions!) We do not require the Boltzmann weights to be real.

Duality in Lattice Models

- Sometimes a system may be described in very different ways.
- In quantum mechanics, the world looks different in position or momentum coordinates, related by the Fourier transform.
- Kramers and Wannier proved that for the Ising model, the partition functions of high and low temperature models are related, computing the location of the phase transition.
- In Type IIB string theory, S duality relates the partition functions for inverse coupling constant y with the system for 1/y. The partition function is an automorphic form.
- We will describe two systems originating in number theory that have the same partition function.

Six Vertex Model

Begin with a grid, usually (but not always) rectangular: column: 5 4 3 2 1 0

Edges are labeled with "spins" \pm . Boundary spins are fixed. A state assigns spins to interior edges.

Boltzmann weights: 6 Vertex Model

- A state of the system assigns spins to the interior edges.
- Each state has a Boltzmann weight which is the product of Boltzmann weights for each vertex.
- The Boltzmann weights for a vertex depend on the spins of the adjacent edges.
- The field-free six vertex model was analyzed by Lieb, Sutherland, Baxter, Korepin, Izergin. It was a primary example leading to the discovery of quantum groups.
- Let a = a(v), b = b(v), c = c(v) be complex numbers. They depend on the vertex v. Let $\Delta(v) = \frac{a^2 + b^2 c^2}{2ab}$.

Yang-Baxter equation: 6 vertex model

Theorem

(**Baxter**) If $\Delta(v) = \Delta(v')$ (condition on Boltzmann weights) there is a vertex R such that for all boundary spins σ, τ, \cdots the partition functions

are equal. (The interior edge spins are summed.)

Implies: (Baxter) Field-free 6-vertex model is solvable.

Braided Categories

We may associate with every edge ϵ a module V_{ϵ} in a monoidal category. This module is a vector space with basis + and -.

Boltzmann weights are arranged as coefficients in the R-matrix!

is interpreted as an isomorphism $V_{\alpha} \otimes V_{\beta} \to V_{\gamma} \otimes V_{\delta}$. The Yang-Baxter equation means this diagram commutes:

Braided Category

We may associate with every edge ϵ a module V_{ϵ} in a monoidal category. This module is a vector space with basis + and -.

Boltzmann weights are arranged as coefficients in the R-matrix!

is interpreted as an isomorphism $V_{\alpha} \otimes V_{\beta} \to V_{\gamma} \otimes V_{\delta}$. The Yang-Baxter equation means this diagram commutes:

Quantum Groups

- Given a braided category Tannakian theory or other methods (Drinfeld, FRT, etc.) tries to produce a Hopf algebra whose (co)modules are the given category.
- For the field-free Yang-Baxter equation, we get $U_q(\widehat{\mathfrak{sl}}_2)$ where

$$\frac{1}{2}(q-q^{-1})=\Delta=\frac{a^2+b^2-c^2}{2ab}.$$

This is the historical route to quantum groups.

Metaplectic Whittaker functions as partition functions

If F is a p-adic field containing the n-th roots of unity μ_n , there is a central extension

$$1 \longrightarrow \mu_n \longrightarrow \widetilde{\mathsf{GL}}(r) \longrightarrow \mathsf{GL}(r) \longrightarrow 1.$$

The group GL(r) is the metaplectic group.

- Interesting automorphic forms live on metaplectic groups.
- Brubaker, Bump, Chinta, Friedberg, Gunnells proposed ...
- ... and Brubaker, Buciumas and Bump, showed:
- Whittaker functions on GL(r) may be represented as partition functions of solvable lattice models.
- The relevant quantum group is $U_{\sqrt{g^{-1}}}(\widehat{\mathfrak{gl}}(n|1))$.
- This setup exhibits an interesting duality.

Metaplectic Ice

Proceed as before but label vertices by $z_i \in \mathbb{C}^{\times}$:

column: 5

Boltzmann Weights for metaplectic [lce

Choose parameters g(a) depending on $a \mod n$:

$$g(a) g(-a) = 1/v \text{ if } n \nmid a,$$

 $g(a) = -v \text{ if } n \mid a.$

(Secretly Gauss sums).

Let $z_i \in \mathbb{C}^{\times}$. Here are the Boltzmann weights:

- Horizontal edges have n + 1 possible states: +a ($a \mod n$) or -0.
- The module corresponding to a horizontal edge is a (n|1)-dimensional supervector space.

The **FF** R-matrix

The **FF** R-matrix

Another type of vertex, the R-matrix $R_{Z_1,Z_2}^{\Gamma\Gamma}$. Drinfeld twist of $\widehat{\mathfrak{gl}}(n 1)$	$Z_2^n - VZ_1^n$	$g(a-b)(z_1^n-z_2^n)$
a a (+) (+)		0 <i>a</i> +
+ b b		+ 0
$(1-v)z_1^{a-b}z_2^{n-a+b}$	$z_1^n - vz_2^n$	$V(z_1^n-z_2^n)$
a 0 —	a a (+) (+)	0 0
(+) 0 a		+ + + + + + + + + + + + + + + + + + +
$Z_1^n - Z_2^n$	$(1-v)z_1^a z_2^{n-a}$	$(1-v)z_1^{n-a}z_2^a$

Gamma-Gamma Yang-Baxter Equation

Theorem

The following partition functions are equal.

(Here a, b, c, d are the charges.)

Another Yang-Baxter equation

Theorem

Fix z_1 , z_2 and z_3 and (decorated) boundary spins. The following partition functions are equal:

Brubaker, Buciumas, Bump and Friedberg use this to construct representations of the affine Hecke algebra.

Complementary Equation

Theorem

Let $\alpha, \beta, \gamma, \delta$ be decorated spins. Then the partition function

equals
$$\begin{cases} (z_1^n - vz_2^n)(z_2^n - vz_1^n) & \text{if } \alpha = \gamma, \beta = \delta \\ 0 & \text{otherwise.} \end{cases}$$

The horizontal edges correspond to evaluation modules for a Drinfeld twist of $U_{\sqrt{V}}(\widehat{\mathfrak{gl}}(n|1))$

Whittaker coinvariants as $U_{\sqrt{q^{-1}}}(\widehat{\mathfrak{gl}}(n))$ -modules

- V: A representation of GL(r, F), $V_{u,\psi}$ its module of Whittaker coinvariants, the largest quotient through which every Whittaker functional factors.
- $\mathbf{z} = (z_1, \dots, z_r) \in \mathbb{C}^r \cong \widehat{\mathcal{T}}(\mathbb{C})$, the Langlands dual torus. It parametrizes a principal series representation $V_{\mathbf{z}}$.
- $A_w: V_z \to V_{wz}$ interwining integral.

The scattering matrix of A_{s_i} on $(V_z)_{U,\psi}$ was computed by Kazhdan and Patterson. It agrees with the R-matrix of (Drinfeld twisted) $U_{\sqrt{g^{-1}}}(\widehat{\mathfrak{gl}}(n))!$

Fermionic interpretation of vertical edges

 The vertical edges which take values ± have no interpretation as for U_{\sqrt{\vec{v}}}(\hat{\text{gl}}(n)) modules, but the aggregation of them may be interpreted as an element of the fermionic Fock space.

 $v_{-1} \wedge v_{-2} \wedge \cdots$

• Kashiwara, Miwa and Stern defined a $U_q(\mathfrak{gl}(n))$ module structure on the degree k Fermionic Fock space $\mathfrak{F}_{(k)}$ and a vertex operator $V_z \otimes \mathfrak{F}_{k-1} \longrightarrow \mathfrak{F}_k$. We think the row transfer matrix for Gamma ice computes this.

Gamma ice versus Delta Ice

Gamma Ice:

Delta Ice:

Same boundary conditions for Delta ice but reverse the rows.

Theorem (Duality Theorem)

The partition functions are equal!

Why this was discovered

- An equivalent statement was proved combinatorially by Brubaker, Bump and Friedberg (2011).
- The proof was difficult.
- Motivation: this is the p-part of a multiple Dirichlet series.
 This combinatorial fact implies the analytic continuation and functional equation.
- Brubaker, Bump, Chinta, Friedberg and Gunnells proposed that this could be proved using the Yang-Baxter equation (2012).
- A proof using the Yang-Baxter equation was given by Brubaker, Buciumas, Bump and Gray (2017)

Theorem (Duality Theorem)

The partition functions are equal!