SOME LESSONS ON COMPUTER ALGEBRA

Manuel Kauers · Institute for Algebra · JKU

Slides available at https://tinyurl.com/y8h6l6sp

NINE LESSONS ON COMPUTER ALGEBRA

Manuel Kauers · Institute for Algebra · JKU

Slides available at https://tinyurl.com/y8h6l6sp

$$+ - \times \div$$
 quo rem gcd $\stackrel{?}{=}$

$$+ - \times \div$$
 quo rem gcd $\stackrel{?}{=}$

$$\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}$$

$$\mathbf{x}^{6} + \mathbf{x}^{5} + \mathbf{x}^{4} + \mathbf{x}^{3} + \mathbf{x}^{2} + \mathbf{x} + \mathbf{e} \in \mathbf{k}[\mathbf{x}]$$

$$\frac{\mathbf{x}^{5} + \mathbf{x}^{4} + \mathbf{x}^{3} + \mathbf{x}^{2} + \mathbf{e}\mathbf{x} + \mathbf{e}}{\mathbf{x}^{5} + \mathbf{x}^{4} + \mathbf{x}^{3} + \mathbf{e}\mathbf{x}^{2} + \mathbf{e}\mathbf{x} + \mathbf{e}} \in \mathbf{k}(\mathbf{x})$$

$$\mathbf{x}^{4} + \mathbf{x}^{2} + \mathbf{e}\mathbf{x}^{3} + \mathbf{e}\mathbf{x}^{4} + \mathbf{e}\mathbf{x}^{5} + \mathbf{e}\mathbf{x}^{6} + \dots \in \mathbf{e}[\mathbf{x}]$$

$$+ - \times \div$$
 quo rem gcd $\stackrel{?}{=}$

$$\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}$$

$$\begin{aligned}
\bullet x^{6} + \bullet x^{5} + \bullet x^{4} + \bullet x^{3} + \bullet x^{2} + \bullet x + \bullet &\in k[x] \\
& \frac{\bullet x^{5} + \bullet x^{4} + \bullet x^{3} + \bullet x^{2} + \bullet x + \bullet}{\bullet x^{5} + \bullet x^{4} + \bullet x^{3} + \bullet x^{2} + \bullet x + \bullet} &\in k(x) \\
& + \bullet x + \bullet x^{2} + \bullet x^{3} + \bullet x^{4} + \bullet x^{5} + \bullet x^{6} + \dots &\in k[[x]]
\end{aligned}$$

$$+ - \times \div$$
 quo rem gcd $\stackrel{?}{=}$

$$\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}$$

$$\mathbf{x}^{6} + \mathbf{x}^{5} + \mathbf{x}^{4} + \mathbf{x}^{3} + \mathbf{x}^{2} + \mathbf{x} + \mathbf{0} \in \mathbf{k}[\mathbf{x}]$$

$$\frac{\mathbf{x}^{5} + \mathbf{x}^{4} + \mathbf{x}^{3} + \mathbf{x}^{2} + \mathbf{x} + \mathbf{0}}{\mathbf{x}^{5} + \mathbf{x}^{4} + \mathbf{x}^{3} + \mathbf{x}^{2} + \mathbf{0}\mathbf{x} + \mathbf{0}} \in \mathbf{k}(\mathbf{x})$$

$$\mathbf{x}^{6} + \mathbf{x}^{2} + \mathbf{x}^{3} + \mathbf{x}^{4} + \mathbf{x}^{5} + \mathbf{x}^{6} + \dots \in \mathbf{k}[[\mathbf{x}]]$$

$$+ - \times \div$$
 quo rem gcd $\stackrel{?}{=}$

$$\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}$$

$$\mathbf{x}^{6} + \mathbf{x}^{5} + \mathbf{x}^{4} + \mathbf{x}^{3} + \mathbf{x}^{2} + \mathbf{x} + \mathbf{e} \in \mathbf{k}[\mathbf{x}]$$

$$\frac{\mathbf{x}^{5} + \mathbf{x}^{4} + \mathbf{x}^{3} + \mathbf{x}^{2} + \mathbf{x} + \mathbf{e}}{\mathbf{x}^{5} + \mathbf{x}^{4} + \mathbf{x}^{3} + \mathbf{x}^{2} + \mathbf{e}\mathbf{x} + \mathbf{e}} \in \mathbf{k}(\mathbf{x})$$

$$\mathbf{x}^{6} + \mathbf{x}^{2} + \mathbf{e}\mathbf{x}^{3} + \mathbf{e}\mathbf{x}^{4} + \mathbf{e}\mathbf{x}^{5} + \mathbf{e}\mathbf{x}^{6} + \dots \in \mathbf{k}[[\mathbf{x}]]$$

$$+ - \times \div$$
 quo rem gcd $\stackrel{?}{=}$

2457234957927694576945792851 ∈ ℤ 🗸

$$\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}$$

 $2.718281828459045235360287471352662497\ldots \in \mathbb{R}$

$$\frac{\mathbf{0}x^5 + \mathbf{0}x^4 + \mathbf{0}x^3 + \mathbf{0}x^2 + \mathbf{0}x + \mathbf{0}}{\mathbf{0}x^5 + \mathbf{0}x^4 + \mathbf{0}x^3 + \mathbf{0}x^2 + \mathbf{0}x + \mathbf{0}} \in \mathbf{k}(\mathbf{x})$$

 $\bullet + \bullet x + \bullet x^2 + \bullet x^3 + \bullet x^4 + \bullet x^5 + \bullet x^6 + \dots \in k[[x]]$

$$+ - \times \div$$
 quo rem gcd $\stackrel{?}{=}$

- 2457234957927694576945792851 ∈ ℤ 🗸
 - $\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}$
- $2.718281828459045235360287471352662497\ldots \in \mathbb{R}$

 - $\frac{\mathbf{0}x^5 + \mathbf{0}x^4 + \mathbf{0}x^3 + \mathbf{0}x^2 + \mathbf{0}x + \mathbf{0}}{\mathbf{0}x^5 + \mathbf{0}x^4 + \mathbf{0}x^3 + \mathbf{0}x^2 + \mathbf{0}x + \mathbf{0}} \in \mathbf{k}(\mathbf{x}) \qquad \checkmark$
 - $\bullet + \bullet x + \bullet x^2 + \bullet x^3 + \bullet x^4 + \bullet x^5 + \bullet x^6 + \dots \in k[[x]]$

$$+ - \times \div$$
 quo rem gcd $\stackrel{?}{=}$

- 2457234957927694576945792851 ∈ ℤ 🗸
 - $\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}$
- $2.718281828459045235360287471352662497\ldots \in \mathbb{R}$

$$\frac{\mathbf{\Phi}\mathbf{x}^5 + \mathbf{\Phi}\mathbf{x}^4 + \mathbf{\Phi}\mathbf{x}^3 + \mathbf{\Phi}\mathbf{x}^2 + \mathbf{\Phi}\mathbf{x} + \mathbf{\Phi}}{\mathbf{\Phi}\mathbf{x}^5 + \mathbf{\Phi}\mathbf{x}^4 + \mathbf{\Phi}\mathbf{x}^3 + \mathbf{\Phi}\mathbf{x}^2 + \mathbf{\Phi}\mathbf{x} + \mathbf{\Phi}} \in \mathbf{k}(\mathbf{x}) \qquad \checkmark$$

 $\bullet + \bullet x + \bullet x^2 + \bullet x^3 + \bullet x^4 + \bullet x^5 + \bullet x^6 + \dots \in k[[x]] \quad \sim$

314744866848×824614793876

https://tinyurl.com/y8h6l6sp

Computation time grows quadratically with the input size.

Computation time grows **quadratically** with the input size.

Modern algorithms have (quasi-)linear computation time.

Computation time grows $\ensuremath{\mbox{quadratically}}$ with the input size.

Modern algorithms have (quasi-)linear computation time.

For which input sizes does the difference matter?

Lesson 1: Fast algorithms are really fast

Fast multiplication has no advantage if the input is too unbalanced.

Fast multiplication has no advantage if the input is too unbalanced.

good input:

 $O(\boldsymbol{n})$ digits

 $O(\boldsymbol{n})$ digits

Fast multiplication has no advantage if the input is too unbalanced.

good input:

O(n) digits

O(n) digits

not so good input (naive multiplication also takes linear time):

O(n) digits

O(1) digits

Example: computing n! for large n.

Example: computing n! for large n.

Naive:

$$8! = \boxed{\boxed{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \cdot 7 \cdot 8}$$

 $T(n) = \sum_{k=1}^{n} O(k) = O(n^2)$, even with fast multiplication.

Example: computing n! for large n.

Naive:

$$8! = \boxed{\boxed{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \cdot 7 \cdot 8}$$

 $T(n) = \sum_{k=1}^n \mathrm{O}(k) = \mathrm{O}(n^2),$ even with fast multiplication.

Balanced:

$$8! = \boxed{1 \cdot 2 \cdot 3 \cdot 4} \cdot \boxed{5 \cdot 6 \cdot 7 \cdot 8}$$

 $\mathsf{T}(n)=2\mathsf{T}(n/2)+\mathrm{O}^{\sim}(n)\Rightarrow\mathsf{T}(n)=\mathrm{O}^{\sim}(n)$ with fast multiplication.

 $p_0(n)a_n + p_1(n)a_{n+1} + p_2(n)a_{n+2} = 0$

$$\begin{pmatrix} a_{n+1} \\ a_{n+2} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -\frac{p_0(n)}{p_2(n)} & -\frac{p_1(n)}{p_2(n)} \end{pmatrix} \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix}$$

$$\begin{pmatrix} a_{n+1} \\ a_{n+2} \end{pmatrix} = \underbrace{\begin{pmatrix} 0 & 1 \\ -\frac{p_0(n)}{p_2(n)} & -\frac{p_1(n)}{p_2(n)} \end{pmatrix}}_{=:C(n)} \begin{pmatrix} a_n \\ a_{n+1} \end{pmatrix}$$

$$\begin{pmatrix} a_{n+1} \\ a_{n+2} \end{pmatrix} = C(n-2)C(n-3)C(n-4)\cdots C(2) \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}.$$

$$\begin{pmatrix} a_{n+1} \\ a_{n+2} \end{pmatrix} = C(n-2)C(n-3)C(n-4)\cdots C(2) \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}.$$

Lesson 2: Organize your computations well

For fixed $m \in \mathbb{Z} \setminus \{0\}$, let $f_m \colon \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$, $x \mapsto [x]_m \coloneqq x + m\mathbb{Z}$.

 $f_{\mathfrak{m}}$ is a ring homomorphism. This means

Mod(Answer(Question)) = Answer(Mod(Question))

 f_m is a ring homomorphism. This means Mod(Answer(Question)) = Answer(Mod(Question))Represent $[x]_m$ by an element $\xi \in [x]_m$ for which $|\xi|$ is minimal.

 $f_{\mathfrak{m}}$ is a ring homomorphism. This means

Mod(Answer(Question)) = Answer(Mod(Question))

Represent $[x]_m$ by an element $\xi \in [x]_m$ for which $|\xi|$ is minimal.

• $\xi \in [-m/2, m/2]$

$f_{\mathfrak{m}}$ is a ring homomorphism. This means

Mod(Answer(Question)) = Answer(Mod(Question))

Represent $[x]_m$ by an element $\xi \in [x]_m$ for which $|\xi|$ is minimal.

- $\xi \in [-m/2, m/2]$.
- If $m > 2|\mathbf{x}|$ then $\xi = \mathbf{x}$.

$\textbf{x} \in [\textbf{x}]_{\mathfrak{m}}$

https://tinyurl.com/y8h6l6sp

https://tinyurl.com/y8h6l6sp

$\underline{x} \in [x]_{\mathfrak{m}} \ \cap \ [x]_{\mathfrak{n}}$

$\underline{x} \in [x]_{\mathfrak{m}} \ \cap \ [x]_{\mathfrak{n}}$

 $\underline{x} \in [x]_{\mathfrak{m}} \ \cap \ \overline{[x]_{\mathfrak{n}}} = \overline{[x]}_{\mathsf{lcm}(\mathfrak{m},\mathfrak{n})}$

 $\mathbf{x} \in [\mathbf{x}]_{\mathfrak{m}} \cap [\mathbf{x}]_{\mathfrak{n}} = [\mathbf{x}]_{\mathsf{lcm}(\mathfrak{m},\mathfrak{n})}$

 $\mathbf{x} \in [\mathbf{x}]_{\mathfrak{m}} \cap [\mathbf{x}]_{\mathfrak{n}} = [\mathbf{x}]_{\mathsf{lcm}(\mathfrak{m},\mathfrak{n})}$

Features:

 $\mathbf{x} \in [\mathbf{x}]_{\mathfrak{m}} \cap [\mathbf{x}]_{\mathfrak{n}} = [\mathbf{x}]_{\mathsf{lcm}(\mathfrak{m},\mathfrak{n})}$

Features:

 Even a big integer x can be recovered from sufficiently many images [x]_{m1}, [x]_{m2},... for small moduli m1, m2,....

 $\mathbf{x} \in [\mathbf{x}]_{\mathfrak{m}} \ \cap \ [\mathbf{x}]_{\mathfrak{n}} = [\mathbf{x}]_{\mathsf{lcm}(\mathfrak{m},\mathfrak{n})}$

Features:

- Even a big integer x can be recovered from sufficiently many images [x]_{m1}, [x]_{m2},... for small moduli m1, m2,....
- Different modular images $[x]_{m_i}$ can be computed in parallel on different computers.

0	0	0
170	170	170
57125	57125	57125
48268101	48268101	48268101
34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700
3512004029335396264	3512004029335396288	3512004029335396300
4636941943446398583	4636941943446424575	4636941943446437571
16731901151034173887	16731901151058359959	16731901151070452995
13561571021375624155	13561571044217255635	13561571055638071375
18327681355361409199	18327703218332822743	18327714149818529515
14135275161253345008	14156428691527110768	14167005456663993648
5637819232275028612	7849868848795513175	18179265693910531235
6637602357189385604	14984004752674089390	710461876706909598
12482169677218181673	12488827142696955539	12492155875456012980
13064253343726879423	15658485480684595156	7732229531925667068
14625225362239686504	10758223940600306782	8824742898598764285
10738834608406986658	788602827186764443	5056674106894750910
961106949064586405	12251039281660517429	1050611245293959755
2211804365157896289	15185001070958618575	127308807730230649
8829591048746708080	10856515003962139665	11318493766728410726
15009988290858134393	12838284889333222403	8119518874668080973
7627367407386026140	8420246272424470758	13169248223630974435
14734287943773226198	16693159135573847818	2788562657830915054
15483359934879899009	16119877770365982383	2471600991651671889
899837740350271794	11946950024840031118	14756123186994554460
6952192533371026338	13765592352507043696	11362094742791890224
17697300886138518812	7652266267821078126	16010169456545623593
14174304902082598370	11862232204708398073	1837996549587781514
9566720042687775664	6633630390749590552	1873712421652022656

0	0	0	0
170	170	170	170
57125	57125	57125	57125
48268101	48268101	48268101	48268101
34260690332	34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700	24602777889341700
3512004029335396264	3512004029335396288	3512004029335396300	3512004029335396384
4636941943446398583	4636941943446424575	4636941943446437571	4636941943446528543
16731901151034173887	16731901151058359959	16731901151070452995	16731901151155104247
13561571021375624155	13561571044217255635	13561571055638071375	13561571135583781555
18327681355361409199	18327703218332822743	18327714149818529515	18327790670218476919
14135275161253345008	14156428691527110768	14167005456663993648	14241042812622173808
5637819232275028612	7849868848795513175	18179265693910531235	16698067314877451907
6637602357189385604	14984004752674089390	710461876706909598	11476126187194330620
12482169677218181673	12488827142696955539	12492155875456012980	12515457005136597883
13064253343726879423	15658485480684595156	7732229531925667068	7588670477925634811
14625225362239686504	10758223940600306782	8824742898598764285	13737486829569602371
10738834608406986658	788602827186764443	5056674106894750910	16856311482456444934
961106949064586405	12251039281660517429	1050611245293959755	1730796780127391701
2211804365157896289	15185001070958618575	127308807730230649	2923290836694930836
8829591048746708080	10856515003962139665	11318493766728410726	16555821147378467083
15009988290858134393	12838284889333222403	8119518874668080973	11805308573535485946
7627367407386026140	8420246272424470758	13169248223630974435	16982273330702579648
14734287943773226198	16693159135573847818	2788562657830915054	17719370099115195915
15483359934879899009	16119877770365982383	2471600991651671889	5095243575810575316
899837740350271794	11946950024840031118	14756123186994554460	11226634917845487051
6952192533371026338	13765592352507043696	11362094742791890224	6644727374610071491
17697300886138518812	7652266267821078126	16010169456545623593	5224069660619876239
14174304902082598370	11862232204708398073	1837996549587781514	1149810384458158270
9566720042687775664	6633630390749590552	1873712421652022656	15580979477818358327

0	0	0	0	0
170	170	170	170	170
57125	57125	57125	57125	57125
48268101	48268101	48268101	48268101	48268101
34260690332	34260690332	34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700	24602777889341700	24602777889341700
3512004029335396264	3512004029335396288	3512004029335396300	3512004029335396384	3512004029335396394
4636941943446398583	4636941943446424575	4636941943446437571	4636941943446528543	4636941943446539373
16731901151034173887	16731901151058359959	16731901151070452995	16731901151155104247	16731901151165181777
13561571021375624155	13561571044217255635	13561571055638071375	13561571135583781555	13561571145101128005
18327681355361409199	18327703218332822743	18327714149818529515	18327790670218476919	18327799779789899229
14135275161253345008	14156428691527110768	14167005456663993648	14241042812622173808	14249856783569576208
5637819232275028612	7849868848795513175	18179265693910531235	16698067314877451907	6859153945430415570
6637602357189385604	14984004752674089390	710461876706909598	11476126187194330620	18028251197597986227
12482169677218181673	12488827142696955539	12492155875456012980	12515457005136597883	9443773603570734321
13064253343726879423	15658485480684595156	7732229531925667068	7588670477925634811	13281286656044656459
14625225362239686504	10758223940600306782	8824742898598764285	13737486829569602371	15200796479896019943
10738834608406986658	788602827186764443	5056674106894750910	16856311482456444934	17425730095808525587
961106949064586405	12251039281660517429	1050611245293959755	1730796780127391701	635703020769662299
2211804365157896289	15185001070958618575	127308807730230649	2923290836694930836	5446680587098832013
8829591048746708080	10856515003962139665	11318493766728410726	16555821147378467083	2644477152643434420
15009988290858134393	12838284889333222403	8119518874668080973	11805308573535485946	12562094561654048160
7627367407386026140	8420246272424470758	13169248223630974435	16982273330702579648	6264853543132966636
14734287943773226198	16693159135573847818	2788562657830915054	17719370099115195915	14351987686736218119
15483359934879899009	16119877770365982383	2471600991651671889	5095243575810575316	12472610336651567052
899837740350271794	11946950024840031118	14756123186994554460	11226634917845487051	13567859892950511514
6952192533371026338	13765592352507043696	11362094742791890224	6644727374610071491	3992711139584800062
17697300886138518812	7652266267821078126	16010169456545623593	5224069660619876239	13020528712638715163
14174304902082598370	11862232204708398073	1837996549587781514	1149810384458158270	6569058788386309488
9566720042687775664	6633630390749590552	1873712421652022656	15580979477818358327	7459210887944253892

0	0	0	0
170	170	170	170
57125	57125	57125	57125
48268101	48268101	48268101	48268101
34260690332	34260690332	34260690332	34260690332
28950283288564	28950283288564	28950283288564	28950283288564
24602777889341700	24602777889341700	24602777889341700	24602777889341700
21958748103044947821	3512004029335396300	3512004029335396384	3512004029335396394
19982460773770890734814	4636941943446437571	4636941943446528543	4636941943446539373
18589778412414172744395308	16731901151070452995	516731901151155104247	16731901151165181777
17556405435959384905586216420	13561571055638071375	513561571135583781555	513561571145101128005
16804193264871415986848637912866	18327714149818529515	518327790670218476919	18327799779789899229
16258906633984352510780895055898688	14167005456663993648	314241042812622173808	314249856783569576208
15878645003134966488517342432611820340	18179265693910531235	516698067314877451907	6859153945430415570
318340667549431200127814008146743619195	710461876706909598	11476126187194330620	18028251197597986227
198503164393958539577067845488686416077	12492155875456012980	12515457005136597883	39443773603570734321
214670443338013688390580445819797373152	7732229531925667068	7588670477925634811	13281286656044656459
138812086818822165420022065635983834073	8824742898598764285	13737486829569602371	15200796479896019943
34887405067523117228515541823719337570	5056674106894750910	16856311482456444934	17425730095808525587
8677603847870660183707228009978911587	1050611245293959755	1730796780127391701	635703020769662299
151755704527465931623446269946736011627	127308807730230649	2923290836694930836	5446680587098832013
157520674316210552357179003218400644894	11318493766728410726	516555821147378467083	32644477152643434420
83401389361404009186691170000994753262	8119518874668080973	11805308573535485946	512562094561654048160
199107465433248163983566865568541300580	13169248223630974435	516982273330702579648	36264853543132966636
171646799941657083902142563883114122236	2788562657830915054	17719370099115195915	514351987686736218119
255701011924435651472375478434132710558	2471600991651671889	5095243575810575316	12472610336651567052
65204696697886220698264621831639730752	14756123186994554460	11226634917845487051	13567859892950511514
147021196331035236134827717045673809472	11362094742791890224	16644727374610071491	3992711139584800062
304204745393541316784616770985857479782	16010169456545623593	35224069660619876239	13020528712638715163
69115067553184129907739559131736482619		1149810384458158270	
338027952164498897207398828653950753404	1873712421652022656	15580979477818358327	7459210887944253892

mod	6277101735386680683188868462945250914462856766432493496001	1844674407370955143	7 18446744073709551427
	0	0	0
	170	170	170
	57125	57125	57125
	48268101	48268101	48268101
	34260690332	34260690332	34260690332
	28950283288564	28950283288564	28950283288564
	24602777889341700	24602777889341700	24602777889341700
	21958748103044947821	3512004029335396384	3512004029335396394
	19982460773770890734814	4636941943446528543	4636941943446539373
	18589778412414172744395308	1673190115115510424	716731901151165181777
	17556405435959384905586216420	1356157113558378155	513561571145101128005
	16804193264871415986848637912866	1832779067021847691	918327799779789899229
	16258906633984352510780895055898688	1424104281262217380	814249856783569576208
	15878645003134966488517342432611820340	1669806731487745190	76859153945430415570
	15631047178991661938104976711572278528840	1147612618719433062	018028251197597986227
	15494275516175484896146558165069374931768650	1251545700513659788	39443773603570734321
	15452119731275448721521690374123048169473745090	7588670477925634811	13281286656044656459
	15492944429910290948927453354128640277129701928270		1 15200796479896019943
	15608195638318139575397871729737310479957231181434400	1685631148245644493	417425730095808525587
	15791696434663015062086294548870131152897244600962599710	1730796780127391701	
	3484838833388197199812530639829581721184342340071326129298		5446680587098832013
	1648757840168344542387637018871763179732374825323564456876	1655582114737846708	32644477152643434420
	98850683949423615211578699701347807145350036885633235694		512562094561654048160
	526520284143404569767963343550807344171168366801172331356	1698227333070257964	86264853543132966636
	424185829625587809592566352271431402775173490353367407331		514351987686736218119
	4536991382758228630399221995435899884055743908863240725052		12472610336651567052
	3136412773560944376264550097061623603163416527516137221129	1122663491784548705	1 13567859892950511514
	5967388207129134077295313527201750659161648724805358750622		3992711139584800062
	853298661596862590652819419782007714434001836607900281638		13020528712638715163
	58401078608611669601836308424511522173492016757242657971		6569058788386309488
	1566681274568203485091061424628061282383374029659900022897	1558097947781835832	77459210887944253892

	0	
		0
	170	170
!	57125	57125
	48268101	48268101
	34260690332	34260690332
	28950283288564	28950283288564
	24602777889341700	24602777889341700
	21958748103044947821	3512004029335396394
	19982460773770890734814	4636941943446539373
	18589778412414172744395308	16731901151165181777
	17556405435959384905586216420	13561571145101128005
	16804193264871415986848637912866	18327799779789899229
	16258906633984352510780895055898688	14249856783569576208
	15878645003134966488517342432611820340	6859153945430415570
	15631047178991661938104976711572278528840	18028251197597986227
	15494275516175484896146558165069374931768650	9443773603570734321
	15452119731275448721521690374123048169473745090	13281286656044656459
	15492944429910290948927453354128640277129701928270	15200796479896019943
	15608195638318139575397871729737310479957231181434400	17425730095808525587
	15791696434663015062086294548870131152897244600962599710	635703020769662299
	16039042304161558566190267565720083550110055872936313121300	5446680587098832013
	16347221676787084843566201114528305144441011394615536628043480	2644477152643434420
	16714327636344626391862041955812314792830121148741093212135914440	12562094561654048160
	17139356963672793388669217006249699836555901801582671305065963412450	6264853543132966636
	17622061542861347959625369356680682135593177881983900768539311826713472	14351987686736218119
	18162841216793283422562091421291078521630723657702122424507756283808698700	12472610336651567052
	18762665614999822007839830386311098144372506555360938018652662698220539694616	13567859892950511514
	85739315027447066623349695032233960274282399822723913455610238505779125926029	3992711139584800062
	2064728830981047793411634851943034475673596449669175636454501699351701964789	13020528712638715163
	23492476077323556255109014236440192037570229930868243250459695379292868666014	6569058788386309488
	111190808983862952620363685720790529707785524738898437692221876477166726606643	7459210887944253892

For hardware reasons, it's best to take primes of size $\approx 2^{64}$ or $\approx 2^{32}$ as moduli.

For hardware reasons, it's best to take primes of size $\approx 2^{64}$ or $\approx 2^{32}$ as moduli.

The number of moduli needed is then proportional to the length of the numbers in the final result.

For hardware reasons, it's best to take primes of size $\approx 2^{64}$ or $\approx 2^{32}$ as moduli.

The number of moduli needed is then proportional to the length of the numbers in the final result.

Significant saving happens only when the numbers in intermediate expressions are much longer.

For hardware reasons, it's best to take primes of size $\approx 2^{64}$ or $\approx 2^{32}$ as moduli.

The number of moduli needed is then proportional to the length of the numbers in the final result.

Significant saving happens only when the numbers in intermediate expressions are much longer.

Such intermediate expression swell is a common phenomenon in many calculations.

Around 60 terms are needed to recover it. The 60th term has 180 decimal digits.

Around 60 terms are needed to recover it. The 60th term has 180 decimal digits.

The longest integer coefficient appearing in the recurrence has only 20 decimal digits.

Around 60 terms are needed to recover it. The 60th term has 180 decimal digits.

The longest integer coefficient appearing in the recurrence has only 20 decimal digits.

The exact recurrence can be recovered from homomorphic images of the first 60 terms.

mod

Chinese remaindering will only succeed if we apply it to recurrences sharing the same homomorphic preimage.

Chinese remaindering will only succeed if we apply it to recurrences sharing the same homomorphic preimage.

We could ensure a unique preimage by normalizing a specific coefficient of the recurrence to 1.

Chinese remaindering will only succeed if we apply it to recurrences sharing the same homomorphic preimage.

We could ensure a unique preimage by normalizing a specific coefficient of the recurrence to 1.

But then we must be prepared that the coefficients of the preimage live in $\mathbb Q$ rather than $\mathbb Z.$

Rational reconstruction comes to rescue: given $m\in\mathbb{Z}$ and $x\in\mathbb{Z},$ we can find small $p,q\in\mathbb{Z}$ such that $\frac{p}{q}\equiv x \text{ mod } m.$

Rational reconstruction comes to rescue: given $m \in \mathbb{Z}$ and $x \in \mathbb{Z}$, we can find small $p, q \in \mathbb{Z}$ such that $\frac{p}{q} \equiv x \mod m$.

Of course, such p, q are not uniquely determined, but we can be sure to find the right answer when $m > max(4p^2, q^2)$.

Rational reconstruction comes to rescue: given $m \in \mathbb{Z}$ and $x \in \mathbb{Z}$, we can find small $p, q \in \mathbb{Z}$ such that $\frac{p}{q} \equiv x \mod m$.

Of course, such p, q are not uniquely determined, but we can be sure to find the right answer when $m > max(4p^2, q^2)$.

Rational reconstruction comes to rescue: given $m \in \mathbb{Z}$ and $x \in \mathbb{Z}$, we can find small $p, q \in \mathbb{Z}$ such that $\frac{p}{q} \equiv x \mod m$.

Of course, such p, q are not uniquely determined, but we can be sure to find the right answer when $m > max(4p^2, q^2)$.

choose a prime p generate data

When there are also parameters, also use evaluation/interpolation and rational function reconstruction.

Lesson 3: Sometimes it's faster to take a detour

Exercises.

- If F(n) is the nth Fibonacci number, then F(2¹⁰⁰⁰) is an integer with 10³⁰⁰ decimal digits. Determine the 20 least significant decimal digits of F(2¹⁰⁰⁰).
- Fix a random matrix $A \in \mathbb{Z}^{100 \times 101}$ and a set of primes p_1, \ldots, p_{100} with $p_i \approx 2^i$. For each i check how long your computer needs to find a basis of kerA mod p_i .
- Use Chinese remaindering and rational reconstruction to find a basis vector of kerA in Q¹⁰¹. How can we tell in advance how many primes are needed?

Finite sets of numbers can be viewed as solutions of polynomial equations:

Finite sets of numbers can be viewed as solutions of polynomial equations:

 Finite sets of numbers can be viewed as solutions of polynomial equations:

$$p = (x - 1)(x - 2)(x - 4) = 0 \longrightarrow q = (x - 1)(x - 2)(x - 3) = 0 \longrightarrow q$$

Finite sets of numbers can be viewed as solutions of polynomial equations:

Finite sets of numbers can be viewed as solutions of polynomial equations:

p = (x - 1)(x - 2)(x - 4) = 0 q = (x - 1)(x - 2)(x - 3) = 0Intersection: gcd(p, q) = 0 Union: lcm(p, q) = 0

Any finite set of points can be viewed as the intersection of such curves.

Any finite set of points can be viewed as the intersection of such curves.

A polynomial in three variables describes a surface.

$$xz - y^{2} = 0$$
$$y - z^{2} = 0$$
$$x - yz = 0$$

A polynomial in three variables describes a surface.

$$xz - y^{2} = 0$$

$$A$$

$$y - z^{2} = 0$$

$$A$$

$$x - yz = 0$$

Curves and finite sets of points can be viewed as intersections of such surfaces.

• Decide whether a system of equations is inconsistent

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension
- Decide whether one system of equations implies another

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension
- Decide whether one system of equations implies another
- Decide whether two polynomial functions agree on a variety

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension
- Decide whether one system of equations implies another
- Decide whether two polynomial functions agree on a variety
- Eliminate some variables from a given equation system

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension
- Decide whether one system of equations implies another
- Decide whether two polynomial functions agree on a variety
- Eliminate some variables from a given equation system
- Compute kernels and images of polynomial homomorphisms

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension
- Decide whether one system of equations implies another
- Decide whether two polynomial functions agree on a variety
- Eliminate some variables from a given equation system
- Compute kernels and images of polynomial homomorphisms

All these questions can be answered using Gröbner bases.

Lesson 4: Gröbner bases can not only solve nonlinear systems

Polynomial equations have implications:

$$p = 0$$
 and $q = 0 \Rightarrow p + q = 0$
 $p = 0$ and q arbitrary $\Rightarrow pq = 0$.

Polynomial equations have implications:

$$p = 0$$
 and $q = 0 \Rightarrow p + q = 0$
 $p = 0$ and q arbitrary $\Rightarrow pq = 0$.

Given $p_1,\ldots,p_k\in K[x_1,\ldots,x_n],$ we therefore consider

$$\langle p_1,\ldots,p_k \rangle := \left\{ q_1p_1 + \cdots + q_kp_k : q_1,\ldots,q_k \in K[x_1,\ldots,x_n] \right\},$$

the ideal generated by p_1, \ldots, p_k in the ring $K[x_1, \ldots, x_n]$. We call $\{p_1, \ldots, p_k\}$ a basis of the ideal.

Polynomial equations have implications:

$$p = 0$$
 and $q = 0 \Rightarrow p + q = 0$
 $p = 0$ and q arbitrary $\Rightarrow pq = 0$.

Given $p_1,\ldots,p_k\in K[x_1,\ldots,x_n],$ we therefore consider

$$\langle p_1,\ldots,p_k \rangle \coloneqq \left\{ q_1p_1 + \cdots + q_kp_k : q_1,\ldots,q_k \in K[x_1,\ldots,x_n] \right\},$$

the ideal generated by p_1, \ldots, p_k in the ring $K[x_1, \ldots, x_n]$. We call $\{p_1, \ldots, p_k\}$ a basis of the ideal.

Intuition: the ideal is a "theory" of equations of the form "poly = 0" in which p_1, \ldots, p_k are the "axioms" and implications quoted above are the "deduction rules".

Example: $\langle x^2 + y^2 - 4, xy - 1 \rangle = \langle y^4 - 4y^2 + 1, y^3 - 4y + x \rangle$.

Example: $\langle x^2 + y^2 - 4, xy - 1 \rangle = \langle y^4 - 4y^2 + 1, y^3 - 4y + x \rangle$.

Example:
$$\langle \underbrace{x^2 + y^2 - 4}_{p_1}, \underbrace{xy - 1}_{p_2} \rangle = \langle \underbrace{y^4 - 4y^2 + 1}_{q_1}, \underbrace{y^3 - 4y + x}_{q_2} \rangle.$$

Example:
$$\langle \underbrace{x^2 + y^2 - 4}_{p_1}, \underbrace{xy - 1}_{p_2} \rangle = \langle \underbrace{y^4 - 4y^2 + 1}_{q_1}, \underbrace{y^3 - 4y + x}_{q_2} \rangle.$$

"⊆"
$$p_1 = (y^2 - 4) q_1 + (x + 4y - y^3) q_2$$

 $p_2 = -q_1 + y q_2$.

Example:
$$\langle \underbrace{x^2 + y^2 - 4}_{p_1}, \underbrace{xy - 1}_{p_2} \rangle = \langle \underbrace{y^4 - 4y^2 + 1}_{q_1}, \underbrace{y^3 - 4y + x}_{q_2} \rangle.$$

"⊆"
$$p_1 = (y^2 - 4) q_1 + (x + 4y - y^3) q_2$$

 $p_2 = -q_1 + y q_2$.
"⊇" $q_1 = y^2 p_1 - (xy + 1) p_2$,

$$q_2 = y p_1 - x p_2.$$

Example:
$$\langle \underbrace{x^2 + y^2 - 4}_{p_1}, \underbrace{xy - 1}_{p_2} \rangle = \langle \underbrace{y^4 - 4y^2 + 1}_{q_1}, \underbrace{y^3 - 4y + x}_{q_2} \rangle.$$

Proof:

"⊆"
$$p_1 = (y^2 - 4) q_1 + (x + 4y - y^3) q_2,$$

 $p_2 = -q_1 + y q_2.$

"⊇"
$$q_1 = y^2 p_1 - (xy + 1) p_2,$$

 $q_2 = y p_1 - x p_2.$ ■

Among all the bases of a given ideal, the Gröbner basis is one that satisfies a certain minimality condition.

Fix a total ordering on the monomials which is compatible with divisibility. Such an order is called a term order.

Fix a total ordering on the monomials which is compatible with divisibility. Such an order is called a term order.

Once a term order is chosen, every nonzero polynomial has a unique maximal term, called the head or the leading term.

Fix a total ordering on the monomials which is compatible with divisibility. Such an order is called a term order.

Once a term order is chosen, every nonzero polynomial has a unique maximal term, called the head or the leading term.

Example: $3x^3y^2 + 7x^2y^3 + 8x^2y - 4xy + 8y^3 - 17$.

Fix a total ordering on the monomials which is compatible with divisibility. Such an order is called a term order.

Once a term order is chosen, every nonzero polynomial has a unique maximal term, called the head or the leading term.

Example: $3x^3y^2 + 7x^2y^3 + 8x^2y - 4xy + 8y^3 - 17$.

Among all the bases of an ideal, the Gröbner basis is such that the leading terms of its elements are as small as possible.

In general however, the ideal may also contain polynomials whose head is not a multiple of the head of any basis element.

In general however, the ideal may also contain polynomials whose head is not a multiple of the head of any basis element.

In general however, the ideal may also contain polynomials whose head is not a multiple of the head of any basis element.

The basis is called a Gröbner basis if this does not happen.

In general however, the ideal may also contain polynomials whose head is not a multiple of the head of any basis element.

$$\begin{array}{l} \{g_1,\ldots,g_k\} \text{ is a Gröbner basis } \iff \\ \forall \ p \in \langle g_1,\ldots,g_k \rangle \setminus \{0\} \ \exists \ i \in \{1,\ldots,k\} \colon \mathsf{Head}(g_i) \mid \mathsf{Head}(p). \end{array}$$

$$\mathfrak{p} \sim \mathfrak{q} \iff \mathfrak{p} - \mathfrak{q} \in \mathcal{I}.$$

$$p \sim q \iff p - q \in I.$$

Then $\mathbb{Q}[x_1,\ldots,x_n]/{\sim}=\mathbb{Q}[x_1,\ldots,x_n]/I$ is a ring.

$$p \sim q \iff p - q \in I.$$

Then $\mathbb{Q}[x_1,\ldots,x_n]/{\sim}=\mathbb{Q}[x_1,\ldots,x_n]/I$ is a ring.

$$\mathfrak{p} \sim \mathfrak{q} \iff \mathfrak{p} - \mathfrak{q} \in \mathbf{I}.$$

Then $\mathbb{Q}[x_1,\ldots,x_n]/{\sim}=\mathbb{Q}[x_1,\ldots,x_n]/I$ is a ring.

$$\mathfrak{p} \sim \mathfrak{q} \iff \mathfrak{p} - \mathfrak{q} \in \mathbf{I}.$$

Then $\mathbb{Q}[x_1,\ldots,x_n]/{\sim}=\mathbb{Q}[x_1,\ldots,x_n]/I$ is a ring.

$$\mathbf{p} \sim \mathbf{q} \iff \mathbf{p} - \mathbf{q} \in \mathbf{I}.$$

Then $\mathbb{Q}[x_1,\ldots,x_n]/{\sim}=\mathbb{Q}[x_1,\ldots,x_n]/I$ is a ring.

 $\mathbf{p} \sim \mathbf{q} \iff \mathbf{p} - \mathbf{q} \in \mathbf{I}.$

Then $\mathbb{Q}[x_1,\ldots,x_n]/{\sim}=\mathbb{Q}[x_1,\ldots,x_n]/I$ is a ring.

 $\mathbf{p} \sim \mathbf{q} \iff \mathbf{p} - \mathbf{q} \in \mathbf{I}.$

Then $\mathbb{Q}[x_1,\ldots,x_n]/{\sim}=\mathbb{Q}[x_1,\ldots,x_n]/I$ is a ring.

 $\mathbf{p} \sim \mathbf{q} \iff \mathbf{p} - \mathbf{q} \in \mathbf{I}.$

Then $\mathbb{Q}[x_1,\ldots,x_n]/{\sim}=\mathbb{Q}[x_1,\ldots,x_n]/I$ is a ring.

As a \mathbb{Q} -vector space, it is generated by the classes of all terms that are not divided by the head of a basis element.

 $\mathbf{p} \sim \mathbf{q} \iff \mathbf{p} - \mathbf{q} \in \mathbf{I}.$

Then $\mathbb{Q}[x_1,\ldots,x_n]/{\sim}=\mathbb{Q}[x_1,\ldots,x_n]/I$ is a ring.

As a \mathbb{Q} -vector space, it is generated by the classes of all terms that are not divided by the head of a basis element.

 $\mathbf{p} \sim \mathbf{q} \iff \mathbf{p} - \mathbf{q} \in \mathbf{I}.$

Then $\mathbb{Q}[x_1,\ldots,x_n]/\sim = \overline{\mathbb{Q}[x_1,\ldots,x_n]/I}$ is a ring.

As a \mathbb{Q} -vector space, it is generated by the classes of all terms that are not divided by the head of a basis element.

 $\mathbf{p} \sim \mathbf{q} \iff \mathbf{p} - \mathbf{q} \in \mathbf{I}.$

Then $\mathbb{Q}[x_1,\ldots,x_n]/\sim = \mathbb{Q}[x_1,\ldots,x_n]/I$ is a ring.

The ideal basis is a Gröbner basis iff the blue terms form a vector space basis of $\mathbb{Q}[x_1, \ldots, x_n]/I$.

• Every equivalence class contains at least one polynomial with only blue terms.

- Every equivalence class contains at least one polynomial with only blue terms.
- We have a Gröbner basis if and only if every equivalence class contains exactly one such polynomial.

- Every equivalence class contains at least one polynomial with only blue terms.
- We have a Gröbner basis if and only if every equivalence class contains exactly one such polynomial.
- This polynomial is then called the normal form of any polynomial in the class.

- Every equivalence class contains at least one polynomial with only blue terms.
- We have a Gröbner basis if and only if every equivalence class contains exactly one such polynomial.
- This polynomial is then called the normal form of any polynomial in the class.
- There is an algorithm for computing the normal form of p w.r.t. a given Gröbner basis G.

- Every equivalence class contains at least one polynomial with only blue terms.
- We have a Gröbner basis if and only if every equivalence class contains exactly one such polynomial.
- This polynomial is then called the normal form of any polynomial in the class.
- There is an algorithm for computing the normal form of p w.r.t. a given Gröbner basis G.
- We have $p\in \langle G\rangle$ if and only if the normal form of p w.r.t. G is zero.

• Given any basis of an ideal I, we can compute a Gröbner basis of the ideal.

- Given any basis of an ideal I, we can compute a Gröbner basis of the ideal.
- In terms of complexity theory, the computation of a Gröbner basis is a hard problem.

- Given any basis of an ideal I, we can compute a Gröbner basis of the ideal.
- In terms of complexity theory, the computation of a Gröbner basis is a hard problem.
- In practice, the situation is often not as bad as one could expect, mainly for two reasons:

- Given any basis of an ideal I, we can compute a Gröbner basis of the ideal.
- In terms of complexity theory, the computation of a Gröbner basis is a hard problem.
- In practice, the situation is often not as bad as one could expect, mainly for two reasons:
- 1. Many problems arising in practice do not exhibit worst case behaviour.

- Given any basis of an ideal I, we can compute a Gröbner basis of the ideal.
- In terms of complexity theory, the computation of a Gröbner basis is a hard problem.
- In practice, the situation is often not as bad as one could expect, mainly for two reasons:
- 1. Many problems arising in practice do not exhibit worst case behaviour.
- 2. Much effort has been invested into efficient algorithms and software.

Lesson 5: Computing a Gröbner basis is not hopeless

^{*} only works for suitably chosen term orders.

^{*} only works for suitably chosen term orders.

^{*} only works for suitably chosen term orders.

^{*} only works for suitably chosen term orders.

^{*} only works for suitably chosen term orders.

With a Gröbner basis at hand, everything about the ideal is known.

For example, you can get the dimension of its zero set by counting how many blue terms^{*} there are up to degree N, as $N \to \infty$.

Note: dim $(I) = 0 \iff dim\mathbb{Q}[x_1, \dots, x_n]/I < \infty$.

^{*} only works for suitably chosen term orders.

Note: If I is an ideal in $\mathbb{Q}[x, y, z]$, then $I \cap \mathbb{Q}[x, y]$ is an ideal in the smaller ring $\mathbb{Q}[x, y]$.

Note: If I is an ideal in $\mathbb{Q}[x, y, z]$, then $I \cap \mathbb{Q}[x, y]$ is an ideal in the smaller ring $\mathbb{Q}[x, y]$.

Example:

$$\langle x^2+y^2-4,xy-1\rangle\cap \mathbb{Q}[x]$$

Note: If I is an ideal in $\mathbb{Q}[x, y, z]$, then $I \cap \mathbb{Q}[x, y]$ is an ideal in the smaller ring $\mathbb{Q}[x, y]$.

Example:

$$\begin{split} \langle x^2 + y^2 - 4, xy - 1 \rangle \cap \mathbb{Q}[x] \\ &= \langle x^4 - 4x^2 + 1 \rangle \subseteq \mathbb{Q}[x] \end{split}$$

Note: If I is an ideal in $\mathbb{Q}[x, y, z]$, then $I \cap \mathbb{Q}[x, y]$ is an ideal in the smaller ring $\mathbb{Q}[x, y]$.

Example:

$$\begin{split} \langle x^2 + y^2 - 4, xy - 1 \rangle &\cap \mathbb{Q}[x] \\ &= \langle x^4 - 4x^2 + 1 \rangle \subseteq \mathbb{Q}[x] \end{split}$$

Note: If I is an ideal in $\mathbb{Q}[x, y, z]$, then $I \cap \mathbb{Q}[x, y]$ is an ideal in the smaller ring $\mathbb{Q}[x, y]$.

Example:

$$\langle \mathbf{x}^2 + \mathbf{y}^2 - 4, \mathbf{x}\mathbf{y} - 1 \rangle \cap \mathbb{Q}[\mathbf{x}]$$

= $\langle \mathbf{x}^4 - 4\mathbf{x}^2 + 1 \rangle \subseteq \mathbb{Q}[\mathbf{x}]$

Fact*: If G is a Gröbner basis of I, then $G \cap \mathbb{Q}[x, y]$ is a Gröbner basis of $I \cap \mathbb{Q}[x, y]$.

* only works for suitably chosen term orders.

Closure properties for algebraic functions via elimination.

Closure properties for algebraic functions via elimination.

Example: Let f(x), g(x) be power series satisfying

$$f(x)^2 - (2x+3)f(x) + 1 = 0,$$
 $g(x)^2 + g(x) - x^3 = 0.$

Closure properties for algebraic functions via elimination. $\mathbf{E}_{\mathbf{r}}$

Example: Let f(x), g(x) be power series satisfying

$$f(x)^2 - (2x+3)f(x) + 1 = 0,$$
 $g(x)^2 + g(x) - x^3 = 0.$

$$\langle \mathbf{f}^2 - (2\mathbf{x}+3)\mathbf{f}+1, \ \mathbf{g}^2 + \mathbf{g} - \mathbf{x}^3, \ \mathbf{h} - (\mathbf{f}+\mathbf{g}) \rangle \subseteq \mathbb{Q}[\mathbf{x}, \mathbf{f}, \mathbf{g}, \mathbf{h}]$$

Closure properties for algebraic functions via elimination. Example: Let f(x), g(x) be power series satisfying

$$f(x)^2 - (2x+3)f(x) + 1 = 0,$$
 $g(x)^2 + g(x) - x^3 = 0.$

$$\langle f^2 - (2x+3)f + 1, g^2 + g - x^3, h - (f+g) \rangle \cap \mathbb{Q}[x,h]$$

Closure properties for algebraic functions via elimination. Example: Let f(x), g(x) be power series satisfying

$$f(x)^2 - (2x+3)f(x) + 1 = 0,$$
 $g(x)^2 + g(x) - x^3 = 0.$

$$\begin{split} \langle \mathbf{f}^2 - (2\mathbf{x} + 3)\mathbf{f} + \mathbf{1}, \ \mathbf{g}^2 + \mathbf{g} - \mathbf{x}^3, \ \mathbf{h} - (\mathbf{f} + \mathbf{g}) \rangle &\cap \mathbb{Q}[\mathbf{x}, \mathbf{h}] \\ &= \langle \mathbf{h}^4 - 4(\mathbf{x} + 1)\mathbf{h}^3 - (2\mathbf{x}^3 - 4\mathbf{x}^2 - 6\mathbf{x} - 3)\mathbf{h}^2 \\ &\quad + 2(2\mathbf{x}^3 + 2\mathbf{x} + 1)(\mathbf{x} + 1)\mathbf{h} + (\mathbf{x} + 1)^2(\mathbf{x}^4 - 6\mathbf{x}^3 + \mathbf{x}^2 - 1) \rangle. \end{split}$$

Example: Let $p = x^2 + 2xy + 3y^2$. What conditions must a, b, c satisfy such that there exist α , β with

$$p(\alpha x,\beta y) = \alpha x^2 + bxy + cy^2 \quad ?$$

Example: Let $p = x^2 + 2xy + 3y^2$. What conditions must a, b, c satisfy such that there exist α , β with

$$p(\alpha x,\beta y) = \alpha x^2 + bxy + cy^2 \quad ?$$

Coefficient comparison yields:

$$\langle \alpha^2 - a, 2\alpha\beta - b, 3\beta^2 - c \rangle \subseteq \mathbb{Q}[\alpha, \beta, a, b, c]$$

Example: Let $p = x^2 + 2xy + 3y^2$. What conditions must a, b, c satisfy such that there exist α , β with

$$p(\alpha x,\beta y)=ax^2+bxy+cy^2 \quad ?$$

Coefficient comparison yields:

$$\langle \alpha^2 - a, 2\alpha\beta - b, 3\beta^2 - c \rangle \cap \mathbb{Q}[a, b, c]$$

Example: Let $p = x^2 + 2xy + 3y^2$. What conditions must a, b, c satisfy such that there exist α , β with

$$p(\alpha x,\beta y) = ax^2 + bxy + cy^2 \quad ?$$

Coefficient comparison yields:

$$\langle \alpha^2 - a, 2\alpha\beta - b, 3\beta^2 - c \rangle \cap \mathbb{Q}[a, b, c]$$

= $\langle 3b^2 - 4ac \rangle$

Lesson 6: Gröbner bases are useful

Exercises.

- How long does it take on your computer to compute a Gröbner basis for 3 random polynomials in 4 variables of total degree 5?
- Let $I, J \subseteq \mathbb{Q}[x, y, z]$ be ideals. Show that $I \cap J$ is also an ideal, and that dim $I = \dim J = 0 \iff \dim(I \cap J) = 0$. What does this mean geometrically?
- Given the minimal polynomials of two algebraic functions f(x), g(x), how can we find the minimal polynomial of their composition h(x) := f(g(x))?

Definition.

1 A function f(x) is called D-finite if there exist polynomials $c_0(x), \ldots, c_r(x)$, not all zero, such that

$$c_0(x)f(x) + c_1(x)f'(x) + \dots + c_r(x)f^{(r)}(x) = 0.$$

2 A sequence $(f_n)_{n=0}^{\infty}$ is called D-finite if there exist polynomials $c_0(n), \ldots, c_r(n)$, not all zero, such that

 $c_0(n)f_n+c_1(n)f_{n+1}+\cdots+c_r(n)f_{n+r}=0.$

Definition.

1 A function f(x) is called D-finite if there exist polynomials $c_0(x), \ldots, c_r(x)$, not all zero, such that

$$c_0(x)f(x) + c_1(x)f'(x) + \dots + c_r(x)f^{(r)}(x) = 0.$$

2 A sequence $(f_n)_{n=0}^{\infty}$ is called D-finite if there exist polynomials $c_0(n), \ldots, c_r(n)$, not all zero, such that

$$c_0(n)f_n + c_1(n)f_{n+1} + \dots + c_r(n)f_{n+r} = 0.$$

Key feature: a D-finite object is uniquely determined by a defining equation plus a finite number of initial terms.

D-finite representation

ĺ

$$\begin{array}{l} (1188n^5+5346n^4+8796n^3+6594n^2+2268n+288)f_n\\ -(473n^5+2365n^4+4453n^3+3899n^2+1554n+216)f_{n+1}\\ +(44n^5+242n^4+492n^3+454n^2+184n+24)f_{n+2}=0 \end{array}$$

ĺ

$$\begin{array}{l} (1188n^5+5346n^4+8796n^3+6594n^2+2268n+288)f_n\\ -(473n^5+2365n^4+4453n^3+3899n^2+1554n+216)f_{n+1}\\ +(44n^5+242n^4+492n^3+454n^2+184n+24)f_{n+2}=0 \end{array}$$

$$\begin{split} & x(4x-1)(27x-4)(6x^2-14x-1)f^{(3)}(x) \\ & + 6(486x^4-1472x^3+182x^2+24x-1)f''(x) \\ & + 12(174x^3-636x^2-46x+9)f'(x) \\ & + 72(x^2-6x-2)f(x)=0. \end{split}$$

Several operations preserve D-finiteness. In particular:

Several operations preserve D-finiteness. In particular: If f, g are D-finite, then so are f + g, and fg. Several operations preserve D-finiteness. In particular: If f, g are D-finite, then so are f + g, and fg. If f is a D-finite power series, then Several operations preserve D-finiteness. In particular:

If f, g are D-finite, then so are f + g, and fg.

If f is a D-finite power series, then

• $\int f$ is D-finite

If f, g are D-finite, then so are f + g, and fg.

If f is a D-finite power series, then

- ∫ f is D-finite
- $f \circ g$ is D-finite for every algebraic(!) function g

If f, g are D-finite, then so are f + g, and fg.

If f is a D-finite power series, then

- ∫ f is D-finite
- $f \circ g$ is D-finite for every algebraic(!) function g
- if $f(x) = \sum_{n=0}^{\infty} a_n x^n$, then $(a_n)_{n=0}^{\infty}$ is a D-finite sequence.

If f, g are D-finite, then so are f + g, and fg.

If f is a D-finite power series, then

- ∫ f is D-finite
- $f \circ g$ is D-finite for every algebraic(!) function g
- if $f(x) = \sum_{n=0}^{\infty} a_n x^n$, then $(a_n)_{n=0}^{\infty}$ is a D-finite sequence.

If $(a_n)_{n=0}^\infty$ is a D-finite sequence, then

If f, g are D-finite, then so are f + g, and fg.

If f is a D-finite power series, then

- $\int f$ is D-finite
- $f \circ g$ is D-finite for every algebraic(!) function g
- if $f(x) = \sum_{n=0}^{\infty} a_n x^n$, then $(a_n)_{n=0}^{\infty}$ is a D-finite sequence.
- If $(\mathfrak{a}_n)_{n=0}^\infty$ is a D-finite sequence, then
 - $\left(\sum_{k=0}^{n} a_{k}\right)_{n=0}^{\infty}$ is D-finite

If f, g are D-finite, then so are f + g, and fg.

If f is a D-finite power series, then

- $\int f$ is D-finite
- $f \circ g$ is D-finite for every algebraic(!) function g
- if $f(x) = \sum_{n=0}^{\infty} a_n x^n$, then $(a_n)_{n=0}^{\infty}$ is a D-finite sequence.

If $(\mathfrak{a}_n)_{n=0}^\infty$ is a D-finite sequence, then

- $\left(\sum_{k=0}^{n} a_{k}\right)_{n=0}^{\infty}$ is D-finite
- $(a_{un+\nu})_{n=0}^{\infty}$ is D-finite for every fixed $u, \nu \in \mathbb{N}$.

If f, g are D-finite, then so are f + g, and fg.

If f is a D-finite power series, then

- $\int f$ is D-finite
- $f \circ g$ is D-finite for every algebraic(!) function g
- if $f(x) = \sum_{n=0}^{\infty} a_n x^n$, then $(a_n)_{n=0}^{\infty}$ is a D-finite sequence.

If $(a_n)_{n=0}^{\infty}$ is a D-finite sequence, then

- $\left(\sum_{k=0}^{n} a_{k}\right)_{n=0}^{\infty}$ is D-finite
- $(a_{un+\nu})_{n=0}^{\infty}$ is D-finite for every fixed $u, \nu \in \mathbb{N}$.
- $f(x) = \sum_{n=0}^{\infty} a_n x^n$ is a D-finite power series

We can use closure properties for turning guesses into theorems.

We can use closure properties for turning guesses into theorems. Example: The functional equation

$$2xf(x) + e^{x}(x+1)f(x)^{2} + (2x-1)f'(x) = 0$$

has a unique formal power series solution

$$f(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$$

Is this series D-finite?

We can use closure properties for turning guesses into theorems. Example: The functional equation

$$2xf(x) + e^{x}(x+1)f(x)^{2} + (2x-1)f'(x) = 0$$

has a unique formal power series solution

$$f(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$$

Is this series D-finite?

Yes, it is. It can be shown using the guess-and-prove paradigm.

• Compute the first ≈ 20 terms of f(x) using the given equation.

- Compute the first ≈ 20 terms of f(x) using the given equation.
- Use them to guess the differential equation

$$\begin{aligned} &(x+1)(2x-1)(x^2+14x-5)f''(x)\\ &+(4x^4+65x^3+54x^2+19x-28)f'(x)\\ &+2(x^4+18x^3+27x^2+22x-6)f(x)=0. \end{aligned}$$

- Compute the first ≈ 20 terms of f(x) using the given equation.
- Use them to guess the differential equation

$$\begin{aligned} &(x+1)(2x-1)(x^2+14x-5)f''(x)\\ &+(4x^4+65x^3+54x^2+19x-28)f'(x)\\ &+2(x^4+18x^3+27x^2+22x-6)f(x)=0. \end{aligned}$$

• Let g(x) be the unique power series solution of this differential equation starting like $g(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$.

- Compute the first ≈ 20 terms of f(x) using the given equation.
- Use them to guess the differential equation

$$\begin{aligned} &(x+1)(2x-1)(x^2+14x-5)f''(x)\\ &+(4x^4+65x^3+54x^2+19x-28)f'(x)\\ &+2(x^4+18x^3+27x^2+22x-6)f(x)=0. \end{aligned}$$

- Let g(x) be the unique power series solution of this differential equation starting like $g(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$.
- Use closure properties to prove that

$$2x g(x) + e^{x}(x+1) g(x)^{2} + (2x-1) g'(x) = 0.$$

- Compute the first ≈ 20 terms of f(x) using the given equation.
- Use them to guess the differential equation

$$\begin{aligned} &(x+1)(2x-1)(x^2+14x-5)f''(x)\\ &+(4x^4+65x^3+54x^2+19x-28)f'(x)\\ &+2(x^4+18x^3+27x^2+22x-6)f(x)=0. \end{aligned}$$

- Let g(x) be the unique power series solution of this differential equation starting like $g(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$.
- Use closure properties to prove that

$$2x \[g(x)\] + e^{x}(x+1) \[g(x)\]^{2} + (2x-1) \]g'(x) = 0.$$

- Compute the first ≈ 20 terms of f(x) using the given equation.
- Use them to guess the differential equation

$$\begin{aligned} &(x+1)(2x-1)(x^2+14x-5)f''(x)\\ &+(4x^4+65x^3+54x^2+19x-28)f'(x)\\ &+2(x^4+18x^3+27x^2+22x-6)f(x)=0. \end{aligned}$$

- Let g(x) be the unique power series solution of this differential equation starting like $g(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$.
- Use closure properties to prove that

$$2x \ \boxed{g(x)} + \ e^x(x+1) \ \boxed{g(x)}^2 \ + \ (2x-1) \ \boxed{g'(x)} = 0.$$

- Compute the first ≈ 20 terms of f(x) using the given equation.
- Use them to guess the differential equation

$$\begin{aligned} &(x+1)(2x-1)(x^2+14x-5)f''(x)\\ &+(4x^4+65x^3+54x^2+19x-28)f'(x)\\ &+2(x^4+18x^3+27x^2+22x-6)f(x)=0. \end{aligned}$$

- Let g(x) be the unique power series solution of this differential equation starting like $g(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$.
- Use closure properties to prove that

$$2x \ g(x) + e^{x}(x+1) \ g(x)^{2} + (2x-1) \ g'(x) = 0.$$

- Compute the first ≈ 20 terms of f(x) using the given equation.
- Use them to guess the differential equation

$$\begin{aligned} &(x+1)(2x-1)(x^2+14x-5)f''(x)\\ &+(4x^4+65x^3+54x^2+19x-28)f'(x)\\ &+2(x^4+18x^3+27x^2+22x-6)f(x)=0. \end{aligned}$$

- Let g(x) be the unique power series solution of this differential equation starting like $g(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$.
- Use closure properties to prove that

$$2x \left[g(x) \right] + \left[e^{x}(x+1) \right] \left[g(x) \right]^{2} + \left[(2x-1) \right] g'(x) = 0.$$

- Compute the first ≈ 20 terms of f(x) using the given equation.
- Use them to guess the differential equation

$$\begin{aligned} &(x+1)(2x-1)(x^2+14x-5)f''(x)\\ &+(4x^4+65x^3+54x^2+19x-28)f'(x)\\ &+2(x^4+18x^3+27x^2+22x-6)f(x)=0. \end{aligned}$$

- Let g(x) be the unique power series solution of this differential equation starting like $g(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$.
- Use closure properties to prove that

$$\boxed{2x g(x)} + \boxed{e^x(x+1) g(x)^2} + \boxed{(2x-1) g'(x)} = 0.$$

- Compute the first ≈ 20 terms of f(x) using the given equation.
- Use them to guess the differential equation

$$\begin{aligned} &(x+1)(2x-1)(x^2+14x-5)f''(x)\\ &+(4x^4+65x^3+54x^2+19x-28)f'(x)\\ &+2(x^4+18x^3+27x^2+22x-6)f(x)=0. \end{aligned}$$

- Let g(x) be the unique power series solution of this differential equation starting like $g(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$.
- Use closure properties to prove that

$$\boxed{2x g(x)} + \boxed{e^x(x+1) \left[g(x)^2\right]} + \boxed{(2x-1) \left[g'(x)\right]} = 0.$$

- Compute the first ≈ 20 terms of f(x) using the given equation.
- Use them to guess the differential equation

$$\begin{aligned} &(x+1)(2x-1)(x^2+14x-5)f''(x)\\ &+(4x^4+65x^3+54x^2+19x-28)f'(x)\\ &+2(x^4+18x^3+27x^2+22x-6)f(x)=0. \end{aligned}$$

- Let g(x) be the unique power series solution of this differential equation starting like $g(x) = 1 + x + 4x^2 + \frac{65}{6}x^3 + \cdots$.
- Use closure properties to prove that

$$\boxed{2x g(x)} + \boxed{e^x(x+1) \left[g(x)^2\right]} + \boxed{(2x-1) \left[g'(x)\right]} = 0.$$

• Because of uniqueness, we have f(x) = g(x). It follows that f(x) is D-finite.

Lesson 7: Guessing is easy, but proving is not necessarily harder.

f is a D-finite function, i.e., a solution of a linear differential equation

$$p_0(x)f(x) + \cdots + p_r(x)f^{(r)}(x) = 0$$

with polynomial coefficients p_0, \ldots, p_r , if and only if the vector space generated by f, f', f'', \ldots over the rational function field has finite dimension:

$$\mathbb{Q}(\mathbf{x})\mathbf{f} + \mathbb{Q}(\mathbf{x})\mathbf{f}' + \mathbb{Q}(\mathbf{x})\mathbf{f}'' + \cdots$$
$$= \mathbb{Q}(\mathbf{x})\mathbf{f} + \mathbb{Q}(\mathbf{x})\mathbf{f}' + \cdots + \mathbb{Q}(\mathbf{x})\mathbf{f}^{(r-1)}$$

Example:

• Suppose f and g are D-finite

- Suppose f and g are D-finite
- Then $\text{dim}_{\mathbb{Q}(x)}\langle f,f',\dots\rangle<\infty$ and $\text{dim}_{\mathbb{Q}(x)}\langle g,g',\dots\rangle<\infty$

- Suppose f and g are D-finite
- Then $\text{dim}_{\mathbb{Q}(x)}\langle f,f',\dots\rangle<\infty$ and $\text{dim}_{\mathbb{Q}(x)}\langle g,g',\dots\rangle<\infty$
- Set $V:=\langle f,f',\dots\rangle+\langle g,g',\dots\rangle.$ Then $\text{dim}_{\mathbb{Q}(x)}V<\infty$

- Suppose f and g are D-finite
- Then $\text{dim}_{\mathbb{Q}(x)}\langle f,f',\dots\rangle<\infty$ and $\text{dim}_{\mathbb{Q}(x)}\langle g,g',\dots\rangle<\infty$
- Set $V:=\langle f,f',\dots\rangle+\langle g,g',\dots\rangle.$ Then $\text{dim}_{\mathbb{Q}(x)}V<\infty$
- h := f + g and all its derivatives belong to V

- Suppose f and g are D-finite
- Then $\text{dim}_{\mathbb{Q}(x)}\langle f,f',\dots\rangle<\infty$ and $\text{dim}_{\mathbb{Q}(x)}\langle g,g',\dots\rangle<\infty$
- Set $V:=\langle f,f',\ldots\rangle+\langle g,g',\ldots\rangle.$ Then $\text{dim}_{\mathbb{Q}(x)}V<\infty$
- h := f + g and all its derivatives belong to V
- Hence $h, h', \ldots, h^{(r)}$ must be linearly dependent over $\mathbb{Q}(x)$ when r is large enough. So h is D-finite.

Example:

- Suppose f and g are D-finite
- Then $\text{dim}_{\mathbb{Q}(x)}\langle f,f',\dots\rangle<\infty$ and $\text{dim}_{\mathbb{Q}(x)}\langle g,g',\dots\rangle<\infty$
- Set $V:=\langle f,f',\ldots\rangle+\langle g,g',\ldots\rangle.$ Then $\text{dim}_{\mathbb{Q}(x)}V\!<\infty$
- h := f + g and all its derivatives belong to V
- Hence h, h',..., h^(r) must be linearly dependent over Q(x) when r is large enough. So h is D-finite.

This argument, and in fact the whole idea of D-finiteness, extends to a more general setting.

Let us consider operators acting on functions.

Let us consider operators acting on functions.

algebra

- differential operators:
- recurrence operators:
- q-recurrence operators:

$$\begin{aligned} & \mathbf{x} \cdot (\mathbf{t} \mapsto \mathbf{f}(\mathbf{t})) := (\mathbf{t} \mapsto \mathbf{t} \mathbf{f}(\mathbf{t})) \\ & \mathbf{\partial} \cdot (\mathbf{t} \mapsto \mathbf{f}(\mathbf{t})) := (\mathbf{t} \mapsto \mathbf{f}'(\mathbf{t})) \\ & \mathbf{x} \cdot (\mathbf{a}_n)_{n=0}^{\infty} := (\mathbf{n} \mathbf{a}_n)_{n=0}^{\infty} \\ & \mathbf{\partial} \cdot (\mathbf{a}_n)_{n=0}^{\infty} := (\mathbf{a}_{n+1})_{n=0}^{\infty} \\ & \mathbf{x} \cdot (\mathbf{a}_n)_{n=0}^{\infty} := (\mathbf{q}^n \mathbf{a}_n)_{n=0}^{\infty} \\ & \mathbf{\partial} \cdot (\mathbf{a}_n)_{n=0}^{\infty} := (\mathbf{a}_{n+1})_{n=0}^{\infty} \end{aligned}$$

$$(L + M) \cdot \mathbf{f} = (L \cdot \mathbf{f}) + (M \cdot \mathbf{f})$$
$$L \cdot (\mathbf{f} + \mathbf{g}) = (L \cdot \mathbf{f}) + (L \cdot \mathbf{g})$$
$$(LM) \cdot \mathbf{f} = L \cdot (M \cdot \mathbf{f})$$
$$1 \cdot \mathbf{f} = \mathbf{f}$$

$$(L + M) \cdot \mathbf{f} = (L \cdot \mathbf{f}) + (M \cdot \mathbf{f})$$
$$L \cdot (\mathbf{f} + \mathbf{g}) = (L \cdot \mathbf{f}) + (L \cdot \mathbf{g})$$
$$(LM) \cdot \mathbf{f} = L \cdot (M \cdot \mathbf{f})$$
$$1 \cdot \mathbf{f} = \mathbf{f}$$

Problem: This does not happen automatically.

$$(L + M) \cdot \mathbf{f} = (L \cdot \mathbf{f}) + (M \cdot \mathbf{f})$$
$$L \cdot (\mathbf{f} + \mathbf{g}) = (L \cdot \mathbf{f}) + (L \cdot \mathbf{g})$$
$$(LM) \cdot \mathbf{f} = L \cdot (M \cdot \mathbf{f})$$
$$1 \cdot \mathbf{f} = \mathbf{f}$$

Problem: This does not happen automatically.

Example: For differential operators, we have

$$(x\partial) \cdot \mathbf{f} = x \cdot \mathbf{f}' = (\mathbf{t} \mapsto \mathbf{t} \mathbf{f}'(\mathbf{t}))$$

$$(\partial x) \cdot \mathbf{f} = \partial \cdot (\mathbf{t} \mapsto \mathbf{t} \mathbf{f}(\mathbf{t})) = (\mathbf{t} \mapsto \mathbf{f}(\mathbf{t}) + \mathbf{t} \mathbf{f}'(\mathbf{t}))$$

$$(L + M) \cdot \mathbf{f} = (L \cdot \mathbf{f}) + (M \cdot \mathbf{f})$$
$$L \cdot (\mathbf{f} + \mathbf{g}) = (L \cdot \mathbf{f}) + (L \cdot \mathbf{g})$$
$$(LM) \cdot \mathbf{f} = L \cdot (M \cdot \mathbf{f})$$
$$1 \cdot \mathbf{f} = \mathbf{f}$$

Problem: This does not happen automatically.

Example: For differential operators, we have

$$(x\partial) \cdot \mathbf{f} = x \cdot \mathbf{f}' = (\mathbf{t} \mapsto \mathbf{t} \mathbf{f}'(\mathbf{t}))$$

$$(\partial x) \cdot \mathbf{f} = \partial \cdot (\mathbf{t} \mapsto \mathbf{t} \mathbf{f}(\mathbf{t})) = (\mathbf{t} \mapsto \mathbf{f}(\mathbf{t}) + \mathbf{t} \mathbf{f}'(\mathbf{t}))$$

We need to change multiplication so as to fit to the action.

Definition

• Let K be a field

- Let K be a field
- Let $\sigma: K \to K$ be an endomorphism, i.e.,

 $\sigma(a+b) = \sigma(a) + \sigma(b)$ and $\sigma(ab) = \sigma(a)\sigma(b)$

- Let K be a field
- Let $\sigma \colon K \to K$ be an endomorphism
- Let $\delta \colon K \to K$ be a " $\sigma\text{-derivation}$, i.e.,

 $\delta(a+b) = \delta(a) + \delta(b) \quad \text{and} \quad \delta(ab) = \delta(a)b + \sigma(a)\delta(b)$

- Let K be a field
- Let $\sigma \colon K \to K$ be an endomorphism
- Let $\delta \colon K \to K$ be a " $\sigma\text{-derivation"}$
- Let A = K[∂] be the set of all univariate polynomials in ∂ with coefficients in K.

- Let K be a field
- Let $\sigma \colon K \to K$ be an endomorphism
- Let $\delta \colon K \to K$ be a " $\sigma\text{-derivation"}$
- Let A = K[∂] be the set of all univariate polynomials in ∂ with coefficients in K.
- Let + be the usual polynomial addition.

- Let K be a field
- Let $\sigma \colon K \to K$ be an endomorphism
- Let $\delta \colon K \to K$ be a " $\sigma\text{-derivation"}$
- Let A = K[∂] be the set of all univariate polynomials in ∂ with coefficients in K.
- Let + be the usual polynomial addition.
- Let \cdot be the unique (noncommutative) multiplication in A which extends the multiplication in R and satisfies

 $\label{eq:delta} \partial \mathfrak{a} = \sigma(\mathfrak{a}) \partial + \delta(\mathfrak{a}) \qquad \text{for all } \mathfrak{a} \in \mathsf{K}.$

- Let K be a field
- Let $\sigma \colon K \to K$ be an endomorphism
- Let $\delta \colon K \to K$ be a " $\sigma\text{-derivation"}$
- Let A = K[∂] be the set of all univariate polynomials in ∂ with coefficients in K.
- Let + be the usual polynomial addition.
- Let \cdot be the unique (noncommutative) multiplication in A which extends the multiplication in R and satisfies

 $\partial a = \sigma(a)\partial + \delta(a)$ for all $a \in K$.

• Then A together with this + and \cdot is called an Ore Algebra.

• differential operators: $\sigma = id$, $\delta = \frac{d}{dx}$

$$\partial x = x\partial + 1$$

• differential operators: $\sigma = id$, $\delta = \frac{d}{dx}$

$$\partial x = x\partial + 1$$

• recurrence operators: $\sigma(p(x)) = p(x+1)$, $\delta = 0$

 $\partial x = (x+1)\partial$

• differential operators: $\sigma = id$, $\delta = \frac{d}{dx}$

$$\partial x = x\partial + 1$$

• recurrence operators: $\sigma(p(x)) = p(x+1)$, $\delta = 0$

$$\partial x = (x+1)\partial$$

• q-recurrence operators: $\sigma(p(x)) = p(qx)$, $\delta = 0$

$$\partial \mathbf{x} = \mathbf{q} \mathbf{x} \partial$$

• The annihilator of $f \in F$ is defined as

$$\mathsf{ann}(\mathsf{f}) := \left\{ \, \mathsf{a} \in \mathsf{A} : \mathsf{a} \cdot \mathsf{f} = \mathsf{0} \, \right\} \subseteq \mathsf{A}.$$

Its elements are called annihilating operators for f.

• The annihilator of $f \in F$ is defined as

$$\operatorname{ann}(\mathbf{f}) := \left\{ a \in A : a \cdot \mathbf{f} = \mathbf{0} \right\} \subseteq A.$$

Its elements are called annihilating operators for f.

• The solution space of $a \in A$ is defined as

$$V(a) := \left\{ f \in F : a \cdot f = 0 \right\} \subseteq F.$$

Its elements are called solutions of a.

• The annihilator of $f \in F$ is defined as

$$\mathsf{ann}(\mathsf{f}) := \left\{ \, \mathsf{a} \in \mathsf{A} : \mathsf{a} \cdot \mathsf{f} = \mathsf{0} \, \right\} \subseteq \mathsf{A}.$$

Its elements are called annihilating operators for f. This is a left-ideal of A.

• The solution space of $a \in A$ is defined as

$$V(a) := \left\{ f \in F : a \cdot f = 0 \right\} \subseteq F.$$

Its elements are called solutions of a.

• The annihilator of $f \in F$ is defined as

$$\operatorname{ann}(\mathbf{f}) := \left\{ a \in A : a \cdot \mathbf{f} = \mathbf{0} \right\} \subseteq A.$$

Its elements are called annihilating operators for f. This is a left-ideal of A.

• The solution space of $a \in A$ is defined as

$$V(\mathbf{a}) := \left\{ \mathbf{f} \in \mathbf{F} : \mathbf{a} \cdot \mathbf{f} = \mathbf{0} \right\} \subseteq \mathbf{F}.$$

Its elements are called solutions of a.

This is a C-subspace of F, where $C = \{c \in K : c\partial = \partial c\}$.

Let A = K[∂] be an Ore algebra acting on a function space F.
f ∈ F is called D-finite (w.r.t. the action of A on F) if

 $\operatorname{ann}(\mathbf{f}) \neq \{\mathbf{0}\}.$

• $f \in F$ is called D-finite (w.r.t. the action of A on F) if

 $\operatorname{ann}(\mathbf{f}) \neq \{\mathbf{0}\}.$

• This is the case if and only if

 $\dim_{\mathsf{K}} \mathsf{K}[\boldsymbol{\partial}] / \mathsf{ann}(\mathbf{f}) < \infty$

• $f \in F$ is called D-finite (w.r.t. the action of A on F) if

 $\operatorname{ann}(\mathbf{f}) \neq \{\mathbf{0}\}.$

• This is the case if and only if

• $f \in F$ is called D-finite (w.r.t. the action of A on F) if

 $\operatorname{ann}(\mathbf{f}) \neq \{\mathbf{0}\}.$

• This is the case if and only if

Note also:

 $\mathsf{K}[\partial]/\mathsf{ann}(\mathsf{f})\cong\mathsf{K}[\partial]\cdot\mathsf{f}\subseteq\mathsf{F}$

as K-vector spaces.

In this case, $A = K[\partial_1, \dots, \partial_m]$ acts on a function space **F**.

In this case, $A = K[\partial_1, \dots, \partial_m]$ acts on a function space **F**.

For each ∂_i there is a separate σ_i and δ_i describing its commutation with elements of R.

In this case, $A = K[\partial_1, \dots, \partial_m]$ acts on a function space **F**.

For each ∂_i there is a separate σ_i and δ_i describing its commutation with elements of R.

We have $\partial_i \partial_j = \partial_j \partial_i$ for all i, j.

In this case, $A = K[\partial_1, \dots, \partial_m]$ acts on a function space F.

For each ∂_i there is a separate σ_i and δ_i describing its commutation with elements of R.

We have $\partial_i \partial_j = \partial_j \partial_i$ for all i, j.

Typically, F contains functions in m variables and ∂_i acts nontrivially on the ith variable and does nothing with the others.

In this case, $A = K[\partial_1, \dots, \partial_m]$ acts on a function space F.

For each ∂_i there is a separate σ_i and δ_i describing its commutation with elements of R.

We have $\partial_i \partial_j = \partial_j \partial_i$ for all i, j.

Typically, F contains functions in m variables and ∂_i acts nontrivially on the ith variable and does nothing with the others.

Example: $\mathbb{Q}(x, y, z)[D_x, D_y, D_z]$ acts naturally on the space F of meromorphic functions in three variables.

• The annihilator of $f \in F$ is defined as

 $\operatorname{ann}(\mathbf{f}) := \left\{ a \in A : a \cdot \mathbf{f} = \mathbf{0} \right\} \subseteq A.$

This is a left-ideal of A.

• The annihilator of $f \in F$ is defined as

 $\operatorname{ann}(\mathbf{f}) := \left\{ a \in A : a \cdot \mathbf{f} = \mathbf{0} \right\} \subseteq A.$

This is a left-ideal of A.

• It remains true that

 $\mathsf{K}[\mathfrak{d}_1,\ldots,\mathfrak{d}_m]/\mathsf{ann}(\mathsf{f})\cong\mathsf{K}[\mathfrak{d}_1,\ldots,\mathfrak{d}_m]\cdot\mathsf{f}\subseteq\mathsf{F}$

as K-vector spaces.

• The annihilator of $f \in F$ is defined as

 $\operatorname{ann}(\mathbf{f}) := \left\{ a \in A : a \cdot \mathbf{f} = \mathbf{0} \right\} \subseteq A.$

This is a left-ideal of A.

• It remains true that

 $\mathsf{K}[\partial_1,\ldots,\partial_m]/\mathsf{ann}(\mathbf{f})\cong\mathsf{K}[\partial_1,\ldots,\partial_m]\cdot\mathbf{f}\subseteq\mathsf{F}$

as K-vector spaces.

• f is called D-finite if

 $dim_{\mathsf{K}}\mathsf{K}[\mathfrak{d}_{1},\ldots,\mathfrak{d}_{m}]/\mathsf{ann}(\mathbf{f})<\infty$

• The annihilator of $f \in F$ is defined as

 $\operatorname{ann}(\mathbf{f}) := \left\{ a \in A : a \cdot \mathbf{f} = \mathbf{0} \right\} \subseteq A.$

This is a left-ideal of A.

• It remains true that

 $\mathsf{K}[\partial_1,\ldots,\partial_m]/\mathsf{ann}(\mathbf{f})\cong\mathsf{K}[\partial_1,\ldots,\partial_m]\cdot\mathbf{f}\subseteq\mathsf{F}$

as K-vector spaces.

• f is called D-finite if

 $\dim_{\mathsf{K}} \mathsf{K}[\mathfrak{d}_1,\ldots,\mathfrak{d}_m]/\mathsf{ann}(\mathbf{f}) < \infty$

• This is the case if and only if $\operatorname{ann}(\mathbf{f}) \cap K[\partial_i] \neq \{0\}$ for all i.

For $f(x,y)=\sqrt{x+y^2}-3x^2+y$ and $A=\mathbb{Q}(x,y)[D_x,D_y]$ we have

ann(f) =
$$\langle (9x^2 + y + 12xy^2)D_y + (2x + 6x^2y)D_x - (1 + 12xy),$$

(x + 3x²y + y² + 3xy³)D_y² + (y - 3x²)D_y - 1 \rangle .

For $f(x, y) = \sqrt{x + y^2} - 3x^2 + y$ and $A = \mathbb{Q}(x, y)[D_x, D_y]$ we have ann(f) = $\langle (9x^2 + y + 12xy^2)D_y + (2x + 6x^2y)D_x - (1 + 12xy), (x + 3x^2y + y^2 + 3xy^3)D_y^2 + (y - 3x^2)D_y - 1 \rangle$.

This function is D-finite because

ann(f) ∩ Q(x, y)[D_y]
=
$$\langle (x + 3x^2y + y^2 + 3xy^3)D_y^2 + (y - 3x^2)D_y - 1 \rangle \neq \{0\}$$

ann(f) ∩ Q(x, y)[D_x]
= $\langle 2(x + y^2)(9x^2 + y + 12xy^2)D_x^2 - (27x^2 - y + 48xy^2 + 24y^4)D_x$
+ $(18x + 12y^2) \rangle \neq \{0\}.$

For $f(n, k) = 2^k + {n \choose k}$ and $A = \mathbb{Q}(n, k)[S_n, S_k]$ we have ann $(f) = \langle \bullet + \bullet S_k + \bullet S_n, \bullet + \bullet S_k + \bullet S_k^2 \rangle$.

For $f(n, k) = 2^k + {n \choose k}$ and $A = \mathbb{Q}(n, k)[S_n, S_k]$ we have ann $(f) = \langle \mathbf{0} + \mathbf{0}S_k + \mathbf{0}S_n,$ $\mathbf{0} + \mathbf{0}S_k + \mathbf{0}S_k^2 \rangle.$

This function is D-finite because

 $\begin{aligned} \mathsf{ann}(\mathbf{f}) \cap \mathbb{Q}(n,k)[S_k] \\ &= \langle \mathbf{0} + \mathbf{0}S_k + \mathbf{0}S_k^2 \rangle \neq \{0\} \\ \mathsf{ann}(\mathbf{f}) \cap \mathbb{Q}(n,k)[S_n] \\ &= \langle -1 - n + (3 - k + 2n)S_n + (-2 + k - n)S_n^2 \rangle \neq \{0\}. \end{aligned}$

Gröbner bases are also available for ideals in Ore algebras.

Example: $f(x, y) = \sqrt{x + y^2} - 3x^2 + y$ $ann(f) = \langle (2x + 6x^2y) D_x + (9x^2 + y + 12xy^2)D_y - (1 + 12xy),$ $(x + 3x^2y + y^2 + 3xy^3) D_y^2 + (y - 3x^2)D_y - 1 \rangle.$

Example: $f(x, y) = \sqrt{x + y^2} - 3x^2 + y$ $ann(f) = \langle (2x + 6x^2y) D_x + (9x^2 + y + 12xy^2)D_y - (1 + 12xy),$ $(x + 3x^2y + y^2 + 3xy^3)D_y^2 + (y - 3x^2)D_y - 1 \rangle.$

Example: $f(\mathbf{x}, \mathbf{y}) = \sqrt{\mathbf{x} + \mathbf{y}^2} - 3\mathbf{x}^2 + \mathbf{y}$ $ann(\mathbf{f}) = \langle (2\mathbf{x} + 6\mathbf{x}^2\mathbf{y}) | \mathbf{D}_{\mathbf{x}} + (9\mathbf{x}^2 + \mathbf{y} + 12\mathbf{x}\mathbf{y}^2) \mathbf{D}_{\mathbf{y}} - (1 + 12\mathbf{x}\mathbf{y}),$ $(\mathbf{x} + 3\mathbf{x}^2\mathbf{y} + \mathbf{y}^2 + 3\mathbf{x}\mathbf{y}^3) | \mathbf{D}_{\mathbf{y}}^2 + (\mathbf{y} - 3\mathbf{x}^2) \mathbf{D}_{\mathbf{y}} - 1 \rangle.$

Example: $f(x, y) = \sqrt{x + y^2} - 3x^2 + y$ $ann(f) = \langle (2x + 6x^2y) D_x + (9x^2 + y + 12xy^2) D_y - (1 + 12xy),$ $(x + 3x^2y + y^2 + 3xy^3) D_y^2 + (y - 3x^2) D_y - 1 \rangle.$

> ann(f) = $\langle \bullet S_n + \bullet S_k + \bullet,$ $\bullet S_k^2 + \bullet S_k + \bullet \rangle.$

ann(f) =
$$\langle \bullet S_n + \bullet S_k + \bullet, \\ \bullet S_k^2 + \bullet S_k + \bullet \rangle.$$

Example: $P_n(x) = \text{the nth Legendre polynomial}$

ann(f) =
$$\langle (n+1) S_n + (1-x^2)D_x - (n+1)x,$$

(x²-1) $D_x^2 + 2xD_x - n(n+1) \rangle$.

Example: $P_n(x) =$ the nth Legendre polynomial

ann(f) =
$$\langle (n+1) S_n + (1-x^2)D_x - (n+1)x, (x^2-1)D_x^2 + 2xD_x - n(n+1) \rangle$$
.

Example: $P_n(x) =$ the nth Legendre polynomial

ann(f) =
$$\langle (n+1)S_n + (1-x^2)D_x - (n+1)x, (x^2-1)D_x^2 + 2xD_x - n(n+1) \rangle$$
.

Example: $P_n(x) =$ the nth Legendre polynomial

ann(f) =
$$\langle (n+1)S_n + (1-x^2)D_x - (n+1)x, (x^2-1)D_x^2 + 2xD_x - n(n+1) \rangle$$
.

- f, g D-finite \Rightarrow f + g, fg D-finite
- + f(x,y) D-finite and g nonconstant algebraic \Rightarrow f(x,g) D-finite
- ...

- f, g D-finite \Rightarrow f + g, fg D-finite
- + f(x,y) D-finite and g nonconstant algebraic \Rightarrow f(x,g) D-finite
- ...

These properties are realized by linear algebra in A/ann(f).

- f, g D-finite \Rightarrow f + g, fg D-finite
- + f(x,y) D-finite and g nonconstant algebraic \Rightarrow f(x,g) D-finite
- ...

These properties are realized by linear algebra in A/ann(f).

- f, g D-finite \Rightarrow f + g, fg D-finite
- + f(x,y) D-finite and g nonconstant algebraic \Rightarrow f(x,g) D-finite
- ...

These properties are realized by linear algebra in A/ann(f).

Additional closure properties (differential case):

• f(x,t) D-finite $\Rightarrow I(x) = \int_0^1 f(x,t) dt$ D-finite

- f, g D-finite \Rightarrow f + g, fg D-finite
- + f(x,y) D-finite and g nonconstant algebraic $\Rightarrow f(x,g)$ D-finite
- ...

These properties are realized by linear algebra in A/ann(f).

- f(x,t) D-finite $\Rightarrow I(x) = \int_0^1 f(x,t) dt$ D-finite
- f(x,t) D-finite $\Rightarrow C(x) = f(x,0) = [t^0]f(x,t)$ D-finite

- f, g D-finite \Rightarrow f + g, fg D-finite
- + f(x,y) D-finite and g nonconstant algebraic $\Rightarrow f(x,g)$ D-finite
- ...

These properties are realized by linear algebra in A/ann(f).

- f(x,t) D-finite $\Rightarrow I(x) = \int_0^1 f(x,t) dt$ D-finite
- f(x,t) D-finite $\Rightarrow C(x) = f(x,0) = [t^0]f(x,t)$ D-finite
- f(x,t) D-finite $\Rightarrow \Delta(x) = \text{diag } f(x,t)$ D-finite

- f, g D-finite \Rightarrow f + g, fg D-finite
- + f(x,y) D-finite and g nonconstant algebraic $\Rightarrow f(x,g)$ D-finite
- ...

These properties are realized by linear algebra in A/ann(f).

- f(x,t) D-finite $\Rightarrow I(x) = \int_0^1 f(x,t) dt$ D-finite
- f(x,t) D-finite $\Rightarrow C(x) = f(x,0) = [t^0]f(x,t)$ D-finite
- f(x,t) D-finite $\Rightarrow \Delta(x) = \text{diag } f(x,t)$ D-finite
- f(x,t) D-finite $\Rightarrow P(x,t) = [x^>t^>]f(x,t)$ D-finite

- f, g D-finite \Rightarrow f + g, fg D-finite
- + f(x,y) D-finite and g nonconstant algebraic $\Rightarrow f(x,g)$ D-finite
- ...

These properties are realized by linear algebra in A/ann(f).

Additional closure properties (differential case):

- f(x,t) D-finite $\Rightarrow I(x) = \int_0^1 f(x,t) dt$ D-finite
- f(x,t) D-finite $\Rightarrow C(x) = f(x,0) = [t^0]f(x,t)$ D-finite
- f(x,t) D-finite $\Rightarrow \Delta(x) = \text{diag } f(x,t)$ D-finite
- f(x,t) D-finite $\Rightarrow P(x,t) = [x^{>}t^{>}]f(x,t)$ D-finite

These properties are realized by creative telescoping.

Lesson 8: We are not limited to one variable and shift or derivation

The functional equation

$$2xf(x) + (x+1)f(x)^2 + (2x-1)f'(x) = 0$$

has a unique power series solution

$$f(x) = 1 + x + \frac{7}{2}x^2 + \cdots$$

The functional equation

$$2xf(x) + (x+1)f(x)^2 + (2x-1)f'(x) = 0$$

has a unique power series solution

$$f(x) = 1 + x + \frac{7}{2}x^2 + \cdots$$

This series does not seem to be D-finite.

The functional equation

$$2xf(x) + (x+1)f(x)^2 + (2x-1)f'(x) = 0$$

has a unique power series solution

$$f(x) = 1 + x + \frac{7}{2}x^2 + \cdots$$

This series does not seem to be D-finite.

But it is differentially algebraic.

Definition.

A power series f(x) is called differentially algebraic (ADE) if there is a nonzero polynomial $p \in \mathbb{Q}[x, y_0, y_1, \dots, y_r]$ such that

$$p(x, f(x), f'(x), \ldots, f^{(r)}(x)) = 0.$$

Such an equation is also called an algebraic differential equation.

Definition.

A power series f(x) is called differentially algebraic (ADE) if there is a nonzero polynomial $p \in \mathbb{Q}[x, y_0, y_1, \dots, y_r]$ such that

$$p(x, f(x), f'(x), \ldots, f^{(r)}(x)) = 0.$$

Such an equation is also called an algebraic differential equation.

Examples:

- The exponential generating function of the Bell numbers $f(x)=e^{e^{x}-1}$ satisfies

$$f(x)f'(x) + f'(x)^2 - f(x)f''(x) = 0.$$

Examples:

• The exponential generating function of the Bell numbers $f(x) = e^{e^x - 1}$ satisfies

$$f(x)f'(x) + f'(x)^2 - f(x)f''(x) = 0.$$

• The exponential generating function of the Bernoulli numbers $f(x) = \frac{x}{e^x - 1}$ satisfies

$$xf'(x) - (1-x)f(x) + f(x)^2 = 0.$$

Examples:

- The exponential generating function of the Bell numbers $f(x)=e^{e^{x}-1}$ satisfies

$$f(x)f'(x) + f'(x)^2 - f(x)f''(x) = 0.$$

• The exponential generating function of the Bernoulli numbers $f(x) = \frac{x}{e^x - 1}$ satisfies

$$xf'(x) - (1 - x)f(x) + f(x)^2 = 0.$$

 The generating function counting the number quarter plane walks with step set {∠, ←, ↑, →} is differentially algebraic. (The equation is rather big, though.) The main techniques for D-finite functions can be generalized to ADE functions. In particular:

• **Guessing**: algebraic differential equations can be reconstructed from initial values.

- Guessing: algebraic differential equations can be reconstructed from initial values.
 - $\rightarrow~$ Ansatz, coefficient comparison, linear system solving.

- Guessing: algebraic differential equations can be reconstructed from initial values.
 - $\rightarrow~$ Ansatz, coefficient comparison, linear system solving.
- Closure properties: many operations preserve differentially-algebraic-ness.

- Guessing: algebraic differential equations can be reconstructed from initial values.
 - $\rightarrow~$ Ansatz, coefficient comparison, linear system solving.
- Closure properties: many operations preserve differentially-algebraic-ness.
 - $\rightarrow~$ Closure properties can be executed via Gröbner bases.

$$f(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$

with $xf'(x) - (1 - x)f(x) + f(x)^2 = 0$.

$$f(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$

with $xf'(x) - (1 - x)f(x) + f(x)^2 = 0$.

We want to prove the identity

$$\sum_{k=0}^{n} \binom{n}{k} (1-2^{1-k})(1-2^{1-(n-k)})B_k B_{n-k} = (1-n)B_n$$

$$f(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$

with $xf'(x) - (1 - x)f(x) + f(x)^2 = 0$.

We want to prove the identity

$$\sum_{k=0}^{n} \frac{(1-2^{1-k})(1-2^{1-(n-k)})B_k B_{n-k}}{k!(n-k)!} = \frac{(1-n)}{n!} B_n$$

$$f(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$

with $xf'(x) - (1 - x)f(x) + f(x)^2 = 0$.

We want to prove the identity

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{(1-2^{1-k})(1-2^{1-(n-k)})B_k B_{n-k}}{k!(n-k)!} x^n = \sum_{n=0}^{\infty} \frac{(1-n)}{n!} B_n x^n$$

$$f(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$

with $xf'(x) - (1 - x)f(x) + f(x)^2 = 0$.

We want to prove the identity

$$\left(\sum_{n=0}^{\infty} (1-2^{1-n})\frac{B_n}{n!} x^n\right)^2 = \sum_{n=0}^{\infty} \frac{(1-n)}{n!} B_n x^n$$

$$f(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$

with $xf'(x) - (1 - x)f(x) + f(x)^2 = 0$.

We want to prove the identity

$$(f(x) - 2f(x/2))^2 = f(x) - xf'(x)$$

$$f(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$

with $xf'(x) - (1 - x)f(x) + f(x)^2 = 0$.

We want to prove the identity

$$(f(x) - 2f(x/2))^2 - f(x) + xf'(x) = 0$$

$$f(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$

with $xf'(x) - (1 - x)f(x) + f(x)^2 = 0$.

We want to prove the identity

$$h(x) := (f(x) - 2f(x/2))^2 - f(x) + xf'(x) = 0$$

$$f(x) = \sum_{n=0}^{\infty} \frac{B_n}{n!} x^n$$

with $xf'(x) - (1 - x)f(x) + f(x)^2 = 0$.

We want to prove the identity

$$h(x) := (f(x) - 2f(x/2))^2 - f(x) + xf'(x) = 0$$

using closure properties.

Compute an ADE for h(x) and check that its unique power series solution starting like $0 + 0x + 0x^2 + \cdots$ is the zero series.

$$\begin{split} &12x^4h(x)^2h''(x)^2-12x^2h(x)^4h''(x)+(12x^4-16x^2)h(x)^3h''(x)\\ &+32x^4h'(x)^4+28x^3h(x)^3h'(x)-96x^3h(x)h'(x)^3\\ &+16x^2h(x)^3h'(x)^2+(80x^2-19x^4)h(x)^2h'(x)^2\\ &-16xh(x)^4h'(x)-40x^4h(x)h'(x)^2h''(x)+64x^3h(x)^2h'(x)h''(x)\\ &-(6x^2+8)h(x)^5+(3x^4-4x^2-16)h(x)^4+3h(x)^6=0. \end{split}$$

Lesson 9: We are not limited to D-finite functions

Exercises.

- Find a linear recurrence equation for $\binom{2n}{n} + 2^n \sum_{k=1}^n \frac{1}{1+k^2}$, and a differential equation for its generating function.
- How do we need to define σ and δ in order to obtain an Ore algebra where ϑ acts like $\vartheta \cdot f(x) = f(x+1) f(x)$?
- Show that when f(x) is differentially algebraic, then so are $1/f(x), \ \sqrt{f(x)}, \ exp(f(x)), \ and \ log(f(x)).$

Lesson 1: Fast algorithms are really fast Lesson 2: Organize your computations well Lesson 3: Sometimes it's faster to take a detour Lesson 4: Gröbner bases can not only solve nonlinear systems Lesson 5: Computing a Gröbner basis is not hopeless Lesson 6: Gröbner bases are useful Lesson 7: Guessing is easy, but proving is not necessarily harder Lesson 8: We are not limited to one variable and shift or derivation Lesson 9: We are not limited to D-finite functions