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+ − × ÷ quo rem gcd
?
=

X

2457234957927694576945792851 ∈ Z

X

39376943576394575193475

9763947613453694769351
∈ Q

×

2.718281828459045235360287471352662497 . . . ∈ R

X

x6 + x5 + x4 + x3 + x2 + x+ ∈ k[x]

X

x5 + x4 + x3 + x2 + x+

x5 + x4 + x3 + x2 + x+
∈ k(x)

∼

+ x+ x2 + x3 + x4 + x5 + x6 + · · · ∈ k[[x]]
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678397416428×848668447413
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Computation time grows quadratically with the input size.

Modern algorithms have (quasi-)linear computation time.

For which input sizes does the difference matter?
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Polynomial Multiplication

size
104

time

100s

Mathematica 8
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Polynomial Multiplication

size

107

time

10s

Mathematica 8
Mathematica 9

Sage 6.8
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Lesson 1: Fast algorithms are really fast
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Fast multiplication has no advantage if the input is too unbalanced.

good input:

O(n) digits O(n) digits

not so good input (naive multiplication also takes linear time):

O(n) digits O(1) digits
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Example: computing n! for large n.

Naive:

8! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8

T(n) =
∑n
k=1O(k) = O(n2), even with fast multiplication.

Balanced:

8! = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8

T(n) = 2T(n/2) +O∼(n)⇒ T(n) = O∼(n) with fast
multiplication.
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Take this into account when you need to compute terms of large
index of a P-recursive sequence.

p0(n)an + p1(n)an+1 + p2(n)an+2 = 0

• • • • • • • •
• • • •
• •

•
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Take this into account when you need to compute terms of large
index of a P-recursive sequence.

(
an+1
an+2

)
=

(
0 1

−p0(n)
p2(n)

−p1(n)
p2(n)

)
︸ ︷︷ ︸

=:C(n)

(
an
an+1

)

• • • • • • • •
• • • •
• •

•
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Take this into account when you need to compute terms of large
index of a P-recursive sequence.

(
an+1
an+2

)
= C(n− 2)C(n− 3)C(n− 4) · · ·C(2)

(
a0
a1

)
.

• • • • • • • •
• • • •
• •

•
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Lesson 2: Organize your computations well
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Z
0

1091︷ ︸︸ ︷ 1091︷ ︸︸ ︷ 1091︷ ︸︸ ︷ 1091︷ ︸︸ ︷

Z1091 = Z/1091Z

0
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For fixed m ∈ Z \ {0}, let fm : Z→ Z/mZ, x 7→ [x]m := x+mZ.

0

fm is a ring homomorphism. This means

Mod(Answer(Question)) = Answer(Mod(Question))

Represent [x]m by an element ξ ∈ [x]m for which |ξ| is minimal.

• ξ ∈ [−m/2,m/2].

• If m > 2|x| then ξ = x.
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Chinese Remaindering

x ∈ [x]m

∩ [x]n = [x]lcm(m,n)

0

0

0
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Chinese Remaindering

x ∈ [x]m ∩ [x]n = [x]lcm(m,n)

Features:

• Even a big integer x can be recovered from sufficiently many
images [x]m1

, [x]m2
, . . . for small moduli m1,m2, . . . .

• Different modular images [x]mi
can be computed in parallel on

different computers.
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15494275516175484896146558165069374931768650
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15608195638318139575397871729737310479957231181434400
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171646799941657083902142563883114122236 2788562657830915054 17719370099115195915 14351987686736218119
255701011924435651472375478434132710558 2471600991651671889 5095243575810575316 12472610336651567052
65204696697886220698264621831639730752 14756123186994554460 11226634917845487051 13567859892950511514
147021196331035236134827717045673809472 11362094742791890224 6644727374610071491 3992711139584800062
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mod

340282366920938460843936948965011886881

6277101735386680683188868462945250914462856766432493496001

115792089237316192812296663087828730790152317073519228853714845075653663303437213598703592091001234080771759325475858366196400690895423566693517652039271792806003363225735459918446744073709551557 18446744073709551533 18446744073709551521

18446744073709551437 18446744073709551427
0 0 0
170 170 170
57125 57125 57125
48268101 48268101 48268101
34260690332 34260690332 34260690332
28950283288564 28950283288564 28950283288564
24602777889341700 24602777889341700 24602777889341700
21958748103044947821 3512004029335396384 3512004029335396394
19982460773770890734814 4636941943446528543 4636941943446539373
18589778412414172744395308 16731901151155104247 16731901151165181777
17556405435959384905586216420 13561571135583781555 13561571145101128005
16804193264871415986848637912866 18327790670218476919 18327799779789899229
16258906633984352510780895055898688 14241042812622173808 14249856783569576208
15878645003134966488517342432611820340 16698067314877451907 6859153945430415570
15631047178991661938104976711572278528840 11476126187194330620 18028251197597986227
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424185829625587809592566352271431402775173490353367407331 17719370099115195915 14351987686736218119
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3402823669209384608439369489650118868816277101735386680683188868462945250914462856766432493496001
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mod

3402823669209384608439369489650118868816277101735386680683188868462945250914462856766432493496001115792089237316192812296663087828730790152317073519228853714845075653663303437

2135987035920910012340807717593254758583661964006908954235666935176520392717928060033632257354599
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0
170
57125
48268101
34260690332
28950283288564
24602777889341700
21958748103044947821
19982460773770890734814
18589778412414172744395308
17556405435959384905586216420
16804193264871415986848637912866
16258906633984352510780895055898688
15878645003134966488517342432611820340
15631047178991661938104976711572278528840
15494275516175484896146558165069374931768650
15452119731275448721521690374123048169473745090
15492944429910290948927453354128640277129701928270
15608195638318139575397871729737310479957231181434400
15791696434663015062086294548870131152897244600962599710
16039042304161558566190267565720083550110055872936313121300
16347221676787084843566201114528305144441011394615536628043480
16714327636344626391862041955812314792830121148741093212135914440
17139356963672793388669217006249699836555901801582671305065963412450
17622061542861347959625369356680682135593177881983900768539311826713472
18162841216793283422562091421291078521630723657702122424507756283808698700
18762665614999822007839830386311098144372506555360938018652662698220539694616
19423018217659251266276892430699632002229719351100435132025989366139940897600008
20145857126504814155109603745644558012097546254998545662831506345299150654223844360
20933588899934099785719806412698545336726130412328111385454392939736508704575356754888
21789052707980917749010589339181187870108450716708413481060716254608148803460083665644160
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For hardware reasons, it’s best to take primes of size ≈ 264 or
≈ 232 as moduli.

The number of moduli needed is then proportional to the length of
the numbers in the final result.

Significant saving happens only when the numbers in intermediate
expressions are much longer.

Such intermediate expression swell is a common phenomenon in
many calculations.
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For example, the numbers on the previous slide satisfy a recurrence
of order 4 and degree 10.

Around 60 terms are needed to recover it. The 60th term has 180
decimal digits.

The longest integer coefficient appearing in the recurrence has only
20 decimal digits.

The exact recurrence can be recovered from homomorphic images
of the first 60 terms.
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mod 18446744073709551557

0
170
57125
48268101
34260690332
28950283288564
24602777889341700
21958748103044947821
19982460773770890734814
18589778412414172744395308
17556405435959384905586216420
16804193264871415986848637912866
16258906633984352510780895055898688
15878645003134966488517342432611820340
15631047178991661938104976711572278528840
15494275516175484896146558165069374931768650
15452119731275448721521690374123048169473745090
15492944429910290948927453354128640277129701928270
15608195638318139575397871729737310479957231181434400
15791696434663015062086294548870131152897244600962599710
16039042304161558566190267565720083550110055872936313121300
16347221676787084843566201114528305144441011394615536628043480
16714327636344626391862041955812314792830121148741093212135914440
17139356963672793388669217006249699836555901801582671305065963412450
17622061542861347959625369356680682135593177881983900768539311826713472
18162841216793283422562091421291078521630723657702122424507756283808698700
18762665614999822007839830386311098144372506555360938018652662698220539694616
19423018217659251266276892430699632002229719351100435132025989366139940897600008
20145857126504814155109603745644558012097546254998545662831506345299150654223844360
20933588899934099785719806412698545336726130412328111385454392939736508704575356754888
21789052707980917749010589339181187870108450716708413481060716254608148803460083665644160
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mod 18446744073709551557
0

0 0 0 0

170

170 170 170 170

57125

57125 57125 57125 57125

48268101

48268101 48268101 48268101 48268101

34260690332

34260690332 34260690332 34260690332 34260690332

28950283288564

28950283288564 28950283288564 28950283288564 28950283288564

24602777889341700

24602777889341700 24602777889341700 24602777889341700 24602777889341700

3512004029335396264

3512004029335396288 3512004029335396300 3512004029335396384 3512004029335396394

4636941943446398583

4636941943446424575 4636941943446437571 4636941943446528543 4636941943446539373

16731901151034173887

16731901151058359959 16731901151070452995 16731901151155104247 16731901151165181777

13561571021375624155

13561571044217255635 13561571055638071375 13561571135583781555 13561571145101128005

18327681355361409199

18327703218332822743 18327714149818529515 18327790670218476919 18327799779789899229

14135275161253345008

14156428691527110768 14167005456663993648 14241042812622173808 14249856783569576208

5637819232275028612

7849868848795513175 18179265693910531235 16698067314877451907 6859153945430415570

6637602357189385604

14984004752674089390 710461876706909598 11476126187194330620 18028251197597986227

12482169677218181673

12488827142696955539 12492155875456012980 12515457005136597883 9443773603570734321

13064253343726879423

15658485480684595156 7732229531925667068 7588670477925634811 13281286656044656459

14625225362239686504

10758223940600306782 8824742898598764285 13737486829569602371 15200796479896019943

10738834608406986658

788602827186764443 5056674106894750910 16856311482456444934 17425730095808525587

961106949064586405

12251039281660517429 1050611245293959755 1730796780127391701 635703020769662299

2211804365157896289

15185001070958618575 127308807730230649 2923290836694930836 5446680587098832013

8829591048746708080

10856515003962139665 11318493766728410726 16555821147378467083 2644477152643434420

15009988290858134393

12838284889333222403 8119518874668080973 11805308573535485946 12562094561654048160

7627367407386026140

8420246272424470758 13169248223630974435 16982273330702579648 6264853543132966636

14734287943773226198

16693159135573847818 2788562657830915054 17719370099115195915 14351987686736218119

15483359934879899009

16119877770365982383 2471600991651671889 5095243575810575316 12472610336651567052

899837740350271794

11946950024840031118 14756123186994554460 11226634917845487051 13567859892950511514

6952192533371026338

13765592352507043696 11362094742791890224 6644727374610071491 3992711139584800062

17697300886138518812

7652266267821078126 16010169456545623593 5224069660619876239 13020528712638715163

14174304902082598370

11862232204708398073 1837996549587781514 1149810384458158270 6569058788386309488

9566720042687775664

not needed
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But there is a catch: the guessed recurrence is not unique. Instead,
all the correct recurrences form a vector space.

Chinese remaindering will only succeed if we apply it to recurrences
sharing the same homomorphic preimage.

We could ensure a unique preimage by normalizing a specific
coefficient of the recurrence to 1.

But then we must be prepared that the coefficients of the preimage
live in Q rather than Z.
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Rational reconstruction comes to rescue: given m ∈ Z and x ∈ Z,
we can find small p, q ∈ Z such that p

q ≡ xmodm.

Of course, such p, q are not uniquely determined, but we can be
sure to find the right answer when m > max(4p2, q2).
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Here is how you should do guessing for large examples.
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Here is how you should do guessing for large examples.

choose a prime p
generate data

guess mod p

equation
found?

no equation exists
or not enough data

normalize and merge with
earlier equations (if any)
by Chinese Remaindering

rational reconstruction

looks good? done

no

yes

yesno

beware of unlucky primes

do several primes in parallel
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When there are also parameters, also use evaluation/interpolation
and rational function reconstruction.

Q(x)

Zp(x)

Zp

Zp Zp[x]

Zp(x)

Z(x)

Q(x)

mod

eval

solve

interpol

rr

cra

rr

solve
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Lesson 3: Sometimes it’s faster to take a detour
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Exercises.

• If F(n) is the nth Fibonacci number, then F(21000) is an
integer with 10300 decimal digits. Determine the 20 least
significant decimal digits of F(21000).

• Fix a random matrix A ∈ Z100×101 and a set of primes
p1, . . . , p100 with pi ≈ 2i. For each i check how long your
computer needs to find a basis of kerA mod pi.

• Use Chinese remaindering and rational reconstruction to find
a basis vector of kerA in Q101. How can we tell in advance
how many primes are needed?
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Finite sets of numbers can be viewed as solutions of polynomial
equations:

p = (x− 1)(x− 2)(x− 4) = 0

q = (x− 1)(x− 2)(x− 3) = 0

Intersection: gcd(p, q) = 0

Union: lcm(p, q) = 0
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In the case of two variables, the solution set of a single polynomial
is a curve.

x2 + y2 − 4 = 0
∧

xy− 1 = 0

Any finite set of points can be viewed as the intersection of such
curves.
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A polynomial in three variables describes a surface.

xz− y2 = 0

∧

y− z2 = 0

∧

x− yz = 0

Curves and finite sets of points can be viewed as intersections of
such surfaces.
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Typical questions about systems of polynomial equations:

• Decide whether a system of equations is inconsistent

• When it’s inconsistent, construct a proof certificate

• When it’s consistent, determine the number of solutions

• When there are finitely many solutions, list them

• When the solution set is infinite, determine its dimension

• Decide whether one system of equations implies another

• Decide whether two polynomial functions agree on a variety

• Eliminate some variables from a given equation system

• Compute kernels and images of polynomial homomorphisms

All these questions can be answered using Gröbner bases.
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Lesson 4: Gröbner bases can not only solve nonlinear systems
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Polynomial equations have implications:

p = 0 and q = 0 ⇒ p+ q = 0
p = 0 and q arbitrary ⇒ pq = 0.

Given p1, . . . , pk ∈ K[x1, . . . , xn], we therefore consider

〈p1, . . . , pk〉 :=
{
q1p1 + · · ·+ qkpk : q1, . . . , qk ∈ K[x1, . . . , xn]

}
,

the ideal generated by p1, . . . , pk in the ring K[x1, . . . , xn]. We call
{p1, . . . , pk} a basis of the ideal.

Intuition: the ideal is a “theory” of equations of the form
“poly = 0” in which p1, . . . , pk are the “axioms” and implications
quoted above are the “deduction rules”.
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The basis of an ideal is not unique.

Example: 〈x2 + y2 − 4︸ ︷︷ ︸
p1

, xy− 1︸ ︷︷ ︸
p2

〉 = 〈y4 − 4y2 + 1︸ ︷︷ ︸
q1

, y3 − 4y+ x︸ ︷︷ ︸
q2

〉.

Proof:
“⊆” p1 = (y2 − 4)q1 + (x+ 4y− y3)q2,

p2 = −q1 + yq2.

“⊇” q1 = y
2 p1 − (xy+ 1)p2,

q2 = yp1 − xp2.

Among all the bases of a given ideal, the Gröbner basis is one that
satisfies a certain minimality condition.
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For n > 1, divisibility on the set of monomials xe11 x
e2
2 · · · xenn is no

longer a total ordering, e.g., x2y and xy2 are not comparable.

Fix a total ordering on the monomials which is compatible with
divisibility. Such an order is called a term order.

Once a term order is chosen, every nonzero polynomial has a
unique maximal term, called the head or the leading term.

Example: 3x3y2 + 7x2y3 + 8x2y− 4xy+ 8y3 − 17.

Among all the bases of an ideal, the Gröbner basis is such that the
leading terms of its elements are as small as possible.
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If a basis of an ideal has a polynomial with head h, then every
multiple of h is the head of some element of I.

x4y

xy3

x2y2

In general however, the ideal may also contain polynomials whose
head is not a multiple of the head of any basis element.
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If a basis of an ideal has a polynomial with head h, then every
multiple of h is the head of some element of I.

x4y

xy3

x2y2

In general however, the ideal may also contain polynomials whose
head is not a multiple of the head of any basis element.

{g1, . . . , gk} is a Gröbner basis ⇐⇒
∀ p ∈ 〈g1, . . . , gk〉 \ {0} ∃ i ∈ {1, . . . , k} : Head(gi) | Head(p).
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Fix an ideal I ⊆ Q[x1, . . . , xn] and define

p ∼ q ⇐⇒ p− q ∈ I.

Then Q[x1, . . . , xn]/∼ = Q[x1, . . . , xn]/I is a ring.
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Then Q[x1, . . . , xn]/∼ = Q[x1, . . . , xn]/I is a ring.

As a Q-vector space, it is generated by the classes of all terms that
are not divided by the head of a basis element.
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Fix an ideal I ⊆ Q[x1, . . . , xn] and define

p ∼ q ⇐⇒ p− q ∈ I.

Then Q[x1, . . . , xn]/∼ = Q[x1, . . . , xn]/I is a ring.

The ideal basis is a Gröbner basis iff the blue terms form a vector
space basis of Q[x1, . . . , xn]/I.
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• Every equivalence class contains at least one polynomial with
only blue terms.

• We have a Gröbner basis if and only if every equivalence class
contains exactly one such polynomial.

• This polynomial is then called the normal form of any
polynomial in the class.

• There is an algorithm for computing the normal form of p
w.r.t. a given Gröbner basis G.

• We have p ∈ 〈G〉 if and only if the normal form of p w.r.t. G
is zero.
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• We have a Gröbner basis if and only if every equivalence class
contains exactly one such polynomial.

• This polynomial is then called the normal form of any
polynomial in the class.

• There is an algorithm for computing the normal form of p
w.r.t. a given Gröbner basis G.
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• Given any basis of an ideal I, we can compute a Gröbner basis
of the ideal.

• In terms of complexity theory, the computation of a Gröbner
basis is a hard problem.

• In practice, the situation is often not as bad as one could
expect, mainly for two reasons:

• 1. Many problems arising in practice do not exhibit worst case
behaviour.

• 2. Much effort has been invested into efficient algorithms and
software.
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of the ideal.

• In terms of complexity theory, the computation of a Gröbner
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Lesson 5: Computing a Gröbner basis is not hopeless
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With a Gröbner basis at hand, everything about the ideal is known.

For example, you can get the dimension of its zero set by counting
how many blue terms∗ there are up to degree N, as N→∞.

dim(I) = 0

isolated points

dim(I) = 1

curves

dim(I) = 2

surfaces

Note: dim(I) = 0 ⇐⇒ dimQ[x1, . . . , xn]/I <∞.

∗ only works for suitably chosen term orders.
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Very useful: you can also find elements of an ideal which only
contain some of the variables.

Note: If I is an ideal in Q[x, y, z], then I∩Q[x, y] is an ideal in the
smaller ring Q[x, y].

Example:

〈x2 + y2 − 4, xy− 1〉 ∩Q[x]

= 〈x4 − 4x2 + 1〉 ⊆ Q[x]

Fact∗: If G is a Gröbner basis of I, then G ∩Q[x, y] is a Gröbner
basis of I ∩Q[x, y].

∗ only works for suitably chosen term orders.
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basis of I ∩Q[x, y].

∗ only works for suitably chosen term orders.

https://tinyurl.com/y8h6l6sp 40



Very useful: you can also find elements of an ideal which only
contain some of the variables.

Note: If I is an ideal in Q[x, y, z], then I∩Q[x, y] is an ideal in the
smaller ring Q[x, y].

Example:

〈x2 + y2 − 4, xy− 1〉 ∩Q[x]

= 〈x4 − 4x2 + 1〉 ⊆ Q[x]
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Closure properties for algebraic functions via elimination.

Example: Let f(x), g(x) be power series satisfying

f(x)2 − (2x+ 3)f(x) + 1 = 0, g(x)2 + g(x) − x3 = 0.

We want to find a polynomial equation for h(x) = f(x) + g(x).

〈f2 − (2x+ 3)f+ 1, g2 + g− x3, h− (f+ g)〉 ∩Q[x, h]

= 〈h4 − 4(x+1)h3 − (2x3−4x2−6x−3)h2

+ 2(2x3+2x+1)(x+1)h+ (x+1)2(x4−6x3+x2−1)〉.
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Quantifier elimination via elimination.

Example: Let p = x2 + 2xy+ 3y2. What conditions must a, b, c
satisfy such that there exist α,β with

p(αx, βy) = ax2 + bxy+ cy2 ?

Coefficient comparison yields:

〈α2 − a, 2αβ− b, 3β2 − c〉 ∩Q[a, b, c]

= 〈3b2 − 4ac〉
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Lesson 6: Gröbner bases are useful
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Exercises.

• How long does it take on your computer to compute a
Gröbner basis for 3 random polynomials in 4 variables of total
degree 5?

• Let I, J ⊆ Q[x, y, z] be ideals. Show that I ∩ J is also an ideal,
and that dimI = dimJ = 0 ⇐⇒ dim(I ∩ J) = 0. What does
this mean geometrically?

• Given the minimal polynomials of two algebraic functions
f(x), g(x), how can we find the minimal polynomial of their
composition h(x) := f(g(x))?
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Definition.

1 A function f(x) is called D-finite if there exist polynomials
c0(x), . . . , cr(x), not all zero, such that

c0(x)f(x) + c1(x)f
′(x) + · · ·+ cr(x)f(r)(x) = 0.

2 A sequence (fn)
∞
n=0 is called D-finite if there exist polynomials

c0(n), . . . , cr(n), not all zero, such that

c0(n)fn + c1(n)fn+1 + · · ·+ cr(n)fn+r = 0.

Key feature: a D-finite object is uniquely determined by a defining
equation plus a finite number of initial terms.
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It was already mentioned that D-finite equations can be guessed.

2
5
21
104
565
3255
19488
119712
748341
4735445
30229771
194242152
1254381856
8132826044
52900345680
345022543104
2255449994037
14773402692945
96935423713905
637019314585500
4191982352334315
27619973660237475
182185272080724120
1202945209263916560
7950293909692711200
52588673551755331380
348131918848400963388
2306281394441276650832

(1188n5 + 5346n4 + 8796n3 + 6594n2 + 2268n + 288)fn⇒ −(473n5+2365n4+4453n3+3899n2+1554n+216)fn+1

+ (44n5 + 242n4 + 492n3 + 454n2 + 184n+ 24)fn+2 = 0
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Several operations preserve D-finiteness. In particular:

If f, g are D-finite, then so are f+ g, and fg.

If f is a D-finite power series, then

•
∫
f is D-finite

• f ◦ g is D-finite for every algebraic(!) function g

• if f(x) =
∑∞
n=0 anx

n, then (an)
∞
n=0 is a D-finite sequence.

If (an)
∞
n=0 is a D-finite sequence, then

•
(∑n

k=0 ak
)∞
n=0

is D-finite

• (aun+v)
∞
n=0 is D-finite for every fixed u, v ∈ N.

• f(x) =∑∞
n=0 anx

n is a D-finite power series
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We can use closure properties for turning guesses into theorems.

Example: The functional equation

2xf(x) + ex(x+ 1)f(x)2 + (2x− 1)f ′(x) = 0

has a unique formal power series solution

f(x) = 1+ x+ 4x2 + 65
6 x

3 + · · · .

Is this series D-finite?

Yes, it is. It can be shown using the guess-and-prove paradigm.
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• Compute the first ≈ 20 terms of f(x) using the given equation.

• Use them to guess the differential equation

(x+ 1)(2x− 1)(x2 + 14x− 5)f ′′(x)

+ (4x4 + 65x3 + 54x2 + 19x− 28)f ′(x)

+ 2(x4 + 18x3 + 27x2 + 22x− 6)f(x) = 0.

• Let g(x) be the unique power series solution of this differential
equation starting like g(x) = 1+ x+ 4x2 + 65

6 x
3 + · · · .

• Use closure properties to prove that

2x g(x) + ex(x+ 1) g(x) 2 + (2x− 1) g ′(x) = 0.

• Because of uniqueness, we have f(x) = g(x). It follows that
f(x) is D-finite.
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Lesson 7: Guessing is easy, but proving is not necessarily harder.
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f is a D-finite function, i.e., a solution of a linear differential
equation

p0(x)f(x) + · · ·+ pr(x)f(r)(x) = 0
with polynomial coefficients p0, . . . , pr, if and only if the vector
space generated by f, f ′, f ′′, . . . over the rational function field has
finite dimension:

Q(x)f+Q(x)f ′ +Q(x)f ′′ + · · ·
= Q(x)f+Q(x)f ′ + · · ·+Q(x)f(r−1).
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From this characterization, D-finite closure properties are easy to
understand.

Example:

• Suppose f and g are D-finite

• Then dimQ(x)〈f, f ′, . . . 〉 <∞ and dimQ(x)〈g, g ′, . . . 〉 <∞
• Set V := 〈f, f ′, . . . 〉+ 〈g, g ′, . . . 〉. Then dimQ(x)V <∞
• h := f+ g and all its derivatives belong to V

• Hence h, h ′, . . . , h(r) must be linearly dependent over Q(x)
when r is large enough. So h is D-finite.

This argument, and in fact the whole idea of D-finiteness, extends
to a more general setting.
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This argument, and in fact the whole idea of D-finiteness, extends
to a more general setting.
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Let us consider operators acting on functions.

· : A↑
operator
algebra

×

function
space↓
F→ F

Examples:

• differential operators: x · (t 7→ f(t)) := (t 7→ t f(t))
∂ · (t 7→ f(t)) := (t 7→ f ′(t))

• recurrence operators: x · (an)∞n=0 := (nan)
∞
n=0

∂ · (an)∞n=0 := (an+1)
∞
n=0

• q-recurrence operators: x · (an)∞n=0 := (qnan)
∞
n=0

∂ · (an)∞n=0 := (an+1)
∞
n=0
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Want: Action should be compatible with polynomial arithmetic

(L+M) · f = (L · f) + (M · f)
L · (f+ g) = (L · f) + (L · g)
(LM) · f = L · (M · f)

1 · f = f

Problem: This does not happen automatically.

Example: For differential operators, we have

(x∂) · f = x · f ′ = (t 7→ t f ′(t))

(∂x) · f = ∂ · (t 7→ t f(t)) = (t 7→ f(t) + t f ′(t))

We need to change multiplication so as to fit to the action.
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Definition

• Let K be a field

• Let σ : K→ K be an endomorphism

, i.e.,

σ(a+ b) = σ(a) + σ(b) and σ(ab) = σ(a)σ(b)

• Let δ : K→ K be a “σ-derivation”

, i.e.,

δ(a+ b) = δ(a) + δ(b) and δ(ab) = δ(a)b+ σ(a)δ(b)

• Let A = K[∂] be the set of all univariate polynomials in ∂ with
coefficients in K.

• Let + be the usual polynomial addition.

• Let · be the unique (noncommutative) multiplication in A
which extends the multiplication in R and satisfies

∂a = σ(a)∂+ δ(a) for all a ∈ K.

• Then A together with this + and · is called an Ore Algebra.
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Examples: A = Q(x)[∂]

• differential operators: σ = id, δ = d
dx

∂x = x∂+ 1

• recurrence operators: σ(p(x)) = p(x+ 1), δ = 0

∂x = (x+ 1)∂

• q-recurrence operators: σ(p(x)) = p(qx), δ = 0

∂x = qx∂
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Let A = K[∂] be an Ore algebra acting on a function space F.
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Let A = K[∂] be an Ore algebra acting on a function space F.

• The annihilator of f ∈ F is defined as

ann(f) :=
{
a ∈ A : a · f = 0

}
⊆ A.

Its elements are called annihilating operators for f.

This is a left-ideal of A.

• The solution space of a ∈ A is defined as

V(a) :=
{
f ∈ F : a · f = 0

}
⊆ F.

Its elements are called solutions of a.

This is a C-subspace of F, where C = { c ∈ K : c∂ = ∂c }.
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Let A = K[∂] be an Ore algebra acting on a function space F.

• f ∈ F is called D-finite (w.r.t. the action of A on F) if

ann(f) 6= {0}.

• This is the case if and only if

dimKK[∂↑
|

“D” -

]/ann(f) <∞︸ ︷︷ ︸↑
“finite”

• Note also:
K[∂]/ann(f) ∼= K[∂] · f ⊆ F

as K-vector spaces.
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The setting generalizes to the case of several variables.

In this case, A = K[∂1, . . . , ∂m] acts on a function space F.

For each ∂i there is a separate σi and δi describing its
commutation with elements of R.

We have ∂i∂j = ∂j∂i for all i, j.

Typically, F contains functions in m variables and ∂i acts
nontrivially on the ith variable and does nothing with the others.

Example: Q(x, y, z)[Dx, Dy, Dz] acts naturally on the space F of
meromorphic functions in three variables.
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Let A = K[∂1, . . . , ∂m] be an Ore algebra acting on F.

• The annihilator of f ∈ F is defined as

ann(f) :=
{
a ∈ A : a · f = 0

}
⊆ A.

This is a left-ideal of A.

• It remains true that

K[∂1, . . . , ∂m]/ann(f) ∼= K[∂1, . . . , ∂m] · f ⊆ F

as K-vector spaces.

• f is called D-finite if

dimKK[∂1, . . . , ∂m]/ann(f) <∞
• This is the case if and only if ann(f) ∩ K[∂i] 6= {0} for all i.
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K[∂1, . . . , ∂m]/ann(f) ∼= K[∂1, . . . , ∂m] · f ⊆ F

as K-vector spaces.

• f is called D-finite if

dimKK[∂1, . . . , ∂m]/ann(f) <∞
• This is the case if and only if ann(f) ∩ K[∂i] 6= {0} for all i.
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Example:

For f(x, y) =
√
x+ y2−3x2+y and A = Q(x, y)[Dx, Dy] we have

ann(f) =
〈
(9x2 + y+ 12xy2)Dy + (2x+ 6x2y)Dx − (1+ 12xy),

(x+ 3x2y+ y2 + 3xy3)D2y + (y− 3x2)Dy − 1
〉
.

This function is D-finite because

ann(f) ∩Q(x, y)[Dy]

= 〈(x+ 3x2y+ y2 + 3xy3)D2y + (y− 3x2)Dy − 1〉 6= {0}

ann(f) ∩Q(x, y)[Dx]

= 〈2(x+ y2)(9x2 + y+ 12xy2)D2x − (27x2 − y+ 48xy2 + 24y4)Dx

+ (18x+ 12y2)〉 6= {0}.
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Example:

For f(n, k) = 2k +
(
n
k

)
and A = Q(n, k)[Sn, Sk] we have

ann(f) =
〈

+ Sk + Sn,

+ Sk + S2k
〉
.

This function is D-finite because

ann(f) ∩Q(n, k)[Sk]

= 〈 + Sk + S2k〉 6= {0}

ann(f) ∩Q(n, k)[Sn]

= 〈−1− n+ (3− k+ 2n)Sn + (−2+ k− n)S2n〉 6= {0}.
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Gröbner bases are also available for ideals in Ore algebras.

In particular, a vector space basis of K[∂1, . . . , ∂m]/ann(f) is given by
the terms ∂e11 · · ·∂emm which are not the leading term of any element
of ann(f).
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Example:
Pn(x) = the nth Legendre polynomial

ann(f) =
〈
(n+ 1) Sn + (1− x2)Dx − (n+ 1)x,

(x2 − 1)D2x + 2xDx − n(n+ 1)
〉
.
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Closure properties work as in the univariate case:

• f, g D-finite ⇒ f+ g, fg D-finite

• f(x, y) D-finite and g nonconstant algebraic ⇒ f(x, g) D-finite

• . . .

These properties are realized by linear algebra in A/ann(f).

Additional closure properties (differential case):

• f(x, t) D-finite ⇒ I(x) =
∫1
0 f(x, t)dt D-finite

• f(x, t) D-finite ⇒ C(x) = f(x, 0) = [t0]f(x, t) D-finite

• f(x, t) D-finite ⇒ ∆(x) = diag f(x, t) D-finite

• f(x, t) D-finite ⇒ P(x, t) = [x>t>]f(x, t) D-finite

These properties are realized by creative telescoping.
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Lesson 8: We are not limited to one variable and shift or derivation

https://tinyurl.com/y8h6l6sp 65



The functional equation

2xf(x) + (x+ 1)f(x)2 + (2x− 1)f ′(x) = 0

has a unique power series solution

f(x) = 1+ x+ 7
2x
2 + · · · .

This series does not seem to be D-finite.

But it is differentially algebraic.
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Definition.
A power series f(x) is called differentially algebraic (ADE) if there
is a nonzero polynomial p ∈ Q[x, y0, y1, . . . , yr] such that

p
(
x, f(x), f ′(x), . . . , f(r)(x)

)
= 0.

Such an equation is also called an algebraic differential equation.

ADE

D-finite elementary
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Examples:

• The exponential generating function of the Bell numbers
f(x) = eex−1 satisfies

f(x)f ′(x) + f ′(x)2 − f(x)f ′′(x) = 0.

• The exponential generating function of the Bernoulli numbers
f(x) = x

ex−1 satisfies

xf ′(x) − (1− x)f(x) + f(x)2 = 0.

• The generating function counting the number quarter plane
walks with step set {↙,←, ↑,→} is differentially algebraic.
(The equation is rather big, though.)
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The main techniques for D-finite functions can be generalized to
ADE functions. In particular:

• Guessing: algebraic differential equations can be reconstructed
from initial values.

→ Ansatz, coefficient comparison, linear system solving.

• Closure properties: many operations preserve
differentially-algebraic-ness.

→ Closure properties can be executed via Gröbner bases.
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Example: Let Bn be the Bernoulli numbers defined through

f(x) =

∞∑
n=0

Bn

n!
xn

with xf ′(x) − (1− x)f(x) + f(x)2 = 0.

Compute an ADE for h(x) and check that its unique power series
solution starting like 0+ 0x+ 0x2 + · · · is the zero series.
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k=0

(
n

k

)
(1− 21−k)(1− 21−(n−k))BkBn−k = (1− n)Bn

using closure properties.
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Example: Let Bn be the Bernoulli numbers defined through

f(x) =

∞∑
n=0

Bn

n!
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We want to prove the identity

h(x) :=
(
f(x) − 2f(x/2)

)2
− f(x) + xf ′(x) = 0

using closure properties.

Compute an ADE for h(x) and check that its unique power series
solution starting like 0+ 0x+ 0x2 + · · · is the zero series.

https://tinyurl.com/y8h6l6sp 70



Example: Let Bn be the Bernoulli numbers defined through

f(x) =

∞∑
n=0

Bn

n!
xn

with xf ′(x) − (1− x)f(x) + f(x)2 = 0.

We want to prove the identity

h(x) :=
(
f(x) − 2f(x/2)

)2
− f(x) + xf ′(x) = 0

using closure properties.

Compute an ADE for h(x) and check that its unique power series
solution starting like 0+ 0x+ 0x2 + · · · is the zero series.

https://tinyurl.com/y8h6l6sp 70



12x4h(x)2h ′′(x)2 − 12x2h(x)4h ′′(x) + (12x4 − 16x2)h(x)3h ′′(x)

+ 32x4h ′(x)4 + 28x3h(x)3h ′(x) − 96x3h(x)h ′(x)3

+ 16x2h(x)3h ′(x)2 + (80x2 − 19x4)h(x)2h ′(x)2

− 16xh(x)4h ′(x) − 40x4h(x)h ′(x)2h ′′(x) + 64x3h(x)2h ′(x)h ′′(x)

− (6x2 + 8)h(x)5 + (3x4 − 4x2 − 16)h(x)4 + 3h(x)6 = 0.
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Lesson 9: We are not limited to D-finite functions
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Exercises.

• Find a linear recurrence equation for
(
2n
n

)
+ 2n −

∑n
k=1

1
1+k2

,
and a differential equation for its generating function.

• How do we need to define σ and δ in order to obtain an Ore
algebra where ∂ acts like ∂ · f(x) = f(x+ 1) − f(x)?

• Show that when f(x) is differentially algebraic, then so are
1/f(x),

√
f(x), exp(f(x)), and log(f(x)).
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Lesson 1: Fast algorithms are really fast

Lesson 2: Organize your computations well

Lesson 3: Sometimes it’s faster to take a detour

Lesson 4: Gröbner bases can not only solve nonlinear systems

Lesson 5: Computing a Gröbner basis is not hopeless

Lesson 6: Gröbner bases are useful

Lesson 7: Guessing is easy, but proving is not necessarily harder

Lesson 8: We are not limited to one variable and shift or derivation

Lesson 9: We are not limited to D-finite functions
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