SOME LESSONS ON COMPUTER ALGEBRA

Manuel Kauers • Institute for Algebra • JKU

Slides available at https://tinyurl.com/y8h6l6sp

NINE LESSONS ON COMPUTER ALGEBRA

Manuel Kauers • Institute for Algebra • JKU

Slides available at https://tinyurl.com/y8h6l6sp

$$
+\quad \times \quad \div \text { quo rem gcd } \stackrel{?}{=}
$$

$$
+-\times \div \text { quo rem gcd } \stackrel{?}{=}
$$

$2457234957927694576945792851 \in \mathbb{Z}$

$$
\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}
$$

$2.718281828459045235360287471352662497 \ldots \in \mathbb{R}$

$$
\begin{array}{r}
o x^{6}+o x^{5}+o x^{4}+o x^{3}+o x^{2}+o x+0 \in k[x] \\
\frac{o x^{5}+o x^{4}+o x^{3}+o x^{2}+o x+0}{o x^{5}+o x^{4}+o x^{3}+o x^{2}+o x+0} \in k(x) \\
O+o x+o x^{2}+o x^{3}+o x^{4}+o x^{5}+o x^{6}+\cdots \in k[[x]]
\end{array}
$$

$$
+-\times \div \text { quo rem gcd } \stackrel{?}{=}
$$

$2457234957927694576945792851 \in \mathbb{Z}$

$$
\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}
$$

$2.718281828459045235360287471352662497 \ldots \in \mathbb{R}$

$$
\begin{aligned}
& \frac{0 x^{5}+0 x^{4}+0 x^{3}+0 x^{2}+0 x+0}{O x^{5}+O x^{4}+O x^{3}+0 x^{2}+0 x+0} \in k(x) \\
& 0+o x+o x^{2}+o x^{3}+o x^{4}+o x^{5}+o x^{6}+\cdots \in k[[x]]
\end{aligned}
$$

$$
+-\times \div \text { quo rem gcd } \stackrel{?}{=}
$$

$2457234957927694576945792851 \in \mathbb{Z}$

$$
\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}
$$

$2.718281828459045235360287471352662497 \ldots \in \mathbb{R}$

$$
\begin{aligned}
& \frac{0 x^{5}+0 x^{4}+0 x^{3}+0 x^{2}+0 x+0}{O x^{5}+O x^{4}+O x^{3}+0 x^{2}+0 x+0} \in k(x) \\
& 0+o x+o x^{2}+o x^{3}+o x^{4}+o x^{5}+o x^{6}+\cdots \in k[[x]]
\end{aligned}
$$

$$
+-\times \div \text { quo rem gcd } \stackrel{?}{=}
$$

$2457234957927694576945792851 \in \mathbb{Z}$

$$
\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}
$$

$2.718281828459045235360287471352662497 \ldots \in \mathbb{R}$

$$
\begin{aligned}
& \frac{0 x^{5}+0 x^{4}+0 x^{3}+0 x^{2}+0 x+0}{O x^{5}+O x^{4}+O x^{3}+0 x^{2}+0 x+0} \in k(x) \\
& 0+o x+o x^{2}+o x^{3}+o x^{4}+o x^{5}+o x^{6}+\cdots \in k[[x]]
\end{aligned}
$$

$$
+-\times \div \text { quo rem gcd } \stackrel{?}{=}
$$

$2457234957927694576945792851 \in \mathbb{Z}$

$$
\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}
$$

$2.718281828459045235360287471352662497 \ldots \in \mathbb{R}$

$$
\begin{aligned}
& \frac{0 x^{5}+0 x^{4}+0 x^{3}+0 x^{2}+0 x+0}{O x^{5}+O x^{4}+O x^{3}+0 x^{2}+0 x+0} \in k(x) \\
& 0+o x+o x^{2}+o x^{3}+o x^{4}+o x^{5}+o x^{6}+\cdots \in k[[x]]
\end{aligned}
$$

$$
+-\times \div \text { quo rem gcd } \stackrel{?}{=}
$$

$2457234957927694576945792851 \in \mathbb{Z}$

$$
\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}
$$

$2.718281828459045235360287471352662497 \ldots \in \mathbb{R}$

$$
\begin{aligned}
& \frac{o x^{5}+O x^{4}+O x^{3}+O x^{2}+0 x+0}{O x^{5}+O x^{4}+O x^{3}+O x^{2}+O x+0} \in k(x) \\
& 0+o x+o x^{2}+o x^{3}+o x^{4}+o x^{5}+o x^{6}+\cdots \in k[[x]]
\end{aligned}
$$

$$
+-\times \div \text { quo rem gcd } \stackrel{?}{=}
$$

$2457234957927694576945792851 \in \mathbb{Z}$

$$
\frac{39376943576394575193475}{9763947613453694769351} \in \mathbb{Q}
$$

$2.718281828459045235360287471352662497 \ldots \in \mathbb{R}$

$$
\begin{aligned}
& \mathbf{o} \boldsymbol{x}^{6}+\mathbf{o} \mathbf{x}^{5}+\mathbf{o} \boldsymbol{x}^{4}+\mathbf{o} \mathbf{x}^{3}+\mathbf{o} \boldsymbol{x}^{2}+\mathbf{o x}+\mathbf{o} \in \mathrm{k}[x] \\
& \frac{o x^{5}+O x^{4}+O x^{3}+O x^{2}+0 x+0}{O x^{5}+O x^{4}+O x^{3}+O x^{2}+O x+0} \in k(x) \\
& 0+o x+o x^{2}+o x^{3}+o x^{4}+o x^{5}+o x^{6}+\cdots \in k[[x]]
\end{aligned}
$$

$314744866848 \times 824614793876$

$314744866848 \times 824614793876$

Computation time grows quadratically with the input size.

Computation time grows quadratically with the input size.
Modern algorithms have (quasi-)linear computation time.

Computation time grows quadratically with the input size.
Modern algorithms have (quasi-)linear computation time.
For which input sizes does the difference matter?

Polynomial Multiplication

Lesson 1: Fast algorithms are really fast

Fast multiplication has no advantage if the input is too unbalanced.

Fast multiplication has no advantage if the input is too unbalanced. good input:

$$
\mathrm{O}(\mathrm{n}) \text { digits }
$$

$\mathrm{O}(\mathrm{n})$ digits

Fast multiplication has no advantage if the input is too unbalanced. good input:

$\mathrm{O}(\mathrm{n})$ digits

$\mathrm{O}(\mathrm{n})$ digits

not so good input (naive multiplication also takes linear time):
$\mathrm{O}(\mathrm{n})$ digits
$\mathrm{O}(1)$ digits

Example: computing \mathfrak{n} ! for large n.

Example: computing n ! for large n.
Naive:

$T(n)=\sum_{k=1}^{n} O(k)=O\left(n^{2}\right)$, even with fast multiplication.

Example: computing n ! for large n.
Naive:

$$
8!=\begin{array}{|}
\hline \boxed{1 \cdot 2} \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \\
\hline
\end{array}
$$

$T(n)=\sum_{k=1}^{n} O(k)=O\left(n^{2}\right)$, even with fast multiplication.
Balanced:

$$
8!=7 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8
$$

$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{O}^{\sim}(\mathrm{n}) \Rightarrow \mathrm{T}(\mathrm{n})=\mathrm{O}^{\sim}(\mathrm{n})$ with fast multiplication.

Take this into account when you need to compute terms of large index of a P-recursive sequence.

$$
p_{0}(n) a_{n}+p_{1}(n) a_{n+1}+p_{2}(n) a_{n+2}=0
$$

Take this into account when you need to compute terms of large index of a P-recursive sequence.

$$
\binom{a_{n+1}}{a_{n+2}}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{p_{0}(n)}{p_{2}(n)} & -\frac{p_{1}(n)}{p_{2}(n)}
\end{array}\right)\binom{a_{n}}{a_{n+1}}
$$

Take this into account when you need to compute terms of large index of a P-recursive sequence.

$$
\binom{a_{n+1}}{a_{n+2}}=\underbrace{\left(\begin{array}{cc}
0 & 1 \\
-\frac{p_{0}(n)}{p_{2}(n)} & -\frac{p_{1}(n)}{p_{2}(n)}
\end{array}\right)}_{=C(n)}\binom{a_{n}}{a_{n+1}}
$$

Take this into account when you need to compute terms of large index of a P-recursive sequence.

$$
\binom{a_{n+1}}{a_{n+2}}=C(n-2) C(n-3) C(n-4) \cdots C(2)\binom{a_{0}}{a_{1}} .
$$

Take this into account when you need to compute terms of large index of a P-recursive sequence.

$$
\binom{a_{n+1}}{a_{n+2}}=C(n-2) C(n-3) C(n-4) \cdots C(2)\binom{a_{0}}{a_{1}}
$$

Lesson 2: Organize your computations well

For fixed $\mathfrak{m} \in \mathbb{Z} \backslash\{0\}$, let $f_{\mathfrak{m}}: \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}, x \mapsto[x]_{\mathfrak{m}}:=x+m \mathbb{Z}$.

For fixed $\mathfrak{m} \in \mathbb{Z} \backslash\{0\}$, let $f_{\mathfrak{m}}: \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}, x \mapsto[x]_{\mathfrak{m}}:=x+m \mathbb{Z}$.

For fixed $\mathfrak{m} \in \mathbb{Z} \backslash\{0\}$, let $\mathrm{f}_{\mathrm{m}}: \mathbb{Z} \rightarrow \mathbb{Z} / \mathrm{m} \mathbb{Z}, \chi \mapsto[\chi]_{\mathrm{m}}:=x+m \mathbb{Z}$.

For fixed $\mathfrak{m} \in \mathbb{Z} \backslash\{0\}$, let $\mathrm{f}_{\mathrm{m}}: \mathbb{Z} \rightarrow \mathbb{Z} / \mathrm{m} \mathbb{Z}, \chi \mapsto[\chi]_{\mathrm{m}}:=x+m \mathbb{Z}$.

f_{m} is a ring homomorphism. This means

$$
\operatorname{Mod}(A n s w e r(\text { Question }))=\operatorname{Answer(Mod(Question))~}
$$

For fixed $\mathfrak{m} \in \mathbb{Z} \backslash\{0\}$, let $f_{m}: \mathbb{Z} \rightarrow \mathbb{Z} / m \mathbb{Z}, \chi \mapsto[\chi]_{m}:=x+m \mathbb{Z}$.

f_{m} is a ring homomorphism. This means

$$
\operatorname{Mod}(\operatorname{Answer}(\text { Question }))=\operatorname{Answer(Mod(Question)})
$$

Represent $[x]_{\mathrm{m}}$ by an element $\xi \in[x]_{\mathrm{m}}$ for which $|\xi|$ is minimal.

For fixed $\mathfrak{m} \in \mathbb{Z} \backslash\{0\}$, let $\mathrm{f}_{\mathrm{m}}: \mathbb{Z} \rightarrow \mathbb{Z} / \mathrm{m} \mathbb{Z}, \chi \mapsto[\chi]_{\mathrm{m}}:=x+m \mathbb{Z}$.

f_{m} is a ring homomorphism. This means

$$
\operatorname{Mod}(\operatorname{Answer}(\text { Question }))=\operatorname{Answer(Mod(Question)})
$$

Represent $[x]_{\mathrm{m}}$ by an element $\xi \in[x]_{\mathrm{m}}$ for which $|\xi|$ is minimal.

- $\xi \in[-m / 2, m / 2]$

For fixed $\mathfrak{m} \in \mathbb{Z} \backslash\{0\}$, let $\mathrm{f}_{\mathrm{m}}: \mathbb{Z} \rightarrow \mathbb{Z} / \mathrm{m} \mathbb{Z}, \chi \mapsto[\chi]_{\mathrm{m}}:=x+m \mathbb{Z}$.

f_{m} is a ring homomorphism. This means

$$
\operatorname{Mod}(\operatorname{Answer}(\text { Question }))=\operatorname{Answer(Mod(Question)})
$$

Represent $[x]_{\mathrm{m}}$ by an element $\xi \in[x]_{\mathrm{m}}$ for which $|\xi|$ is minimal.

- $\xi \in[-m / 2, m / 2]$
- If $m>2|x|$ then $\xi=x$.

$$
x \in[x]_{m}
$$

$$
x \in[x]_{m}
$$

$$
x \in \quad[x]_{n}
$$

$$
x \in[x]_{m} \cap[x]_{n}
$$

$$
x \in[x]_{m} \cap[x]_{n}
$$

$$
x \in[x]_{\mathrm{m}} \cap[x]_{\mathrm{n}}=[x]_{\operatorname{cm}(m, n)}
$$

Chinese Remaindering

$$
x \in[x]_{\mathfrak{m}} \cap[x]_{\mathfrak{n}}=[x]_{\operatorname{lcm}(\mathfrak{m}, \mathfrak{n})}
$$

Chinese Remaindering

$$
x \in[x]_{\mathfrak{m}} \cap[x]_{\mathfrak{n}}=[x]_{\operatorname{lcm}(\mathfrak{m}, \mathfrak{n})}
$$

Features:

Chinese Remaindering

$$
x \in[x]_{\mathrm{m}} \cap[x]_{\mathfrak{n}}=[x]_{\mathrm{lcm}(\mathrm{~m}, \mathrm{n})}
$$

Features:

- Even a big integer χ can be recovered from sufficiently many images $[x]_{\mathfrak{m}_{1}},[x]_{\mathfrak{m}_{2}}, \ldots$ for small moduli $\mathfrak{m}_{1}, m_{2}, \ldots$

Chinese Remaindering

$$
x \in[x]_{\mathfrak{m}} \cap[x]_{\mathfrak{n}}=[x]_{\mathrm{lcm}(\mathrm{~m}, \mathrm{n})}
$$

Features:

- Even a big integer χ can be recovered from sufficiently many images $[x]_{\mathfrak{m}_{1}},[x]_{\mathfrak{m}_{2}}, \ldots$ for small moduli m_{1}, m_{2}, \ldots
- Different modular images $[\chi]_{\mathfrak{m}_{\mathfrak{i}}}$ can be computed in parallel on different computers.

57125

48268101
34260690332
28950283288564
24602777889341700
21958748103044947821
19982460773770890734814
18589778412414172744395308
17556405435959384905586216420
16804193264871415986848637912866
16258906633984352510780895055898688
15878645003134966488517342432611820340
15631047178991661938104976711572278528840
15494275516175484896146558165069374931768650
15452119731275448721521690374123048169473745090
15492944429910290948927453354128640277129701928270
15608195638318139575397871729737310479957231181434400
15791696434663015062086294548870131152897244600962599710
16039042304161558566190267565720083550110055872936313121300
16347221676787084843566201114528305144441011394615536628043480
16714327636344626391862041955812314792830121148741093212135914440
17139356963672793388669217006249699836555901801582671305065963412450
17622061542861347959625369356680682135593177881983900768539311826713472
18162841216793283422562091421291078521630723657702122424507756283808698700
18762665614999822007839830386311098144372506555360938018652662698220539694616
19423018217659251266276892430699632002229719351100435132025989366139940897600008
20145857126504814155109603745644558012097546254998545662831506345299150654223844360
20933588899934099785719806412698545336726130412328111385454392939736508704575356754888
21789052707980917749010589339181187870108450716708413481060716254608148803460083665644160

```
mod 18446744073709551557
    0
    1 7 0
    57125
    4 8 2 6 8 1 0 1
    34260690332
    28950283288564
    24602777889341700
    21958748103044947821
    19982460773770890734814
    18589778412414172744395308
    17556405435959384905586216420
    16804193264871415986848637912866
    16258906633984352510780895055898688
    15878645003134966488517342432611820340
    15631047178991661938104976711572278528840
    15494275516175484896146558165069374931768650
    15452119731275448721521690374123048169473745090
    15492944429910290948927453354128640277129701928270
    15608195638318139575397871729737310479957231181434400
    15791696434663015062086294548870131152897244600962599710
    16039042304161558566190267565720083550110055872936313121300
    16347221676787084843566201114528305144441011394615536628043480
    16714327636344626391862041955812314792830121148741093212135914440
    17139356963672793388669217006249699836555901801582671305065963412450
    17622061542861347959625369356680682135593177881983900768539311826713472
    18162841216793283422562091421291078521630723657702122424507756283808698700
    18762665614999822007839830386311098144372506555360938018652662698220539694616
    19423018217659251266276892430699632002229719351100435132025989366139940897600008
    20145857126504814155109603745644558012097546254998545662831506345299150654223844360
    20933588899934099785719806412698545336726130412328111385454392939736508704575356754888
    21789052707980917749010589339181187870108450716708413481060716254608148803460083665644160
```

```
mod 18446744073709551557
```

0
170
57125
48268101
34260690332
28950283288564
24602777889341700
3512004029335396264
4636941943446398583
16731901151034173887
13561571021375624155
18327681355361409199
14135275161253345008
5637819232275028612
6637602357189385604
12482169677218181673
13064253343726879423
14625225362239686504
10738834608406986658
961106949064586405
2211804365157896289
8829591048746708080
15009988290858134393
7627367407386026140
14734287943773226198
15483359934879899009
899837740350271794
6952192533371026338
17697300886138518812
14174304902082598370
9566720042687775664

```
mod 1844674407370955155718446744073709551533
    0 0
    170 170
    57125 57125
    48268101 48268101
    34260690332 34260690332
    28950283288564 28950283288564
    24602777889341700 24602777889341700
    3512004029335396264 3512004029335396288
    4636941943446398583 4636941943446424575
    1673190115103417388716731901151058359959
    1356157102137562415513561571044217255635
    1832768135536140919918327703218332822743
    1413527516125334500814156428691527110768
    5637819232275028612 7849868848795513175
    6637602357189385604 14984004752674089390
    1248216967721818167312488827142696955539
    1306425334372687942315658485480684595156
    1462522536223968650410758223940600306782
    10738834608406986658788602827186764443
    961106949064586405 12251039281660517429
    2211804365157896289 15185001070958618575
    8829591048746708080 10856515003962139665
    1500998829085813439312838284889333222403
    7627367407386026140 8420246272424470758
    1473428794377322619816693159135573847818
    1548335993487989900916119877770365982383
    899837740350271794 11946950024840031118
    6952192533371026338 13765592352507043696
    176973008861385188127652266267821078126
    1417430490208259837011862232204708398073
    9566720042687775664 6633630390749590552
```

	184467440737095515571844674407370955153318446744073709551521		
	0	0	0
	170	170	170
	57125	57125	57125
	48268101	48268101	48268101
	34260690332	34260690332	34260690332
	28950283288564	28950283288564	28950283288564
	24602777889341700	24602777889341700	24602777889341700
	3512004029335396264	3512004029335396288	3512004029335396300
	4636941943446398583	4636941943446424575	4636941943446437571
	167319011510341738871673190115105835995916731901151070452995		
	135615710213756241551356157104421725563513561571055638071375		
	183276813553614091991832770321833282274318327714149818529515		
	141352751612533450081415642869152711076814167005456663993648		
	5637819232275028612784986884879551317518179265693910531235		
	663760235718938560414984004752674089390710461876706909598		
	124821696772181816731248882714269695553912492155875456012980		
	13064253343726879423156584854806845951567732229531925667068		
	14625225362239686504107582239406003067828824742898598764285		
	107388346084069866587886028271867644435056674106894750910		
	961106949064586405122510392816605174291050611245293959755		
	221180436515789628915185001070958618575127308807730230649		
	88295910487467080801085651500396213966511318493766728410726		
	15009988290858134393128382848893332224038119518874668080973		
	7627367407386026140842024627242447075813169248223630974435		
	14734287943773226198166931591355738478182788562657830915054		
	15483359934879899009161198777703659823832471600991651671889		
	8998377403502717941194695002484003111814756123186994554460		
	69521925333710263381376559235250704369611362094742791890224		
	17697300886138518812765226626782107812616010169456545623593		
	14174304902082598370118622322047083980731837996549587781514		
	9566720042687775664	6633630390749590552	1873712421652022656

	0		0	0
	170	170	170	170
	57125	57125	57125	57125
	48268101	48268101	48268101	48268101
	34260690332	34260690332	34260690332	34260690332
	28950283288564	28950283288564	28950283288564	28950283288564
	24602777889341700	24602777889341700	24602777889341700	24602777889341700
	3512004029335396264	3512004029335396288	3512004029335396300	3512004029335396384
	4636941943446398583	4636941943446424575	4636941943446437571	4636941943446528543
	16731901151034173887	1673190115105835995	1673190115107045299	16731901151155104247
	13561571021375624155	1356157104421725563	135615710556380713	13561571135583781555
	18327681355361409199	1832770321833282274	183277141498185295	18327790670218476919
	141352751612533450081	1415642869152711076	141670054566639936	14241042812622173808
	5637819232275028612	7849868848795513175	1817926569391053123	16698067314877451907
	6637602357189385604	14984004752674089390	710461876706909598	11476126187194330620
	124821696772181816731	12488827142696955539	1249215587545601298	12515457005136597883
	13064253343726879423	1565848548068459515	7732229531925667068	7588670477925634811
	14625225362239686504	10758223940600306782	8824742898598764285	13737486829569602371
	10738834608406986658	788602827186764443	5056674106894750910	16856311482456444934
	961106949064586405	12251039281660517429	1050611245293959755	1730796780127391701
	2211804365157896289	15185001070958618575	127308807730230649	2923290836694930836
	8829591048746708080	10856515003962139665	11318493766728410726	16555821147378467083
	15009988290858134393	12838284889333222403	8119518874668080973	11805308573535485946
	7627367407386026140	8420246272424470758	13169248223630974435	16982273330702579648
	14734287943773226198	16693159135573847818	2788562657830915054	17719370099115195915
	15483359934879899009	16119877770365982383	2471600991651671889	5095243575810575316
	899837740350271794	11946950024840031118	14756123186994554460	11226634917845487051
	6952192533371026338	13765592352507043696	11362094742791890224	6644727374610071491
	17697300886138518812	7652266267821078126	16010169456545623593	5224069660619876239
	14174304902082598370	11862232204708398073	1837996549587781514	1149810384458158270
	9566720042687775664	6633630390749590552	1873712421652022656	15580979477818358327

			0		
	170	170	170	17	170
	57125	57125	5712	57125	
	48268101	48268101	48268101	48268101	48268101
	34260690332	34260690332	34260690332	34260690332	3426069033
	28950283288564	28950283288564	2895028328856	2895028328856	8856
	24602777889341700	24602777889341700	2460	2460277788934170	24602777889341700
	12004	3512004029335396288	12	3512	
	1673190115103417388716731901151058359959167319011510704529951673190115115510424716731901151165181777				
	1356157102137562415513561571044217255635135615710556380713751356157113558378155513561571145101128005				
	1832768135536140919918327703218332822743183277141498185295151832779067021847691918327799779789899229				
	1413527516125334500814156428691527110768141670054566639936481424104281262217380814249856783569576208				
	5637819232275028612784986884879551317518179265693910531235166980673148774519076859153945430415570				
	$\begin{array}{llll}6637602357189385604 & 14984004752674089390710461876706909598 & 1147612618719433062018028251197597986227\end{array}$				
	13064253343726879423156584854806845951567732229531925667068758867047792563481113281286656044656459				
	146252253622396865041075822394060030678288247428985987642851373748682956960237115200796479896019943				
	10738834608406986658788602827186764443 5056674106894750910 1685631148245644493417425730095808525587				
	961106949064586405122510392816605174291050611245293959755173079678012739170163570				
	22118043651578962891518500107095861857512730880773023064929232908366949308365446680587098832013				
	88295910487467080801085651500396213966511318493766728410726165558211473784670832644477152643434420				
	150099882908581343931283828488933322240381195188746680809731180530857353548594612562094561654048160				
	7627367407386026140842024627242447075813169248223630974435169822733307025796486264853543132966636				
	147342879437732261981669315913557384781827885626578309150541771937009911519591514351987686736218119				
	15483359934879899009161198777703659823832471600991651671889509524357581057531612472610336651567052				
	89983774035027179411946950024840031118147561231869945544601122663491784548705113567859892950511514				
	6952192533371026338137655923525070436961136209474279189022466447273746100714913992711139584800062				
	$\begin{array}{llllllllll}176973008861385188127652266267821078126 & 160101694565456235935224069660619876239 & 13020528712638715163 \\ 1417430490208259837011862232204708398073 & 1837996549587781514 & 1149810384458158270 & 6569058788386309488\end{array}$				

mo

340282366920938460843936948965011886881 0
170
57125
48268101
34260690332
28950283288564
24602777889341700
21958748103044947821
19982460773770890734814
18589778412414172744395308
17556405435959384905586216420
16804193264871415986848637912866
16258906633984352510780895055898688
15878645003134966488517342432611820340
318340667549431200127814008146743619195
198503164393958539577067845488686416077
214670443338013688390580445819797373152 138812086818822165420022065635983834073 34887405067523117228515541823719337570 8677603847870660183707228009978911587
151755704527465931623446269946736011627 157520674316210552357179003218400644894 83401389361404009186691170000994753262 199107465433248163983566865568541300580 171646799941657083902142563883114122236 255701011924435651472375478434132710558 65204696697886220698264621831639730752 147021196331035236134827717045673809472 304204745393541316784616770985857479782 69115067553184129907739559131736482619 338027952164498897207398828653950753404

184467440737095515211844674407370955143718446744073709551427 0

0
170
57125
48268101
34260690332
28950283288564
24602777889341700
170
57125
48268101
34260690332
28950283288564
24602777889341700
351200402933539630035120040293353963843512004029335396394
463694194344643757146369419434465285434636941943446539373 167319011510704529951673190115115510424716731901151165181777 135615710556380713751356157113558378155513561571145101128005 183277141498185295151832779067021847691918327799779789899229 141670054566639936481424104281262217380814249856783569576208 18179265693910531235166980673148774519076859153945430415570 7104618767069095981147612618719433062018028251197597986227 12492155875456012980125154570051365978839443773603570734321 7732229531925667068758867047792563481113281286656044656459 88247428985987642851373748682956960237115200796479896019943 50566741068947509101685631148245644493417425730095808525587 10506112452939597551730796780127391701635703020769662299 12730880773023064929232908366949308365446680587098832013 11318493766728410726165558211473784670832644477152643434420 81195188746680809731180530857353548594612562094561654048160 13169248223630974435169822733307025796486264853543132966636 27885626578309150541771937009911519591514351987686736218119 2471600991651671889509524357581057531612472610336651567052 147561231869945544601122663491784548705113567859892950511514 1136209474279189022466447273746100714913992711139584800062 16010169456545623593522406966061987623913020528712638715163 183799654958778151411498103844581582706569058788386309488 1873712421652022656155809794778183583277459210887944253892
mod
6277101735386680683188868462945250914462856766432493496001 0
170
57125
48268101
34260690332
28950283288564
24602777889341700
21958748103044947821
19982460773770890734814
18589778412414172744395308
17556405435959384905586216420
16804193264871415986848637912866
16258906633984352510780895055898688
15878645003134966488517342432611820340
15631047178991661938104976711572278528840
15494275516175484896146558165069374931768650
15452119731275448721521690374123048169473745090
15492944429910290948927453354128640277129701928270
15608195638318139575397871729737310479957231181434400
15791696434663015062086294548870131152897244600962599710
3484838833388197199812530639829581721184342340071326129298
1648757840168344542387637018871763179732374825323564456876 98850683949423615211578699701347807145350036885633235694 526520284143404569767963343550807344171168366801172331356 424185829625587809592566352271431402775173490353367407331 4536991382758228630399221995435899884055743908863240725052 3136412773560944376264550097061623603163416527516137221129 5967388207129134077295313527201750659161648724805358750622 853298661596862590652819419782007714434001836607900281638 58401078608611669601836308424511522173492016757242657971 1566681274568203485091061424628061282383374029659900022897

1844674407370955143718446744073709551427 0
170
57125
48268101
34260690332
28950283288564
24602777889341700 35120040293353963843512004029335396394 46369419434465285434636941943446539373 1673190115115510424716731901151165181777 1356157113558378155513561571145101128005 1832779067021847691918327799779789899229 1424104281262217380814249856783569576208 166980673148774519076859153945430415570 1147612618719433062018028251197597986227 125154570051365978839443773603570734321 758867047792563481113281286656044656459 1373748682956960237115200796479896019943 1685631148245644493417425730095808525587 1730796780127391701635703020769662299 29232908366949308365446680587098832013 165558211473784670832644477152643434420 1180530857353548594612562094561654048160 169822733307025796486264853543132966636 1771937009911519591514351987686736218119 509524357581057531612472610336651567052 1122663491784548705113567859892950511514 66447273746100714913992711139584800062 522406966061987623913020528712638715163 11498103844581582706569058788386309488 155809794778183583277459210887944253892

115792089237316192812296663087828730790152317073519228853714845075653663303437
0
170
57125
48268101
34260690332
28950283288564
24602777889341700
21958748103044947821
19982460773770890734814
18589778412414172744395308
17556405435959384905586216420
16804193264871415986848637912866
16258906633984352510780895055898688
15878645003134966488517342432611820340
15631047178991661938104976711572278528840
15494275516175484896146558165069374931768650
15452119731275448721521690374123048169473745090
15492944429910290948927453354128640277129701928270
15608195638318139575397871729737310479957231181434400
15791696434663015062086294548870131152897244600962599710
16039042304161558566190267565720083550110055872936313121300
16347221676787084843566201114528305144441011394615536628043480
16714327636344626391862041955812314792830121148741093212135914440
17139356963672793388669217006249699836555901801582671305065963412450
17622061542861347959625369356680682135593177881983900768539311826713472
18162841216793283422562091421291078521630723657702122424507756283808698700
18762665614999822007839830386311098144372506555360938018652662698220539694616 85739315027447066623349695032233960274282399822723913455610238505779125926029 2064728830981047793411634851943034475673596449669175636454501699351701964789 23492476077323556255109014236440192037570229930868243250459695379292868666014 111190808983862952620363685720790529707785524738898437692221876477166726606643

18446744073709551427 0
170
57125
48268101
34260690332
28950283288564
24602777889341700
3512004029335396394
4636941943446539373
16731901151165181777
13561571145101128005
18327799779789899229
14249856783569576208
6859153945430415570
18028251197597986227 9443773603570734321
13281286656044656459
15200796479896019943 17425730095808525587 635703020769662299
5446680587098832013
2644477152643434420
12562094561654048160 6264853543132966636 14351987686736218119 12472610336651567052 13567859892950511514 3992711139584800062
13020528712638715163 6569058788386309488 7459210887944253892
15452119731275448721521690374123048169473745090
15492944429910290948927453354128640277129701928270
15608195638318139575397871729737310479957231181434400
15791696434663015062086294548870131152897244600962599710
16039042304161558566190267565720083550110055872936313121300
16347221676787084843566201114528305144441011394615536628043480
16714327636344626391862041955812314792830121148741093212135914440
17139356963672793388669217006249699836555901801582671305065963412450
17622061542861347959625369356680682135593177881983900768539311826713472
18162841216793283422562091421291078521630723657702122424507756283808698700
18762665614999822007839830386311098144372506555360938018652662698220539694616
19423018217659251266276892430699632002229719351100435132025989366139940897600008
20145857126504814155109603745644558012097546254998545662831506345299150654223844360
20933588899934099785719806412698545336726130412328111385454392939736508704575356754888
21789052707980917749010589339181187870108450716708413481060716254608148803460083665644160

For hardware reasons, it's best to take primes of size $\approx 2^{64}$ or $\approx 2^{32}$ as moduli.

For hardware reasons, it's best to take primes of size $\approx 2^{64}$ or $\approx 2^{32}$ as moduli.

The number of moduli needed is then proportional to the length of the numbers in the final result.

For hardware reasons, it's best to take primes of size $\approx 2^{64}$ or $\approx 2^{32}$ as moduli.

The number of moduli needed is then proportional to the length of the numbers in the final result.

Significant saving happens only when the numbers in intermediate expressions are much longer.

For hardware reasons, it's best to take primes of size $\approx 2^{64}$ or $\approx 2^{32}$ as moduli.

The number of moduli needed is then proportional to the length of the numbers in the final result.

Significant saving happens only when the numbers in intermediate expressions are much longer.

Such intermediate expression swell is a common phenomenon in many calculations.

For example, the numbers on the previous slide satisfy a recurrence of order 4 and degree 10.

For example, the numbers on the previous slide satisfy a recurrence of order 4 and degree 10.

Around 60 terms are needed to recover it. The 60th term has 180 decimal digits.

For example, the numbers on the previous slide satisfy a recurrence of order 4 and degree 10.

Around 60 terms are needed to recover it. The 60th term has 180 decimal digits.

The longest integer coefficient appearing in the recurrence has only 20 decimal digits.

For example, the numbers on the previous slide satisfy a recurrence of order 4 and degree 10.

Around 60 terms are needed to recover it. The 60th term has 180 decimal digits.

The longest integer coefficient appearing in the recurrence has only 20 decimal digits.

The exact recurrence can be recovered from homomorphic images of the first 60 terms.

57125

48268101
34260690332
28950283288564
24602777889341700
21958748103044947821
19982460773770890734814
18589778412414172744395308
17556405435959384905586216420
16804193264871415986848637912866
16258906633984352510780895055898688
15878645003134966488517342432611820340
15631047178991661938104976711572278528840
15494275516175484896146558165069374931768650
15452119731275448721521690374123048169473745090
15492944429910290948927453354128640277129701928270
15608195638318139575397871729737310479957231181434400
15791696434663015062086294548870131152897244600962599710
16039042304161558566190267565720083550110055872936313121300
16347221676787084843566201114528305144441011394615536628043480
16714327636344626391862041955812314792830121148741093212135914440
17139356963672793388669217006249699836555901801582671305065963412450
17622061542861347959625369356680682135593177881983900768539311826713472
18162841216793283422562091421291078521630723657702122424507756283808698700
18762665614999822007839830386311098144372506555360938018652662698220539694616
19423018217659251266276892430699632002229719351100435132025989366139940897600008
20145857126504814155109603745644558012097546254998545662831506345299150654223844360
20933588899934099785719806412698545336726130412328111385454392939736508704575356754888
21789052707980917749010589339181187870108450716708413481060716254608148803460083665644160
mod 18446744073709551557
mod 18446744073709551557
0
0
170
57125
48268101
34260690332
28950283288564
24602777889341700
3512004029335396264
4636941943446398583
16731901151034173887
13561571021375624155
18327681355361409199
14135275161253345008
5637819232275028612
6637602357189385604
12482169677218181673
13064253343726879423
14625225362239686504
10738834608406986658
961106949064586405
2211804365157896289
8829591048746708080
15009988290858134393
7627367407386026140
14734287943773226198
15483359934879899009
899837740350271794
6952192533371026338
17697300886138518812
14174304902082598370
9566720042687775664
not needed

But there is a catch: the guessed recurrence is not unique. Instead, all the correct recurrences form a vector space.

But there is a catch: the guessed recurrence is not unique. Instead, all the correct recurrences form a vector space.

Chinese remaindering will only succeed if we apply it to recurrences sharing the same homomorphic preimage.

But there is a catch: the guessed recurrence is not unique. Instead, all the correct recurrences form a vector space.

Chinese remaindering will only succeed if we apply it to recurrences sharing the same homomorphic preimage.

We could ensure a unique preimage by normalizing a specific coefficient of the recurrence to 1 .

But there is a catch: the guessed recurrence is not unique. Instead, all the correct recurrences form a vector space.

Chinese remaindering will only succeed if we apply it to recurrences sharing the same homomorphic preimage.

We could ensure a unique preimage by normalizing a specific coefficient of the recurrence to 1 .

But then we must be prepared that the coefficients of the preimage live in \mathbb{Q} rather than \mathbb{Z}.

Rational reconstruction comes to rescue: given $\mathfrak{m} \in \mathbb{Z}$ and $x \in \mathbb{Z}$, we can find small $p, q \in \mathbb{Z}$ such that $\frac{p}{q} \equiv x \bmod m$.

Rational reconstruction comes to rescue: given $\mathfrak{m} \in \mathbb{Z}$ and $x \in \mathbb{Z}$, we can find small $p, q \in \mathbb{Z}$ such that $\frac{p}{q} \equiv x \bmod m$.
Of course, such p, q are not uniquely determined, but we can be sure to find the right answer when $m>\max \left(4 p^{2}, q^{2}\right)$.

Rational reconstruction comes to rescue: given $\mathrm{m} \in \mathbb{Z}$ and $x \in \mathbb{Z}$, we can find small $p, q \in \mathbb{Z}$ such that $\frac{p}{q} \equiv x \bmod m$.
Of course, such p, q are not uniquely determined, but we can be sure to find the right answer when $m>\max \left(4 p^{2}, q^{2}\right)$.

Rational reconstruction comes to rescue: given $\mathrm{m} \in \mathbb{Z}$ and $x \in \mathbb{Z}$, we can find small $p, q \in \mathbb{Z}$ such that $\frac{p}{q} \equiv x \bmod m$.
Of course, such p, q are not uniquely determined, but we can be sure to find the right answer when $m>\max \left(4 p^{2}, q^{2}\right)$.

Here is how you should do guessing for large examples.

Here is how you should do guessing for large examples.

\rightarrow| choose a prime p |
| :---: |
| generate data |

Here is how you should do guessing for large examples.

Here is how you should do guessing for large examples.

Here is how you should do guessing for large examples.

Here is how you should do guessing for large examples.

Here is how you should do guessing for large examples.

Here is how you should do guessing for large examples.

Here is how you should do guessing for large examples.

Here is how you should do guessing for large examples.

Here is how you should do guessing for large examples.

Here is how you should do guessing for large examples.

When there are also parameters, also use evaluation/interpolation and rational function reconstruction.

Lesson 3: Sometimes it's faster to take a detour

Exercises.

- If $F(n)$ is the nth Fibonacci number, then $F\left(2^{1000}\right)$ is an integer with 10^{300} decimal digits. Determine the 20 least significant decimal digits of $F\left(2^{1000}\right)$.
- Fix a random matrix $A \in \mathbb{Z}^{100 \times 101}$ and a set of primes p_{1}, \ldots, p_{100} with $p_{i} \approx 2^{i}$. For each i check how long your computer needs to find a basis of kerA mod p_{i}.
- Use Chinese remaindering and rational reconstruction to find a basis vector of kerA in \mathbb{Q}^{101}. How can we tell in advance how many primes are needed?

Finite sets of numbers can be viewed as solutions of polynomial equations:

Finite sets of numbers can be viewed as solutions of polynomial equations:

$$
p=(x-1)(x-2)(x-4)=0
$$

Finite sets of numbers can be viewed as solutions of polynomial equations:

$$
\begin{aligned}
& p=(x-1)(x-2)(x-4)=0 \\
& q=(x-1)(x-2)(x-3)=0
\end{aligned}
$$

Finite sets of numbers can be viewed as solutions of polynomial equations:

$$
\begin{aligned}
& p=(x-1)(x-2)(x-4)=0 \\
& q=(x-1)(x-2)(x-3)=0
\end{aligned}
$$

Intersection: $\operatorname{gcd}(p, q)=0$

Finite sets of numbers can be viewed as solutions of polynomial equations:

$$
\begin{aligned}
& p=(x-1)(x-2)(x-4)=0 \\
& q=(x-1)(x-2)(x-3)=0
\end{aligned}
$$

Intersection: $\operatorname{gcd}(p, q)=0$

Union: $\operatorname{Icm}(p, q)=0$

In the case of two variables, the solution set of a single polynomial is a curve.

In the case of two variables, the solution set of a single polynomial is a curve.

$$
x^{2}+y^{2}-4=0
$$

In the case of two variables, the solution set of a single polynomial is a curve.

$$
\begin{gathered}
x^{2}+y^{2}-4=0 \\
x y-1=0
\end{gathered}
$$

In the case of two variables, the solution set of a single polynomial is a curve.

$$
\begin{gathered}
x^{2}+y^{2}-4=0 \\
x y-1=0
\end{gathered}
$$

Any finite set of points can be viewed as the intersection of such curves.

In the case of two variables, the solution set of a single polynomial is a curve.

$$
\begin{gathered}
x^{2}+y^{2}-4=0 \\
\wedge \\
x y-1=0
\end{gathered}
$$

Any finite set of points can be viewed as the intersection of such curves.

A polynomial in three variables describes a surface.

$$
\begin{gathered}
x z-y^{2}=0 \\
y-z^{2}=0 \\
x-y z=0
\end{gathered}
$$

A polynomial in three variables describes a surface.

Curves and finite sets of points can be viewed as intersections of such surfaces.

Typical questions about systems of polynomial equations:

Typical questions about systems of polynomial equations:

- Decide whether a system of equations is inconsistent

Typical questions about systems of polynomial equations:

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate

Typical questions about systems of polynomial equations:

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions

Typical questions about systems of polynomial equations:

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them

Typical questions about systems of polynomial equations:

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension

Typical questions about systems of polynomial equations:

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension
- Decide whether one system of equations implies another

Typical questions about systems of polynomial equations:

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension
- Decide whether one system of equations implies another
- Decide whether two polynomial functions agree on a variety

Typical questions about systems of polynomial equations:

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension
- Decide whether one system of equations implies another
- Decide whether two polynomial functions agree on a variety
- Eliminate some variables from a given equation system

Typical questions about systems of polynomial equations:

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension
- Decide whether one system of equations implies another
- Decide whether two polynomial functions agree on a variety
- Eliminate some variables from a given equation system
- Compute kernels and images of polynomial homomorphisms

Typical questions about systems of polynomial equations:

- Decide whether a system of equations is inconsistent
- When it's inconsistent, construct a proof certificate
- When it's consistent, determine the number of solutions
- When there are finitely many solutions, list them
- When the solution set is infinite, determine its dimension
- Decide whether one system of equations implies another
- Decide whether two polynomial functions agree on a variety
- Eliminate some variables from a given equation system
- Compute kernels and images of polynomial homomorphisms

All these questions can be answered using Gröbner bases.

Lesson 4: Gröbner bases can not only solve nonlinear systems

Polynomial equations have implications:

$$
\begin{gathered}
p=0 \text { and } q=0 \Rightarrow p+q=0 \\
p=0 \text { and } q \text { arbitrary } \Rightarrow p q=0 .
\end{gathered}
$$

Polynomial equations have implications:

$$
\begin{gathered}
p=0 \text { and } q=0 \Rightarrow p+q=0 \\
p=0 \text { and } q \text { arbitrary } \Rightarrow p q=0 .
\end{gathered}
$$

Given $p_{1}, \ldots, p_{k} \in K\left[\chi_{1}, \ldots, x_{n}\right]$, we therefore consider

$$
\left\langle p_{1}, \ldots, p_{k}\right\rangle:=\left\{q_{1} p_{1}+\cdots+q_{k} p_{k}: q_{1}, \ldots, q_{k} \in K\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

the ideal generated by p_{1}, \ldots, p_{k} in the ring $\mathrm{K}\left[x_{1}, \ldots, x_{n}\right]$. We call $\left\{p_{1}, \ldots, p_{k}\right\}$ a basis of the ideal.

Polynomial equations have implications:

$$
\begin{gathered}
\mathrm{p}=0 \text { and } \mathrm{q}=0 \Rightarrow \mathrm{p}+\mathrm{q}=0 \\
\mathrm{p}=0 \text { and } \mathrm{q} \text { arbitrary } \Rightarrow \mathrm{pq}=0 .
\end{gathered}
$$

Given $p_{1}, \ldots, p_{k} \in K\left[\chi_{1}, \ldots, x_{n}\right]$, we therefore consider

$$
\left\langle p_{1}, \ldots, p_{k}\right\rangle:=\left\{q_{1} p_{1}+\cdots+q_{k} p_{k}: q_{1}, \ldots, q_{k} \in K\left[x_{1}, \ldots, x_{n}\right]\right\}
$$

the ideal generated by $\mathrm{p}_{1}, \ldots, \mathrm{p}_{\mathrm{k}}$ in the ring $\mathrm{K}\left[\mathrm{x}_{1}, \ldots, x_{n}\right]$. We call $\left\{p_{1}, \ldots, p_{k}\right\}$ a basis of the ideal.

Intuition: the ideal is a "theory" of equations of the form "poly $=0$ " in which p_{1}, \ldots, p_{k} are the "axioms" and implications quoted above are the "deduction rules".

The basis of an ideal is not unique.

The basis of an ideal is not unique.
Example: $\left\langle x^{2}+y^{2}-4, x y-1\right\rangle=\left\langle y^{4}-4 y^{2}+1, y^{3}-4 y+x\right\rangle$.

The basis of an ideal is not unique.
Example: $\left\langle x^{2}+y^{2}-4, x y-1\right\rangle=\left\langle y^{4}-4 y^{2}+1, y^{3}-4 y+x\right\rangle$.

Proof:

The basis of an ideal is not unique.
Example: $\langle\underbrace{x^{2}+y^{2}-4}_{p_{1}}, \underbrace{x y-1}_{p_{2}}\rangle=\langle\underbrace{y^{4}-4 y^{2}+1}_{q_{1}}, \underbrace{y^{3}-4 y+x}_{q_{2}}\rangle$.
Proof:

The basis of an ideal is not unique.
Example: $\langle\underbrace{x^{2}+y^{2}-4}_{p_{1}}, \underbrace{x y-1}_{p_{2}}\rangle=\langle\underbrace{y^{4}-4 y^{2}+1}_{q_{1}}, \underbrace{y^{3}-4 y+x}_{q_{2}}\rangle$.
Proof:

$$
\begin{array}{ll}
\\
& \subseteq
\end{array} \quad p_{1}=\left(y^{2}-4\right) q_{1}+\left(x+4 y-y^{3}\right) q_{2}, ~ 子 p_{2}=-q_{1}+y q_{2} .
$$

The basis of an ideal is not unique.
Example: $\langle\underbrace{x^{2}+y^{2}-4}_{p_{1}}, \underbrace{x y-1}_{p_{2}}\rangle=\langle\underbrace{y^{4}-4 y^{2}+1}_{q_{1}}, \underbrace{y^{3}-4 y+x}_{q_{2}}\rangle$.
Proof:

$$
\begin{array}{ll}
" \subseteq & p_{1}=\left(y^{2}-4\right) q_{1}+\left(x+4 y-y^{3}\right) q_{2} \\
& p_{2}=-q_{1}+y q_{2} . \\
" ? " \quad & q_{1}=y^{2} p_{1}-(x y+1) p_{2}, \\
& q_{2}=y p_{1}-x p_{2} .
\end{array}
$$

The basis of an ideal is not unique.
Example: $\langle\underbrace{x^{2}+y^{2}-4}_{p_{1}}, \underbrace{x y-1}_{p_{2}}\rangle=\langle\underbrace{y^{4}-4 y^{2}+1}_{q_{1}}, \underbrace{y^{3}-4 y+x}_{q_{2}}\rangle$.
Proof:

$$
\begin{array}{ll}
" \subseteq & p_{1}=\left(y^{2}-4\right) q_{1}+\left(x+4 y-y^{3}\right) q_{2} \\
& p_{2}=-q_{1}+y q_{2} . \\
" \supseteq " \quad & q_{1}=y^{2} p_{1}-(x y+1) p_{2}, \\
& q_{2}=y p_{1}-x p_{2} .
\end{array}
$$

Among all the bases of a given ideal, the Gröbner basis is one that satisfies a certain minimality condition.

For $n>1$, divisibility on the set of monomials $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ is no longer a total ordering, e.g., $x^{2} y$ and $x y^{2}$ are not comparable.

For $n>1$, divisibility on the set of monomials $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ is no longer a total ordering, e.g., $x^{2} y$ and $x y^{2}$ are not comparable.

Fix a total ordering on the monomials which is compatible with divisibility. Such an order is called a term order.

For $n>1$, divisibility on the set of monomials $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ is no longer a total ordering, e.g., $x^{2} y$ and $x y^{2}$ are not comparable.

Fix a total ordering on the monomials which is compatible with divisibility. Such an order is called a term order.

Once a term order is chosen, every nonzero polynomial has a unique maximal term, called the head or the leading term.

For $n>1$, divisibility on the set of monomials $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ is no longer a total ordering, e.g., $x^{2} y$ and $x y^{2}$ are not comparable.

Fix a total ordering on the monomials which is compatible with divisibility. Such an order is called a term order.

Once a term order is chosen, every nonzero polynomial has a unique maximal term, called the head or the leading term.
Example: $3 x^{3} y^{2}+7 x^{2} y^{3}+8 x^{2} y-4 x y+8 y^{3}-17$.

For $n>1$, divisibility on the set of monomials $x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}$ is no longer a total ordering, e.g., $x^{2} y$ and $x y^{2}$ are not comparable.

Fix a total ordering on the monomials which is compatible with divisibility. Such an order is called a term order.

Once a term order is chosen, every nonzero polynomial has a unique maximal term, called the head or the leading term.
Example: $3 x^{3} y^{2}+7 x^{2} y^{3}+8 x^{2} y-4 x y+8 y^{3}-17$
Among all the bases of an ideal, the Gröbner basis is such that the leading terms of its elements are as small as possible.

If a basis of an ideal has a polynomial with head h, then every multiple of h is the head of some element of I.

If a basis of an ideal has a polynomial with head h, then every multiple of h is the head of some element of I.

If a basis of an ideal has a polynomial with head h, then every multiple of h is the head of some element of I.

If a basis of an ideal has a polynomial with head h, then every multiple of h is the head of some element of I.

In general however, the ideal may also contain polynomials whose head is not a multiple of the head of any basis element.

If a basis of an ideal has a polynomial with head h, then every multiple of h is the head of some element of I.

In general however, the ideal may also contain polynomials whose head is not a multiple of the head of any basis element.

If a basis of an ideal has a polynomial with head h, then every multiple of h is the head of some element of I.

In general however, the ideal may also contain polynomials whose head is not a multiple of the head of any basis element.

The basis is called a Gröbner basis if this does not happen.

If a basis of an ideal has a polynomial with head h, then every multiple of h is the head of some element of I.

In general however, the ideal may also contain polynomials whose head is not a multiple of the head of any basis element.
$\left\{g_{1}, \ldots, g_{k}\right\}$ is a Gröbner basis \Longleftrightarrow
$\forall \mathrm{p} \in\left\langle\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{k}}\right\rangle \backslash\{0\} \exists \mathrm{i} \in\{1, \ldots, \mathrm{k}\}: \operatorname{Head}\left(\mathrm{g}_{\mathrm{i}}\right) \mid \operatorname{Head}(\mathrm{p})$.

Fix an ideal $\mathrm{I} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathrm{p} \sim \mathrm{q} \Longleftrightarrow \mathrm{p}-\mathrm{q} \in \mathrm{I} .
$$

Fix an ideal $\mathrm{I} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathrm{p} \sim \mathrm{q} \Longleftrightarrow \mathrm{p}-\mathrm{q} \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$ is a ring.

Fix an ideal $\mathrm{I} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathrm{p} \sim \mathrm{q} \Longleftrightarrow \mathrm{p}-\mathrm{q} \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \mathrm{I}$ is a ring.
Its elements can be interpreted as polynomial functions restricted to the zero set of I.

Fix an ideal $\mathrm{I} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathrm{p} \sim \mathrm{q} \Longleftrightarrow \mathrm{p}-\mathrm{q} \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$ is a ring.
Its elements can be interpreted as polynomial functions restricted to the zero set of I.

Fix an ideal $\mathrm{I} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathrm{p} \sim \mathrm{q} \Longleftrightarrow \mathrm{p}-\mathrm{q} \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$ is a ring.
Its elements can be interpreted as polynomial functions restricted to the zero set of I.

Fix an ideal $I \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathrm{p} \sim \mathrm{q} \Longleftrightarrow \mathrm{p}-\mathrm{q} \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$ is a ring.
Its elements can be interpreted as polynomial functions restricted to the zero set of I.

Fix an ideal $I \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathrm{p} \sim \mathrm{q} \Longleftrightarrow \mathrm{p}-\mathrm{q} \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$ is a ring.
Its elements can be interpreted as polynomial functions restricted to the zero set of I.

Fix an ideal $\mathrm{I} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
p \sim q \Longleftrightarrow p-q \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$ is a ring.
Its elements can be interpreted as polynomial functions restricted to the zero set of I.

Fix an ideal $\mathrm{I} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathrm{p} \sim \mathrm{q} \Longleftrightarrow \mathrm{p}-\mathrm{q} \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$ is a ring.
As a \mathbb{Q}-vector space, it is generated by the classes of all terms that are not divided by the head of a basis element.

Fix an ideal $\mathrm{I} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
\mathrm{p} \sim \mathrm{q} \Longleftrightarrow \mathrm{p}-\mathrm{q} \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$ is a ring.
As a \mathbb{Q}-vector space, it is generated by the classes of all terms that are not divided by the head of a basis element.

Fix an ideal $\mathrm{I} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
p \sim q \Longleftrightarrow p-q \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$ is a ring.
As a \mathbb{Q}-vector space, it is generated by the classes of all terms that are not divided by the head of a basis element.

Fix an ideal $\mathrm{I} \subseteq \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right]$ and define

$$
p \sim q \Longleftrightarrow p-q \in \mathrm{I} .
$$

Then $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \sim=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$ is a ring.
The ideal basis is a Gröbner basis iff the blue terms form a vector space basis of $\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / I$.

- Every equivalence class contains at least one polynomial with only blue terms.
- Every equivalence class contains at least one polynomial with only blue terms.
- We have a Gröbner basis if and only if every equivalence class contains exactly one such polynomial.
- Every equivalence class contains at least one polynomial with only blue terms.
- We have a Gröbner basis if and only if every equivalence class contains exactly one such polynomial.
- This polynomial is then called the normal form of any polynomial in the class.
- Every equivalence class contains at least one polynomial with only blue terms.
- We have a Gröbner basis if and only if every equivalence class contains exactly one such polynomial.
- This polynomial is then called the normal form of any polynomial in the class.
- There is an algorithm for computing the normal form of p w.r.t. a given Gröbner basis G.
- Every equivalence class contains at least one polynomial with only blue terms.
- We have a Gröbner basis if and only if every equivalence class contains exactly one such polynomial.
- This polynomial is then called the normal form of any polynomial in the class.
- There is an algorithm for computing the normal form of p w.r.t. a given Gröbner basis G.
- We have $p \in\langle G\rangle$ if and only if the normal form of p w.r.t. G is zero.
- Given any basis of an ideal I, we can compute a Gröbner basis of the ideal.
- Given any basis of an ideal I, we can compute a Gröbner basis of the ideal.
- In terms of complexity theory, the computation of a Gröbner basis is a hard problem.
- Given any basis of an ideal I, we can compute a Gröbner basis of the ideal.
- In terms of complexity theory, the computation of a Gröbner basis is a hard problem.
- In practice, the situation is often not as bad as one could expect, mainly for two reasons:
- Given any basis of an ideal I, we can compute a Gröbner basis of the ideal.
- In terms of complexity theory, the computation of a Gröbner basis is a hard problem.
- In practice, the situation is often not as bad as one could expect, mainly for two reasons:
- 1. Many problems arising in practice do not exhibit worst case behaviour.
- Given any basis of an ideal I, we can compute a Gröbner basis of the ideal.
- In terms of complexity theory, the computation of a Gröbner basis is a hard problem.
- In practice, the situation is often not as bad as one could expect, mainly for two reasons:
- 1. Many problems arising in practice do not exhibit worst case behaviour.
- 2. Much effort has been invested into efficient algorithms and software.

Lesson 5: Computing a Gröbner basis is not hopeless

With a Gröbner basis at hand, everything about the ideal is known.

With a Gröbner basis at hand, everything about the ideal is known. For example, you can get the dimension of its zero set by counting how many blue terms* there are up to degree N , as $\mathrm{N} \rightarrow \infty$.

* only works for suitably chosen term orders.

With a Gröbner basis at hand, everything about the ideal is known.
For example, you can get the dimension of its zero set by counting how many blue terms* there are up to degree N , as $\mathrm{N} \rightarrow \infty$.

* only works for suitably chosen term orders.

With a Gröbner basis at hand, everything about the ideal is known.
For example, you can get the dimension of its zero set by counting how many blue terms* there are up to degree N , as $\mathrm{N} \rightarrow \infty$.

* only works for suitably chosen term orders.

With a Gröbner basis at hand, everything about the ideal is known.
For example, you can get the dimension of its zero set by counting how many blue terms* there are up to degree N , as $\mathrm{N} \rightarrow \infty$.

$\operatorname{dim}(\mathrm{I})=0$

$\operatorname{dim}(\mathrm{I})=1$

$\operatorname{dim}(\mathrm{I})=2$

* only works for suitably chosen term orders.

With a Gröbner basis at hand, everything about the ideal is known.
For example, you can get the dimension of its zero set by counting how many blue terms* there are up to degree N , as $\mathrm{N} \rightarrow \infty$.

$\operatorname{dim}(\mathrm{I})=0$
isolated points

$\operatorname{dim}(\mathrm{I})=1$
curves

$\operatorname{dim}(\mathrm{I})=2$
surfaces

* only works for suitably chosen term orders.

With a Gröbner basis at hand, everything about the ideal is known.
For example, you can get the dimension of its zero set by counting how many blue terms* there are up to degree N , as $\mathrm{N} \rightarrow \infty$.

$\operatorname{dim}(\mathrm{I})=0$
isolated points

$\operatorname{dim}(\mathrm{I})=1$
curves

$\operatorname{dim}(\mathrm{I})=2$ surfaces

Note: $\operatorname{dim}(\mathrm{I})=0 \Longleftrightarrow \operatorname{dim} \mathbb{Q}\left[x_{1}, \ldots, x_{n}\right] / \mathrm{I}<\infty$.

* only works for suitably chosen term orders.

Very useful: you can also find elements of an ideal which only contain some of the variables.

Very useful: you can also find elements of an ideal which only contain some of the variables.

Note: If I is an ideal in $\mathbb{Q}[x, y, z]$, then $\mathrm{I} \cap \mathbb{Q}[x, y]$ is an ideal in the smaller ring $\mathbb{Q}[x, y]$.

Very useful: you can also find elements of an ideal which only contain some of the variables.

Note: If I is an ideal in $\mathbb{Q}[x, y, z]$, then $\mathrm{I} \cap \mathbb{Q}[x, y]$ is an ideal in the smaller ring $\mathbb{Q}[x, y]$.

Example:

$$
\left\langle x^{2}+y^{2}-4, x y-1\right\rangle \cap \mathbb{Q}[x]
$$

Very useful: you can also find elements of an ideal which only contain some of the variables.

Note: If I is an ideal in $\mathbb{Q}[x, y, z]$, then $\mathrm{I} \cap \mathbb{Q}[x, y]$ is an ideal in the smaller ring $\mathbb{Q}[x, y]$.

Example:

$$
\begin{aligned}
& \left\langle x^{2}+y^{2}-4, x y-1\right\rangle \cap \mathbb{Q}[x] \\
& =\left\langle x^{4}-4 x^{2}+1\right\rangle \subseteq \mathbb{Q}[x]
\end{aligned}
$$

Very useful: you can also find elements of an ideal which only contain some of the variables.

Note: If I is an ideal in $\mathbb{Q}[x, y, z]$, then $\mathrm{I} \cap \mathbb{Q}[x, y]$ is an ideal in the smaller ring $\mathbb{Q}[x, y]$.

Example:

$$
\begin{aligned}
& \left\langle x^{2}+y^{2}-4, x y-1\right\rangle \cap \mathbb{Q}[x] \\
& =\left\langle x^{4}-4 x^{2}+1\right\rangle \subseteq \mathbb{Q}[x]
\end{aligned}
$$

Very useful: you can also find elements of an ideal which only contain some of the variables.

Note: If I is an ideal in $\mathbb{Q}[x, y, z]$, then $\mathrm{I} \cap \mathbb{Q}[x, y]$ is an ideal in the smaller ring $\mathbb{Q}[x, y]$.

Example:

$$
\begin{aligned}
& \left\langle x^{2}+y^{2}-4, x y-1\right\rangle \cap \mathbb{Q}[x] \\
& =\left\langle x^{4}-4 x^{2}+1\right\rangle \subseteq \mathbb{Q}[x]
\end{aligned}
$$

Fact*: If G is a Gröbner basis of I , then $\mathrm{G} \cap \mathbb{Q}[x, y]$ is a Gröbner basis of $\mathrm{I} \cap \mathbb{Q}[x, y]$.

* only works for suitably chosen term orders.

Closure properties for algebraic functions via elimination.

Closure properties for algebraic functions via elimination.
Example: Let $f(x), g(x)$ be power series satisfying

$$
f(x)^{2}-(2 x+3) f(x)+1=0, \quad g(x)^{2}+g(x)-x^{3}=0 .
$$

We want to find a polynomial equation for $h(x)=f(x)+g(x)$.

Closure properties for algebraic functions via elimination.
Example: Let $f(x), g(x)$ be power series satisfying

$$
f(x)^{2}-(2 x+3) f(x)+1=0, \quad g(x)^{2}+g(x)-x^{3}=0 .
$$

We want to find a polynomial equation for $h(x)=f(x)+g(x)$.

$$
\left\langle f^{2}-(2 x+3) f+1, g^{2}+g-x^{3}, h-(f+g)\right\rangle \subseteq \mathbb{Q}[x, f, g, h]
$$

Closure properties for algebraic functions via elimination.
Example: Let $f(x), g(x)$ be power series satisfying

$$
f(x)^{2}-(2 x+3) f(x)+1=0, \quad g(x)^{2}+g(x)-x^{3}=0 .
$$

We want to find a polynomial equation for $h(x)=f(x)+g(x)$.

$$
\left\langle f^{2}-(2 x+3) f+1, g^{2}+g-x^{3}, h-(f+g)\right\rangle \cap \mathbb{Q}[x, h]
$$

Closure properties for algebraic functions via elimination.
Example: Let $f(x), g(x)$ be power series satisfying

$$
f(x)^{2}-(2 x+3) f(x)+1=0, \quad g(x)^{2}+g(x)-x^{3}=0 .
$$

We want to find a polynomial equation for $h(x)=f(x)+g(x)$.

$$
\begin{aligned}
& \left\langle f^{2}-(2 x+3) f+1, g^{2}+g-x^{3}, h-(f+g)\right\rangle \cap \mathbb{Q}[x, h] \\
& =\left\langle h^{4}-4(x+1) h^{3}-\left(2 x^{3}-4 x^{2}-6 x-3\right) h^{2}\right. \\
& \left.\quad+2\left(2 x^{3}+2 x+1\right)(x+1) h+(x+1)^{2}\left(x^{4}-6 x^{3}+x^{2}-1\right)\right\rangle .
\end{aligned}
$$

Quantifier elimination via elimination.

Quantifier elimination via elimination.
Example: Let $p=x^{2}+2 x y+3 y^{2}$. What conditions must a, b, c satisfy such that there exist α, β with

$$
p(\alpha x, \beta y)=a x^{2}+b x y+c y^{2} \quad ?
$$

Quantifier elimination via elimination.
Example: Let $p=x^{2}+2 x y+3 y^{2}$. What conditions must a, b, c satisfy such that there exist α, β with

$$
p(\alpha x, \beta y)=a x^{2}+b x y+c y^{2} \quad ?
$$

Coefficient comparison yields:

$$
\left\langle\alpha^{2}-a, 2 \alpha \beta-b, 3 \beta^{2}-c\right\rangle \subseteq \mathbb{Q}[\alpha, \beta, a, b, c]
$$

Quantifier elimination via elimination.
Example: Let $p=x^{2}+2 x y+3 y^{2}$. What conditions must a, b, c satisfy such that there exist α, β with

$$
p(\alpha x, \beta y)=a x^{2}+b x y+c y^{2} \quad ?
$$

Coefficient comparison yields:

$$
\left\langle\alpha^{2}-a, 2 \alpha \beta-b, 3 \beta^{2}-c\right\rangle \cap \mathbb{Q}[a, b, c]
$$

Quantifier elimination via elimination.
Example: Let $p=x^{2}+2 x y+3 y^{2}$. What conditions must a, b, c satisfy such that there exist α, β with

$$
p(\alpha x, \beta y)=a x^{2}+b x y+c y^{2} \quad ?
$$

Coefficient comparison yields:

$$
\begin{aligned}
& \left\langle\alpha^{2}-a, 2 \alpha \beta-b, 3 \beta^{2}-c\right\rangle \cap \mathbb{Q}[a, b, c] \\
& =\left\langle 3 b^{2}-4 a c\right\rangle
\end{aligned}
$$

Lesson 6: Gröbner bases are useful

Exercises.

- How long does it take on your computer to compute a Gröbner basis for 3 random polynomials in 4 variables of total degree 5?
- Let $\mathrm{I}, \mathrm{J} \subseteq \mathbb{Q}[x, y, z]$ be ideals. Show that $\mathrm{I} \cap \mathrm{J}$ is also an ideal, and that $\operatorname{dim} \mathrm{I}=\operatorname{dim} \mathrm{J}=0 \Longleftrightarrow \operatorname{dim}(\mathrm{I} \cap \mathrm{J})=0$. What does this mean geometrically?
- Given the minimal polynomials of two algebraic functions $f(x), g(x)$, how can we find the minimal polynomial of their composition $h(x):=f(g(x))$?

Definition.

1 A function $f(x)$ is called D-finite if there exist polynomials $c_{0}(x), \ldots, c_{r}(x)$, not all zero, such that

$$
c_{0}(x) f(x)+c_{1}(x) f^{\prime}(x)+\cdots+c_{r}(x) f^{(r)}(x)=0 .
$$

2 A sequence $\left(f_{n}\right)_{n=0}^{\infty}$ is called D-finite if there exist polynomials $c_{0}(n), \ldots, c_{r}(n)$, not all zero, such that

$$
c_{0}(n) f_{n}+c_{1}(n) f_{n+1}+\cdots+c_{r}(n) f_{n+r}=0
$$

Definition.

1 A function $f(x)$ is called D-finite if there exist polynomials $c_{0}(x), \ldots, c_{r}(x)$, not all zero, such that

$$
c_{0}(x) f(x)+c_{1}(x) f^{\prime}(x)+\cdots+c_{r}(x) f^{(r)}(x)=0 .
$$

2 A sequence $\left(f_{n}\right)_{n=0}^{\infty}$ is called D-finite if there exist polynomials $c_{0}(n), \ldots, c_{r}(n)$, not all zero, such that

$$
c_{0}(n) f_{n}+c_{1}(n) f_{n+1}+\cdots+c_{r}(n) f_{n+r}=0
$$

Key feature: a D-finite object is uniquely determined by a defining equation plus a finite number of initial terms.

D-finite representation

It was already mentioned that D-finite equations can be guessed.

It was already mentioned that D-finite equations can be guessed.

```
2
5
21
104
565
3255
19488
119712
748341
4 7 3 5 4 4 5
30229771
194242152
1254381856
8132826044
52900345680
345022543104
2255449994037
14773402692945
96935423713905
637019314585500
4191982352334315
27619973660237475
182185272080724120
1202945209263916560
7950293909692711200
52588673551755331380
348131918848400963388
2306281394441276650832
```


It was already mentioned that D-finite equations can be guessed.

```
2
5
21
104
565
3255
19488
119712
748341
4735445
30229771
194242152
1254381856
8132826044
52900345680
345022543104
2255449994037
14773402692945
96935423713905
637019314585500
4191982352334315
27619973660237475
182185272080724120
1202945209263916560
7950293909692711200
52588673551755331380
348131918848400963388
2306281394441276650832
```


It was already mentioned that D-finite equations can be guessed.

```
2
5
21
104
565
3255
19488
119712
748341
4735445
30229771
194242152
1254381856
8132826044
52900345680
345022543104
2255449994037
14773402692945
96935423713905
637019314585500
4191982352334315
27619973660237475
182185272080724120
1202945209263916560
7950293909692711200
52588673551755331380
348131918848400963388
2306281394441276650832
```

Several operations preserve D-finiteness. In particular:

Several operations preserve D-finiteness. In particular:
If f, g are D-finite, then so are $f+g$, and $f g$.

Several operations preserve D-finiteness. In particular:
If f, g are D-finite, then so are $f+g$, and $f g$.
If f is a D-finite power series, then

Several operations preserve D-finiteness. In particular:
If f, g are D-finite, then so are $f+g$, and $f g$.
If f is a D-finite power series, then

- $\int f$ is D-finite

Several operations preserve D-finiteness. In particular:
If f, g are D-finite, then so are $f+g$, and $f g$.
If f is a D-finite power series, then

- $\int f$ is D-finite
- $\mathrm{f} \circ \mathrm{g}$ is D-finite for every algebraic(!) function g

Several operations preserve D-finiteness. In particular:
If f, g are D-finite, then so are $f+g$, and $f g$.
If f is a D-finite power series, then

- $\int f$ is D-finite
- $\mathrm{f} \circ \mathrm{g}$ is D-finite for every algebraic(!) function g
- if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, then $\left(a_{n}\right)_{n=0}^{\infty}$ is a D-finite sequence.

Several operations preserve D-finiteness. In particular:
If f, g are D-finite, then so are $f+g$, and $f g$.
If f is a D-finite power series, then

- $\int f$ is D-finite
- $\mathrm{f} \circ \mathrm{g}$ is D-finite for every algebraic(!) function g
- if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, then $\left(a_{n}\right)_{n=0}^{\infty}$ is a D-finite sequence.

If $\left(a_{n}\right)_{n=0}^{\infty}$ is a D-finite sequence, then

Several operations preserve D-finiteness. In particular:
If f, g are D-finite, then so are $f+g$, and $f g$.
If f is a D-finite power series, then

- $\int f$ is D-finite
- $\mathrm{f} \circ \mathrm{g}$ is D-finite for every algebraic(!) function g
- if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, then $\left(a_{n}\right)_{n=0}^{\infty}$ is a D-finite sequence.

If $\left(a_{n}\right)_{n=0}^{\infty}$ is a D-finite sequence, then

- $\left(\sum_{k=0}^{n} a_{k}\right)_{n=0}^{\infty}$ is D-finite

Several operations preserve D-finiteness. In particular:
If f, g are D-finite, then so are $f+g$, and $f g$.
If f is a D-finite power series, then

- $\int f$ is D-finite
- $\mathrm{f} \circ \mathrm{g}$ is D-finite for every algebraic(!) function g
- if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, then $\left(a_{n}\right)_{n=0}^{\infty}$ is a D-finite sequence.

If $\left(a_{n}\right)_{n=0}^{\infty}$ is a D-finite sequence, then

- $\left(\sum_{k=0}^{n} a_{k}\right)_{n=0}^{\infty}$ is D-finite
- $\left(a_{u n+v}\right)_{n=0}^{\infty}$ is D-finite for every fixed $u, v \in \mathbb{N}$.

Several operations preserve D-finiteness. In particular:
If f, g are D-finite, then so are $\mathrm{f}+\mathrm{g}$, and fg .
If f is a D-finite power series, then

- $\int f$ is D-finite
- $\mathrm{f} \circ \mathrm{g}$ is D-finite for every algebraic(!) function g
- if $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, then $\left(a_{n}\right)_{n=0}^{\infty}$ is a D-finite sequence.

If $\left(a_{n}\right)_{n=0}^{\infty}$ is a D-finite sequence, then

- $\left(\sum_{k=0}^{n} a_{k}\right)_{n=0}^{\infty}$ is D-finite
- $\left(a_{u n+v}\right)_{n=0}^{\infty}$ is D-finite for every fixed $u, v \in \mathbb{N}$.
- $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is a D-finite power series

We can use closure properties for turning guesses into theorems.

We can use closure properties for turning guesses into theorems.
Example: The functional equation

$$
2 x f(x)+e^{x}(x+1) f(x)^{2}+(2 x-1) f^{\prime}(x)=0
$$

has a unique formal power series solution

$$
f(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots
$$

Is this series D-finite?

We can use closure properties for turning guesses into theorems.
Example: The functional equation

$$
2 x f(x)+e^{x}(x+1) f(x)^{2}+(2 x-1) f^{\prime}(x)=0
$$

has a unique formal power series solution

$$
f(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots
$$

Is this series D-finite?
Yes, it is. It can be shown using the guess-and-prove paradigm.

- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Use them to guess the differential equation

$$
\begin{aligned}
& (x+1)(2 x-1)\left(x^{2}+14 x-5\right) f^{\prime \prime}(x) \\
& +\left(4 x^{4}+65 x^{3}+54 x^{2}+19 x-28\right) f^{\prime}(x) \\
& +2\left(x^{4}+18 x^{3}+27 x^{2}+22 x-6\right) f(x)=0 .
\end{aligned}
$$

- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Use them to guess the differential equation

$$
\begin{aligned}
& (x+1)(2 x-1)\left(x^{2}+14 x-5\right) f^{\prime \prime}(x) \\
& +\left(4 x^{4}+65 x^{3}+54 x^{2}+19 x-28\right) f^{\prime}(x) \\
& +2\left(x^{4}+18 x^{3}+27 x^{2}+22 x-6\right) f(x)=0 .
\end{aligned}
$$

- Let $g(x)$ be the unique power series solution of this differential equation starting like $g(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots$.
- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Use them to guess the differential equation

$$
\begin{aligned}
& (x+1)(2 x-1)\left(x^{2}+14 x-5\right) f^{\prime \prime}(x) \\
& +\left(4 x^{4}+65 x^{3}+54 x^{2}+19 x-28\right) f^{\prime}(x) \\
& +2\left(x^{4}+18 x^{3}+27 x^{2}+22 x-6\right) f(x)=0 .
\end{aligned}
$$

- Let $g(x)$ be the unique power series solution of this differential equation starting like $g(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots$.
- Use closure properties to prove that

$$
2 x g(x)+e^{x}(x+1) g(x)^{2}+(2 x-1) g^{\prime}(x)=0
$$

- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Use them to guess the differential equation

$$
\begin{aligned}
& (x+1)(2 x-1)\left(x^{2}+14 x-5\right) f^{\prime \prime}(x) \\
& +\left(4 x^{4}+65 x^{3}+54 x^{2}+19 x-28\right) f^{\prime}(x) \\
& +2\left(x^{4}+18 x^{3}+27 x^{2}+22 x-6\right) f(x)=0 .
\end{aligned}
$$

- Let $g(x)$ be the unique power series solution of this differential equation starting like $g(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots$.
- Use closure properties to prove that

$$
2 x g(x)+e^{x}(x+1) \mathrm{g}(x)^{2}+(2 x-1) g^{\prime}(x)=0
$$

- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Use them to guess the differential equation

$$
\begin{aligned}
& (x+1)(2 x-1)\left(x^{2}+14 x-5\right) f^{\prime \prime}(x) \\
& +\left(4 x^{4}+65 x^{3}+54 x^{2}+19 x-28\right) f^{\prime}(x) \\
& +2\left(x^{4}+18 x^{3}+27 x^{2}+22 x-6\right) f(x)=0 .
\end{aligned}
$$

- Let $g(x)$ be the unique power series solution of this differential equation starting like $g(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots$.
- Use closure properties to prove that

$$
2 x g(x)+e^{x}(x+1) \underline{g(x)}^{2}+(2 x-1) g^{\prime}(x)=0
$$

- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Use them to guess the differential equation

$$
\begin{aligned}
& (x+1)(2 x-1)\left(x^{2}+14 x-5\right) f^{\prime \prime}(x) \\
& +\left(4 x^{4}+65 x^{3}+54 x^{2}+19 x-28\right) f^{\prime}(x) \\
& +2\left(x^{4}+18 x^{3}+27 x^{2}+22 x-6\right) f(x)=0 .
\end{aligned}
$$

- Let $g(x)$ be the unique power series solution of this differential equation starting like $g(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots$.
- Use closure properties to prove that

$$
2 x g(x)+e^{x}(x+1) g(x)^{2}+(2 x-1) g^{\prime}(x)=0
$$

- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Use them to guess the differential equation

$$
\begin{aligned}
& (x+1)(2 x-1)\left(x^{2}+14 x-5\right) f^{\prime \prime}(x) \\
& +\left(4 x^{4}+65 x^{3}+54 x^{2}+19 x-28\right) f^{\prime}(x) \\
& +2\left(x^{4}+18 x^{3}+27 x^{2}+22 x-6\right) f(x)=0 .
\end{aligned}
$$

- Let $g(x)$ be the unique power series solution of this differential equation starting like $g(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots$.
- Use closure properties to prove that

$$
2 x g(x)+e^{x}(x+1) g(x)^{2}+(2 x-1) g^{\prime}(x)=0 .
$$

- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Use them to guess the differential equation

$$
\begin{aligned}
& (x+1)(2 x-1)\left(x^{2}+14 x-5\right) f^{\prime \prime}(x) \\
& +\left(4 x^{4}+65 x^{3}+54 x^{2}+19 x-28\right) f^{\prime}(x) \\
& +2\left(x^{4}+18 x^{3}+27 x^{2}+22 x-6\right) f(x)=0 .
\end{aligned}
$$

- Let $g(x)$ be the unique power series solution of this differential equation starting like $g(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots$.
- Use closure properties to prove that

$$
\begin{array}{|l|l|}
\hline 2 x & g(x) \\
\hline e^{x}(x+1) & g(x)^{2} \\
\hline(2 x-1) & g^{\prime}(x) \\
\hline
\end{array}=0 .
$$

- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Use them to guess the differential equation

$$
\begin{aligned}
& (x+1)(2 x-1)\left(x^{2}+14 x-5\right) f^{\prime \prime}(x) \\
& +\left(4 x^{4}+65 x^{3}+54 x^{2}+19 x-28\right) f^{\prime}(x) \\
& +2\left(x^{4}+18 x^{3}+27 x^{2}+22 x-6\right) f(x)=0 .
\end{aligned}
$$

- Let $g(x)$ be the unique power series solution of this differential equation starting like $g(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots$.
- Use closure properties to prove that

$$
\begin{array}{|l|l|}
\hline 2 x & g(x) \\
\hline e^{x}(x+1) & g(x)^{2} \\
\hline(2 x-1) & g^{\prime}(x) \\
\hline
\end{array}=0 .
$$

- Compute the first ≈ 20 terms of $f(x)$ using the given equation.
- Use them to guess the differential equation

$$
\begin{aligned}
& (x+1)(2 x-1)\left(x^{2}+14 x-5\right) f^{\prime \prime}(x) \\
& +\left(4 x^{4}+65 x^{3}+54 x^{2}+19 x-28\right) f^{\prime}(x) \\
& +2\left(x^{4}+18 x^{3}+27 x^{2}+22 x-6\right) f(x)=0 .
\end{aligned}
$$

- Let $g(x)$ be the unique power series solution of this differential equation starting like $g(x)=1+x+4 x^{2}+\frac{65}{6} x^{3}+\cdots$.
- Use closure properties to prove that

- Because of uniqueness, we have $f(x)=g(x)$. It follows that $f(x)$ is D-finite.

Lesson 7: Guessing is easy, but proving is not necessarily harder.
f is a D-finite function, i.e., a solution of a linear differential equation

$$
p_{0}(x) f(x)+\cdots+p_{r}(x) f^{(r)}(x)=0
$$

with polynomial coefficients p_{0}, \ldots, p_{r}, if and only if the vector space generated by $f, f^{\prime}, f^{\prime \prime}, \ldots$ over the rational function field has finite dimension:

$$
\begin{aligned}
& \mathbb{Q}(x) f+\mathbb{Q}(x) f^{\prime}+\mathbb{Q}(x) f^{\prime \prime}+\cdots \\
= & \mathbb{Q}(x) f+\mathbb{Q}(x) f^{\prime}+\cdots+\mathbb{Q}(x) f^{(r-1)} .
\end{aligned}
$$

From this characterization, D-finite closure properties are easy to understand.

From this characterization, D-finite closure properties are easy to understand.

Example:

- Suppose f and g are D-finite

From this characterization, D-finite closure properties are easy to understand.

Example:

- Suppose f and g are D-finite
- Then $\operatorname{dim}_{\mathbb{Q}(x)}\left\langle f, f^{\prime}, \ldots\right\rangle<\infty$ and $\operatorname{dim}_{\mathbb{Q}(x)}\left\langle g, g^{\prime}, \ldots\right\rangle<\infty$

From this characterization, D-finite closure properties are easy to understand.

Example:

- Suppose f and g are D-finite
- Then $\operatorname{dim}_{\mathbb{Q}(x)}\left\langle f, f^{\prime}, \ldots\right\rangle<\infty$ and $\operatorname{dim}_{\mathbb{Q}(x)}\left\langle g, g^{\prime}, \ldots\right\rangle<\infty$
- Set $V:=\left\langle f, f^{\prime}, \ldots\right\rangle+\left\langle\mathrm{g}, \mathrm{g}^{\prime}, \ldots\right\rangle$. Then $\operatorname{dim}_{\mathbb{Q}(x)} \mathrm{V}<\infty$

From this characterization, D-finite closure properties are easy to understand.

Example:

- Suppose f and g are D-finite
- Then $\operatorname{dim}_{\mathbb{Q}(x)}\left\langle f, f^{\prime}, \ldots\right\rangle<\infty$ and $\operatorname{dim}_{\mathbb{Q}(x)}\left\langle g, g^{\prime}, \ldots\right\rangle<\infty$
- Set $V:=\left\langle f, f^{\prime}, \ldots\right\rangle+\left\langle\mathrm{g}, \mathrm{g}^{\prime}, \ldots\right\rangle$. Then $\operatorname{dim}_{\mathbb{Q}(x)} V<\infty$
- $\mathrm{h}:=\mathrm{f}+\mathrm{g}$ and all its derivatives belong to V

From this characterization, D-finite closure properties are easy to understand.

Example:

- Suppose f and g are D-finite
- Then $\operatorname{dim}_{\mathbb{Q}(x)}\left\langle f, f^{\prime}, \ldots\right\rangle<\infty$ and $\operatorname{dim}_{\mathbb{Q}(x)}\left\langle g, g^{\prime}, \ldots\right\rangle<\infty$
- Set $V:=\left\langle f, f^{\prime}, \ldots\right\rangle+\left\langle g, g^{\prime}, \ldots\right\rangle$. Then $\operatorname{dim}_{\mathbb{Q}(x)} V<\infty$
- $\mathrm{h}:=\mathrm{f}+\mathrm{g}$ and all its derivatives belong to V
- Hence $h, h^{\prime}, \ldots, h^{(r)}$ must be linearly dependent over $\mathbb{Q}(x)$ when r is large enough. So h is D-finite.

From this characterization, D-finite closure properties are easy to understand.

Example:

- Suppose f and g are D-finite
- Then $\operatorname{dim}_{\mathbb{Q}(x)}\left\langle f, f^{\prime}, \ldots\right\rangle<\infty$ and $\operatorname{dim}_{\mathbb{Q}(x)}\left\langle g, g^{\prime}, \ldots\right\rangle<\infty$
- Set $V:=\left\langle f, f^{\prime}, \ldots\right\rangle+\left\langle g, g^{\prime}, \ldots\right\rangle$. Then $\operatorname{dim}_{\mathbb{Q}(x)} V<\infty$
- $h:=f+g$ and all its derivatives belong to V
- Hence $h, h^{\prime}, \ldots, h^{(r)}$ must be linearly dependent over $\mathbb{Q}(x)$ when r is large enough. So h is D-finite.

This argument, and in fact the whole idea of D-finiteness, extends to a more general setting.

Let us consider operators acting on functions.

$\quad \begin{gathered}\text { function } \\ \text { space }\end{gathered}$
$\cdot \underset{\substack{\downarrow \\ \text { operator } \\ \text { algebra }}}{\downarrow} \times \stackrel{F}{F} \rightarrow F$

Let us consider operators acting on functions.

$$
\begin{aligned}
& \quad \begin{array}{l}
\quad \text { function } \\
\text { space }
\end{array} \\
& \therefore \underset{\uparrow}{A} \times F \rightarrow F \\
& \begin{array}{c}
\downarrow \\
\text { operator } \\
\text { algebra }
\end{array}
\end{aligned}
$$

Examples:

- differential operators: $\quad x \cdot(\mathrm{t} \mapsto \mathrm{f}(\mathrm{t})):=(\mathrm{t} \mapsto \mathrm{t} f(\mathrm{t}))$

$$
\partial \cdot(t \mapsto f(t)):=\left(t \mapsto f^{\prime}(t)\right)
$$

- recurrence operators: $\quad x \cdot\left(a_{n}\right)_{n=0}^{\infty}:=\left(n a_{n}\right)_{n=0}^{\infty}$
$\partial \cdot\left(a_{n}\right)_{n=0}^{\infty}:=\left(a_{n+1}\right)_{n=0}^{\infty}$
- q-recurrence operators: $\chi \cdot\left(a_{n}\right)_{n=0}^{\infty}:=\left(q^{n} a_{n}\right)_{n=0}^{\infty}$
$\partial \cdot\left(a_{n}\right)_{n=0}^{\infty}:=\left(a_{n+1}\right)_{n=0}^{\infty}$

Want: Action should be compatible with polynomial arithmetic

$$
\begin{aligned}
(L+M) \cdot f & =(L \cdot f)+(M \cdot f) \\
L \cdot(f+g) & =(L \cdot f)+(L \cdot g) \\
(L M) \cdot f & =L \cdot(M \cdot f) \\
1 \cdot f & =f
\end{aligned}
$$

Want: Action should be compatible with polynomial arithmetic

$$
\begin{aligned}
(L+M) \cdot f & =(L \cdot f)+(M \cdot f) \\
L \cdot(f+g) & =(L \cdot f)+(L \cdot g) \\
(L M) \cdot f & =L \cdot(M \cdot f) \\
1 \cdot f & =f
\end{aligned}
$$

Problem: This does not happen automatically.

Want: Action should be compatible with polynomial arithmetic

$$
\begin{aligned}
(L+M) \cdot f & =(L \cdot f)+(M \cdot f) \\
L \cdot(f+g) & =(L \cdot f)+(L \cdot g) \\
(L M) \cdot f & =L \cdot(M \cdot f) \\
1 \cdot f & =f
\end{aligned}
$$

Problem: This does not happen automatically.
Example: For differential operators, we have

$$
\begin{aligned}
& (x \partial) \cdot f=x \cdot f^{\prime}=\left(t \mapsto t f^{\prime}(t)\right) \\
& (\partial x) \cdot f=\partial \cdot(t \mapsto t f(t))=\left(t \mapsto f(t)+t f^{\prime}(t)\right)
\end{aligned}
$$

Want: Action should be compatible with polynomial arithmetic

$$
\begin{aligned}
(L+M) \cdot f & =(L \cdot f)+(M \cdot f) \\
L \cdot(f+g) & =(L \cdot f)+(L \cdot g) \\
(L M) \cdot f & =L \cdot(M \cdot f) \\
1 \cdot f & =f
\end{aligned}
$$

Problem: This does not happen automatically.
Example: For differential operators, we have

$$
\begin{aligned}
& (x \partial) \cdot f=x \cdot f^{\prime}=\left(t \mapsto t f^{\prime}(t)\right) \\
& (\partial x) \cdot f=\partial \cdot(t \mapsto t f(t))=\left(t \mapsto f(t)+t f^{\prime}(t)\right)
\end{aligned}
$$

We need to change multiplication so as to fit to the action.

Definition

Definition

- Let K be a field

Definition

- Let K be a field
- Let $\sigma: \mathrm{K} \rightarrow \mathrm{K}$ be an endomorphism, i.e.,

$$
\sigma(a+b)=\sigma(a)+\sigma(b) \quad \text { and } \quad \sigma(a b)=\sigma(a) \sigma(b)
$$

Definition

- Let K be a field
- Let $\sigma: \mathrm{K} \rightarrow \mathrm{K}$ be an endomorphism
- Let $\delta: \mathrm{K} \rightarrow \mathrm{K}$ be a " σ-derivation", i.e.,

$$
\delta(a+b)=\delta(a)+\delta(b) \quad \text { and } \quad \delta(a b)=\delta(a) b+\sigma(a) \delta(b)
$$

Definition

- Let K be a field
- Let $\sigma: \mathrm{K} \rightarrow \mathrm{K}$ be an endomorphism
- Let $\delta: \mathrm{K} \rightarrow \mathrm{K}$ be a " σ-derivation"
- Let $A=K[\partial]$ be the set of all univariate polynomials in ∂ with coefficients in K.

Definition

- Let K be a field
- Let $\sigma: \mathrm{K} \rightarrow \mathrm{K}$ be an endomorphism
- Let $\delta: \mathrm{K} \rightarrow \mathrm{K}$ be a " $\mathrm{\sigma}$-derivation"
- Let $A=K[\partial]$ be the set of all univariate polynomials in ∂ with coefficients in K.
- Let + be the usual polynomial addition.

Definition

- Let K be a field
- Let $\sigma: \mathrm{K} \rightarrow \mathrm{K}$ be an endomorphism
- Let $\delta: \mathrm{K} \rightarrow \mathrm{K}$ be a " $\mathrm{\sigma}$-derivation"
- Let $A=K[\partial]$ be the set of all univariate polynomials in ∂ with coefficients in K.
- Let + be the usual polynomial addition.
- Let • be the unique (noncommutative) multiplication in A which extends the multiplication in R and satisfies

$$
\partial a=\sigma(a) \partial+\delta(a) \quad \text { for all } a \in K .
$$

Definition

- Let K be a field
- Let $\sigma: \mathrm{K} \rightarrow \mathrm{K}$ be an endomorphism
- Let $\delta: \mathrm{K} \rightarrow \mathrm{K}$ be a " σ-derivation"
- Let $A=K[\partial]$ be the set of all univariate polynomials in ∂ with coefficients in K.
- Let + be the usual polynomial addition.
- Let • be the unique (noncommutative) multiplication in A which extends the multiplication in R and satisfies

$$
\partial a=\sigma(a) \partial+\delta(a) \quad \text { for all } a \in K .
$$

- Then A together with this + and . is called an Ore Algebra.

Examples: $A=\mathbb{Q}(x)[\partial]$

Examples: $A=\mathbb{Q}(x)[\partial]$

- differential operators: $\sigma=\mathrm{id}, \delta=\frac{\mathrm{d}}{\mathrm{dx}}$

$$
\partial x=x \partial+1
$$

Examples: $A=\mathbb{Q}(x)[\partial]$

- differential operators: $\sigma=\mathrm{id}, \delta=\frac{\mathrm{d}}{\mathrm{dx}}$

$$
\partial x=x \partial+1
$$

- recurrence operators: $\sigma(p(x))=p(x+1), \delta=0$

$$
\partial x=(x+1) \partial
$$

Examples: $A=\mathbb{Q}(x)[\partial]$

- differential operators: $\sigma=\mathrm{id}, \delta=\frac{\mathrm{d}}{\mathrm{dx}}$

$$
\partial x=x \partial+1
$$

- recurrence operators: $\sigma(p(x))=p(x+1), \delta=0$

$$
\partial x=(x+1) \partial
$$

- q-recurrence operators: $\sigma(p(x))=p(q x), \delta=0$

$$
\partial x=q \chi \partial
$$

Let $A=K[\partial]$ be an Ore algebra acting on a function space F.

Let $A=K[\partial]$ be an Ore algebra acting on a function space F.

- The annihilator of $f \in F$ is defined as

$$
\operatorname{ann}(f):=\{a \in A: a \cdot f=0\} \subseteq A .
$$

Its elements are called annihilating operators for f.

Let $A=K[\partial]$ be an Ore algebra acting on a function space F.

- The annihilator of $f \in F$ is defined as

$$
\operatorname{ann}(f):=\{a \in A: a \cdot f=0\} \subseteq A .
$$

Its elements are called annihilating operators for f.

- The solution space of $a \in A$ is defined as

$$
V(a):=\{f \in F: a \cdot f=0\} \subseteq F .
$$

Its elements are called solutions of a.

Let $A=K[\partial]$ be an Ore algebra acting on a function space F.

- The annihilator of $f \in F$ is defined as

$$
\operatorname{ann}(f):=\{a \in A: a \cdot f=0\} \subseteq A .
$$

Its elements are called annihilating operators for f.
This is a left-ideal of A.

- The solution space of $a \in A$ is defined as

$$
V(a):=\{f \in F: a \cdot f=0\} \subseteq F .
$$

Its elements are called solutions of a.

Let $A=K[\partial]$ be an Ore algebra acting on a function space F.

- The annihilator of $f \in F$ is defined as

$$
\operatorname{ann}(f):=\{a \in A: a \cdot f=0\} \subseteq A .
$$

Its elements are called annihilating operators for f.
This is a left-ideal of A.

- The solution space of $a \in A$ is defined as

$$
V(a):=\{f \in F: a \cdot f=0\} \subseteq F .
$$

Its elements are called solutions of a.
This is a C-subspace of F, where $C=\{c \in K: c \partial=\partial c\}$.

Let $A=K[\partial]$ be an Ore algebra acting on a function space F.

- $f \in F$ is called D-finite (w.r.t. the action of A on F) if

$$
\operatorname{ann}(f) \neq\{0\} .
$$

Let $A=K[\partial]$ be an Ore algebra acting on a function space F.

- $f \in F$ is called D-finite (w.r.t. the action of A on F) if

$$
\operatorname{ann}(f) \neq\{0\} .
$$

- This is the case if and only if

$$
\operatorname{dim}_{K} K[\partial] / \operatorname{ann}(f)<\infty
$$

Let $A=K[\partial]$ be an Ore algebra acting on a function space F.

- $f \in F$ is called D-finite (w.r.t. the action of A on F) if

$$
\operatorname{ann}(f) \neq\{0\} .
$$

- This is the case if and only if

Let $A=K[\partial]$ be an Ore algebra acting on a function space F.

- $f \in F$ is called D-finite (w.r.t. the action of A on F) if

$$
\operatorname{ann}(f) \neq\{0\} .
$$

- This is the case if and only if

- Note also:

$$
K[\partial] / a n n(f) \cong K[\partial] \cdot f \subseteq F
$$

as K -vector spaces.

The setting generalizes to the case of several variables.

The setting generalizes to the case of several variables.
In this case, $A=K\left[\partial_{1}, \ldots, \partial_{m}\right]$ acts on a function space F.

The setting generalizes to the case of several variables.
In this case, $A=K\left[\partial_{1}, \ldots, \partial_{m}\right]$ acts on a function space F.
For each ∂_{i} there is a separate σ_{i} and δ_{i} describing its commutation with elements of R.

The setting generalizes to the case of several variables.
In this case, $A=K\left[\partial_{1}, \ldots, \partial_{m}\right]$ acts on a function space F.
For each ∂_{i} there is a separate σ_{i} and δ_{i} describing its commutation with elements of R.

We have $\partial_{i} \partial_{j}=\partial_{j} \partial_{i}$ for all i, j.

The setting generalizes to the case of several variables.
In this case, $A=K\left[\partial_{1}, \ldots, \partial_{m}\right]$ acts on a function space F.
For each ∂_{i} there is a separate σ_{i} and δ_{i} describing its commutation with elements of R.

We have $\partial_{i} \partial_{j}=\partial_{j} \partial_{i}$ for all i, j.
Typically, F contains functions in m variables and ∂_{i} acts nontrivially on the ith variable and does nothing with the others.

The setting generalizes to the case of several variables.
In this case, $A=K\left[\partial_{1}, \ldots, \partial_{m}\right]$ acts on a function space F.
For each ∂_{i} there is a separate σ_{i} and δ_{i} describing its commutation with elements of R.

We have $\partial_{i} \partial_{j}=\partial_{j} \partial_{i}$ for all i, j.
Typically, F contains functions in m variables and ∂_{i} acts nontrivially on the i th variable and does nothing with the others.

Example: $\mathbb{Q}(x, y, z)\left[D_{x}, D_{y}, D_{z}\right]$ acts naturally on the space F of meromorphic functions in three variables.

Let $A=K\left[\partial_{1}, \ldots, \partial_{m}\right]$ be an Ore algebra acting on F.

Let $A=K\left[\partial_{1}, \ldots, \partial_{m}\right]$ be an Ore algebra acting on F.

- The annihilator of $f \in F$ is defined as

$$
\operatorname{ann}(f):=\{a \in A: a \cdot f=0\} \subseteq A .
$$

This is a left-ideal of A.

Let $A=K\left[\partial_{1}, \ldots, \partial_{m}\right]$ be an Ore algebra acting on F.

- The annihilator of $f \in F$ is defined as

$$
\operatorname{ann}(f):=\{a \in A: a \cdot f=0\} \subseteq A .
$$

This is a left-ideal of A.

- It remains true that

$$
K\left[\partial_{1}, \ldots, \partial_{m}\right] / \operatorname{ann}(f) \cong K\left[\partial_{1}, \ldots, \partial_{m}\right] \cdot f \subseteq F
$$

as K -vector spaces.

Let $A=K\left[\partial_{1}, \ldots, \partial_{m}\right]$ be an Ore algebra acting on F.

- The annihilator of $f \in F$ is defined as

$$
\operatorname{ann}(f):=\{a \in A: a \cdot f=0\} \subseteq A .
$$

This is a left-ideal of A.

- It remains true that

$$
K\left[\partial_{1}, \ldots, \partial_{m}\right] / a n n(f) \cong K\left[\partial_{1}, \ldots, \partial_{m}\right] \cdot f \subseteq F
$$

as K-vector spaces.

- f is called D-finite if

$$
\operatorname{dim}_{K} K\left[\partial_{1}, \ldots, \partial_{m}\right] / \operatorname{ann}(f)<\infty
$$

Let $A=K\left[\partial_{1}, \ldots, \partial_{m}\right]$ be an Ore algebra acting on F.

- The annihilator of $f \in F$ is defined as

$$
\operatorname{ann}(f):=\{a \in A: a \cdot f=0\} \subseteq A .
$$

This is a left-ideal of A.

- It remains true that

$$
K\left[\partial_{1}, \ldots, \partial_{m}\right] / \operatorname{ann}(f) \cong K\left[\partial_{1}, \ldots, \partial_{m}\right] \cdot f \subseteq F
$$

as K-vector spaces.

- f is called D-finite if

$$
\operatorname{dim}_{K} K\left[\partial_{1}, \ldots, \partial_{m}\right] / \operatorname{ann}(f)<\infty
$$

- This is the case if and only if $\operatorname{ann}(f) \cap K\left[\partial_{i}\right] \neq\{0\}$ for all i.

Example:
For $f(x, y)=\sqrt{x+y^{2}}-3 x^{2}+y$ and $A=\mathbb{Q}(x, y)\left[D_{x}, D_{y}\right]$ we have

$$
\begin{aligned}
\operatorname{ann}(f)= & \left\langle\left(9 x^{2}+y+12 x y^{2}\right) D_{y}+\left(2 x+6 x^{2} y\right) D_{x}-(1+12 x y),\right. \\
& \left.\left(x+3 x^{2} y+y^{2}+3 x y^{3}\right) D_{y}^{2}+\left(y-3 x^{2}\right) D_{y}-1\right\rangle .
\end{aligned}
$$

Example:
For $f(x, y)=\sqrt{x+y^{2}}-3 x^{2}+y$ and $A=\mathbb{Q}(x, y)\left[D_{x}, D_{y}\right]$ we have

$$
\begin{aligned}
\operatorname{ann}(f)= & \left\langle\left(9 x^{2}+y+12 x y^{2}\right) D_{y}+\left(2 x+6 x^{2} y\right) D_{x}-(1+12 x y),\right. \\
& \left.\left(x+3 x^{2} y+y^{2}+3 x y^{3}\right) D_{y}^{2}+\left(y-3 x^{2}\right) D_{y}-1\right\rangle .
\end{aligned}
$$

This function is D-finite because

$$
\begin{aligned}
& \operatorname{ann}(f) \cap \mathbb{Q}(x, y)\left[D_{y}\right] \\
&=\left\langle\left(x+3 x^{2} y+y^{2}+3 x y^{3}\right) D_{y}^{2}+\left(y-3 x^{2}\right) D_{y}-1\right\rangle \neq\{0\} \\
& \operatorname{ann}(f) \cap \mathbb{Q}(x, y)\left[D_{x}\right] \\
&=\langle 2 \\
&\left(x+y^{2}\right)\left(9 x^{2}+y+12 x y^{2}\right) D_{x}^{2}-\left(27 x^{2}-y+48 x y^{2}+24 y^{4}\right) D_{x} \\
&\left.\quad+\left(18 x+12 y^{2}\right)\right\rangle \neq\{0\} .
\end{aligned}
$$

Example:
For $f(n, k)=2^{k}+\binom{n}{k}$ and $A=\mathbb{Q}(n, k)\left[S_{n}, S_{k}\right]$ we have

$$
\begin{aligned}
\operatorname{ann}(f)=\langle\mathbf{O} & +\mathbf{O} S_{k}+\mathbf{O} S_{n}, \\
& \left.+\mathbf{O} S_{k}+\mathbf{O} S_{k}^{2}\right\rangle .
\end{aligned}
$$

Example:
For $f(n, k)=2^{k}+\binom{n}{k}$ and $A=\mathbb{Q}(n, k)\left[S_{n}, S_{k}\right]$ we have

$$
\begin{aligned}
\operatorname{ann}(f)=\langle\mathbf{0} & +\mathbf{O} S_{k}+\mathbf{O} S_{n}, \\
& \left.+\mathbf{O} S_{k}+\mathbf{O} S_{k}^{2}\right\rangle .
\end{aligned}
$$

This function is D-finite because

$$
\begin{aligned}
& \operatorname{ann}(f) \cap \mathbb{Q}(n, k)\left[S_{k}\right] \\
& \quad=\left\langle\mathbf{O}+\mathbf{O} S_{k}+S_{k}^{2}\right\rangle \neq\{0\} \\
& \operatorname{ann}(f) \cap \mathbb{Q}(n, k)\left[S_{n}\right] \\
& \quad=\left\langle-1-n+(3-k+2 n) S_{n}+(-2+k-n) S_{n}^{2}\right\rangle \neq\{0\} .
\end{aligned}
$$

Gröbner bases are also available for ideals in Ore algebras.

Gröbner bases are also available for ideals in Ore algebras.
In particular, a vector space basis of $K\left[\partial_{1}, \ldots, \partial_{m}\right] / a n n(f)$ is given by the terms $\partial_{1}^{e_{1}} \ldots \partial_{\mathfrak{m}}^{e_{m}}$ which are not the leading term of any element of ann(f).

Gröbner bases are also available for ideals in Ore algebras.
In particular, a vector space basis of $\mathrm{K}\left[\partial_{1}, \ldots, \partial_{\mathrm{m}}\right] /$ ann (f) is given by the terms $\partial_{1}^{e_{1}} \ldots \partial_{\mathfrak{m}}^{e_{m}}$ which are not the leading term of any element of ann(f).

Gröbner bases are also available for ideals in Ore algebras.
In particular, a vector space basis of $\mathrm{K}\left[\partial_{1}, \ldots, \partial_{\mathrm{m}}\right] /$ ann (f) is given by the terms $\partial_{1}^{e_{1}} \ldots \partial_{\mathfrak{m}}^{e_{m}}$ which are not the leading term of any element of ann(f).

Gröbner bases are also available for ideals in Ore algebras.
In particular, a vector space basis of $\mathrm{K}\left[\partial_{1}, \ldots, \partial_{\mathrm{m}}\right] /$ ann (f) is given by the terms $\partial_{1}^{e_{1}} \ldots \partial_{\mathfrak{m}}^{e_{m}}$ which are not the leading term of any element of ann(f).

Gröbner bases are also available for ideals in Ore algebras.
In particular, a vector space basis of $\mathrm{K}\left[\partial_{1}, \ldots, \partial_{\mathrm{m}}\right] /$ ann (f) is given by the terms $\partial_{1}^{e_{1}} \ldots \partial_{\mathfrak{m}}^{e_{m}}$ which are not the leading term of any element of ann(f).

Gröbner bases are also available for ideals in Ore algebras.
In particular, a vector space basis of $\mathrm{K}\left[\partial_{1}, \ldots, \partial_{m}\right] / a n n(f)$ is given by the terms $\partial_{1}^{e_{1}} \ldots \partial_{\mathfrak{m}}^{e_{m}}$ which are not the leading term of any element of ann(f).

Example:

$$
f(x, y)=\sqrt{x+y^{2}}-3 x^{2}+y
$$

$$
\operatorname{ann}(f)=\left\langle\left(2 x+6 x^{2} y\right) D_{x}+\left(9 x^{2}+y+12 x y^{2}\right) D_{y}-(1+12 x y),\right.
$$

$$
\left.\left(x+3 x^{2} y+y^{2}+3 x y^{3}\right) D_{y}^{2}+\left(y-3 x^{2}\right) D_{y}-1\right\rangle
$$

Example:

$$
f(x, y)=\sqrt{x+y^{2}}-3 x^{2}+y
$$

$$
\operatorname{ann}(f)=\left\langle\left(2 x+6 x^{2} y\right) D_{x}+\left(9 x^{2}+y+12 x y^{2}\right) D_{y}-(1+12 x y),\right.
$$

$$
\left.\left(x+3 x^{2} y+y^{2}+3 x y^{3}\right) D_{y}^{2}+\left(y-3 x^{2}\right) D_{y}-1\right\rangle
$$

Example:

$$
f(x, y)=\sqrt{x+y^{2}}-3 x^{2}+y
$$

$$
\operatorname{ann}(f)=\left\langle\left(2 x+6 x^{2} y\right) D_{x}+\left(9 x^{2}+y+12 x y^{2}\right) D_{y}-(1+12 x y),\right.
$$

$$
\left.(x + 3 x ^ { 2 } y + y ^ { 2 } + 3 x y ^ { 3 }) \longdiv { D _ { y } ^ { 2 } } + (y - 3 x ^ { 2 }) D _ { y } - 1\right\rangle
$$

Example:

$$
f(x, y)=\sqrt{x+y^{2}}-3 x^{2}+y
$$

$$
\operatorname{ann}(f)=\left\langle\left(2 x+6 x^{2} y\right) D_{x}+\left(9 x^{2}+y+12 x y^{2}\right) D_{y}-(1+12 x y),\right.
$$

$$
\left.(x + 3 x ^ { 2 } y + y ^ { 2 } + 3 x y ^ { 3 }) \longdiv { D _ { y } ^ { 2 } } + (y - 3 x ^ { 2 }) D _ { y } - 1\right\rangle
$$

Example:
$f_{n, k}=2^{k}+\binom{n}{k}$

$$
\begin{aligned}
\operatorname{ann}(f)= & \left\langle\boldsymbol{O} S_{n}+\boldsymbol{O} S_{k}+0\right. \\
& \left.\bullet S_{k}^{2}+0 S_{k}+0\right\rangle .
\end{aligned}
$$

Example:
$f_{n, k}=2^{k}+\binom{n}{k}$

$$
\begin{array}{r}
\operatorname{ann}(f)=\left\langle\boldsymbol{O} S_{n}+\mathbf{O} S_{k}+\mathbf{0}\right. \\
\left.\quad \sqrt{S_{k}^{2}}+\mathbf{O} S_{k}+\boldsymbol{O}\right\rangle .
\end{array}
$$

Example:

$$
f_{n, k}=2^{k}+\binom{n}{k}
$$

$$
\begin{aligned}
& \operatorname{ann}(f)=\left\langle\mathbf{S} S_{n}+\mathbf{S} S_{k}+\mathbf{O},\right. \\
& \left.\boldsymbol{S _ { k } ^ { 2 }}+\mathbf{O} S_{k}+0\right\rangle \text {. }
\end{aligned}
$$

Example:

$$
f_{n, k}=2^{k}+\binom{n}{k}
$$

$$
\begin{aligned}
& \operatorname{ann}(f)=\left\langle\mathbf{S} S_{n}+\mathbf{S} S_{k}+\mathbf{O},\right. \\
& \left.\boldsymbol{S _ { k } ^ { 2 }}+\mathbf{O} S_{k}+0\right\rangle \text {. }
\end{aligned}
$$

Example:

$P_{n}(x)=$ the $n t h$ Legendre polynomial

$$
\begin{aligned}
\operatorname{ann}(f)= & \left\langle(n+1) S_{n}+\left(1-x^{2}\right) D_{x}-(n+1) x,\right. \\
& \left.\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1)\right\rangle .
\end{aligned}
$$

Example:

$\mathrm{P}_{\mathrm{n}}(\mathrm{x})=$ the nth Legendre polynomial

$$
\begin{aligned}
\operatorname{ann}(f)= & \left\langle(n+1) S_{n}+\left(1-x^{2}\right) D_{x}-(n+1) x,\right. \\
& \left.\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1)\right\rangle .
\end{aligned}
$$

Example:

$P_{n}(x)=$ the $n t h$ Legendre polynomial

$$
\begin{aligned}
\operatorname{ann}(f)= & \left\langle(n+1) S_{n}+\left(1-x^{2}\right) D_{x}-(n+1) x,\right. \\
& \left.\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1)\right\rangle .
\end{aligned}
$$

Example:

$P_{n}(x)=$ the $n t h$ Legendre polynomial

$$
\begin{aligned}
\operatorname{ann}(f)= & \left\langle(n+1) S_{n}+\left(1-x^{2}\right) D_{x}-(n+1) x,\right. \\
& \left.\left(x^{2}-1\right) D_{x}^{2}+2 x D_{x}-n(n+1)\right\rangle .
\end{aligned}
$$

Closure properties work as in the univariate case:

- f, g D-finite $\Rightarrow \mathrm{f}+\mathrm{g}$, fg D-finite
- $f(x, y)$ D-finite and g nonconstant algebraic $\Rightarrow f(x, g)$ D-finite

Closure properties work as in the univariate case:

- f, g D-finite $\Rightarrow f+g$, fg D-finite
- $f(x, y)$ D-finite and g nonconstant algebraic $\Rightarrow f(x, g)$ D-finite

These properties are realized by linear algebra in $A / a n n(f)$.

Closure properties work as in the univariate case:

- f, g D-finite $\Rightarrow \mathrm{f}+\mathrm{g}$, fg D-finite
- $f(x, y)$ D-finite and g nonconstant algebraic $\Rightarrow f(x, g)$ D-finite

These properties are realized by linear algebra in $A / a n n(f)$.

Additional closure properties (differential case):

Closure properties work as in the univariate case:

- f,g D-finite $\Rightarrow f+g$, fg D-finite
- $f(x, y)$ D-finite and g nonconstant algebraic $\Rightarrow f(x, g)$ D-finite - ...

These properties are realized by linear algebra in $A / a n n(f)$.

Additional closure properties (differential case):

- $f(x, t)$ D-finite $\Rightarrow I(x)=\int_{0}^{1} f(x, t) d t$ D-finite

Closure properties work as in the univariate case:

- f, g D-finite $\Rightarrow \mathrm{f}+\mathrm{g}, \mathrm{fg}$ D-finite
- $f(x, y)$ D-finite and g nonconstant algebraic $\Rightarrow f(x, g)$ D-finite - ...

These properties are realized by linear algebra in $A /$ ann (f).

Additional closure properties (differential case):

- $f(x, t)$ D-finite $\Rightarrow I(x)=\int_{0}^{1} f(x, t) d t D$-finite
- $f(x, t) D$-finite $\Rightarrow C(x)=f(x, 0)=\left[t^{0}\right] f(x, t)$ D-finite

Closure properties work as in the univariate case:

- f, g D-finite $\Rightarrow \mathrm{f}+\mathrm{g}, \mathrm{fg}$ D-finite
- $f(x, y)$ D-finite and g nonconstant algebraic $\Rightarrow f(x, g)$ D-finite - ...

These properties are realized by linear algebra in $A /$ ann (f).

Additional closure properties (differential case):

- $f(x, t)$ D-finite $\Rightarrow I(x)=\int_{0}^{1} f(x, t) d t D$-finite
- $f(x, t) D$-finite $\Rightarrow C(x)=f(x, 0)=\left[t^{0}\right] f(x, t)$ D-finite
- $f(x, t)$ D-finite $\Rightarrow \Delta(x)=\operatorname{diag} f(x, t)$ D-finite

Closure properties work as in the univariate case:

- f, g D-finite $\Rightarrow \mathrm{f}+\mathrm{g}, \mathrm{fg}$ D-finite
- $f(x, y)$ D-finite and g nonconstant algebraic $\Rightarrow f(x, g)$ D-finite - ...

These properties are realized by linear algebra in $A / a n n(f)$.

Additional closure properties (differential case):

- $f(x, t)$ D-finite $\Rightarrow I(x)=\int_{0}^{1} f(x, t) d t$ D-finite
- $f(x, t) D$-finite $\Rightarrow C(x)=f(x, 0)=\left[t^{0}\right] f(x, t)$ D-finite
- $f(x, t)$ D-finite $\Rightarrow \Delta(x)=\operatorname{diag} f(x, t)$ D-finite
- $f(x, t) D$-finite $\Rightarrow P(x, t)=\left[x^{>} t^{>}\right] f(x, t) D$-finite

Closure properties work as in the univariate case:

- f, g D-finite $\Rightarrow \mathrm{f}+\mathrm{g}, \mathrm{fg}$ D-finite
- $f(x, y)$ D-finite and g nonconstant algebraic $\Rightarrow f(x, g)$ D-finite - ...

These properties are realized by linear algebra in $A / a n n(f)$.

Additional closure properties (differential case):

- $f(x, t)$ D-finite $\Rightarrow I(x)=\int_{0}^{1} f(x, t) d t$ D-finite
- $f(x, t) D$-finite $\Rightarrow C(x)=f(x, 0)=\left[t^{0}\right] f(x, t)$ D-finite
- $f(x, t)$ D-finite $\Rightarrow \Delta(x)=\operatorname{diag} f(x, t)$ D-finite
- $f(x, t) D$-finite $\Rightarrow P(x, t)=\left[x^{>} t^{>}\right] f(x, t) D$-finite

These properties are realized by creative telescoping.

Lesson 8: We are not limited to one variable and shift or derivation

The functional equation

$$
2 x f(x)+(x+1) f(x)^{2}+(2 x-1) f^{\prime}(x)=0
$$

has a unique power series solution

$$
f(x)=1+x+\frac{7}{2} x^{2}+\cdots
$$

The functional equation

$$
2 x f(x)+(x+1) f(x)^{2}+(2 x-1) f^{\prime}(x)=0
$$

has a unique power series solution

$$
f(x)=1+x+\frac{7}{2} x^{2}+\cdots
$$

This series does not seem to be D-finite.

The functional equation

$$
2 x f(x)+(x+1) f(x)^{2}+(2 x-1) f^{\prime}(x)=0
$$

has a unique power series solution

$$
f(x)=1+x+\frac{7}{2} x^{2}+\cdots
$$

This series does not seem to be D-finite.
But it is differentially algebraic.

Definition.

A power series $f(x)$ is called differentially algebraic (ADE) if there is a nonzero polynomial $p \in \mathbb{Q}\left[x, y_{0}, y_{1}, \ldots, y_{r}\right]$ such that

$$
p\left(x, f(x), f^{\prime}(x), \ldots, f^{(r)}(x)\right)=0 .
$$

Such an equation is also called an algebraic differential equation.

Definition.

A power series $f(x)$ is called differentially algebraic (ADE) if there is a nonzero polynomial $p \in \mathbb{Q}\left[x, y_{0}, y_{1}, \ldots, y_{r}\right]$ such that

$$
p\left(x, f(x), f^{\prime}(x), \ldots, f^{(r)}(x)\right)=0 .
$$

Such an equation is also called an algebraic differential equation.

Examples:

- The exponential generating function of the Bell numbers $f(x)=e^{e^{x}-1}$ satisfies

$$
f(x) f^{\prime}(x)+f^{\prime}(x)^{2}-f(x) f^{\prime \prime}(x)=0 .
$$

Examples:

- The exponential generating function of the Bell numbers $f(x)=e^{e^{x}-1}$ satisfies

$$
f(x) f^{\prime}(x)+f^{\prime}(x)^{2}-f(x) f^{\prime \prime}(x)=0 .
$$

- The exponential generating function of the Bernoulli numbers $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{\mathrm{e}^{\mathrm{x}}-1}$ satisfies

$$
x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0
$$

Examples:

- The exponential generating function of the Bell numbers $f(x)=e^{e^{x}-1}$ satisfies

$$
f(x) f^{\prime}(x)+f^{\prime}(x)^{2}-f(x) f^{\prime \prime}(x)=0
$$

- The exponential generating function of the Bernoulli numbers $f(x)=\frac{x}{e^{x}-1}$ satisfies

$$
x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0
$$

- The generating function counting the number quarter plane walks with step set $\{\swarrow, \leftarrow, \uparrow, \rightarrow\}$ is differentially algebraic. (The equation is rather big, though.)

The main techniques for D-finite functions can be generalized to ADE functions. In particular:

The main techniques for D-finite functions can be generalized to ADE functions. In particular:

- Guessing: algebraic differential equations can be reconstructed from initial values.

The main techniques for D-finite functions can be generalized to ADE functions. In particular:

- Guessing: algebraic differential equations can be reconstructed from initial values.
\rightarrow Ansatz, coefficient comparison, linear system solving.

The main techniques for D-finite functions can be generalized to ADE functions. In particular:

- Guessing: algebraic differential equations can be reconstructed from initial values.
\rightarrow Ansatz, coefficient comparison, linear system solving.
- Closure properties: many operations preserve differentially-algebraic-ness.

The main techniques for D-finite functions can be generalized to ADE functions. In particular:

- Guessing: algebraic differential equations can be reconstructed from initial values.
\rightarrow Ansatz, coefficient comparison, linear system solving.
- Closure properties: many operations preserve differentially-algebraic-ness.
\rightarrow Closure properties can be executed via Gröbner bases.

Example: Let B_{n} be the Bernoulli numbers defined through

$$
f(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

with $x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0$.

Example: Let B_{n} be the Bernoulli numbers defined through

$$
f(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

with $x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0$.
We want to prove the identity

$$
\sum_{k=0}^{n}\binom{n}{k}\left(1-2^{1-k}\right)\left(1-2^{1-(n-k)}\right) B_{k} B_{n-k}=(1-n) B_{n}
$$

using closure properties.

Example: Let B_{n} be the Bernoulli numbers defined through

$$
f(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

with $x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0$.
We want to prove the identity

$$
\sum_{k=0}^{n} \frac{\left(1-2^{1-k}\right)\left(1-2^{1-(n-k)}\right) B_{k} B_{n-k}}{k!(n-k)!}=\frac{(1-n)}{n!} B_{n}
$$

using closure properties.

Example: Let B_{n} be the Bernoulli numbers defined through

$$
f(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

with $x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0$.
We want to prove the identity

$$
\sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{\left(1-2^{1-k}\right)\left(1-2^{1-(n-k)}\right) B_{k} B_{n-k}}{k!(n-k)!} x^{n}=\sum_{n=0}^{\infty} \frac{(1-n)}{n!} B_{n} x^{n}
$$

using closure properties.

Example: Let B_{n} be the Bernoulli numbers defined through

$$
f(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

with $x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0$.
We want to prove the identity

$$
\left(\sum_{n=0}^{\infty}\left(1-2^{1-n}\right) \frac{B_{n}}{n!} x^{n}\right)^{2}=\sum_{n=0}^{\infty} \frac{(1-n)}{n!} B_{n} x^{n}
$$

using closure properties.

Example: Let B_{n} be the Bernoulli numbers defined through

$$
f(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

with $x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0$.
We want to prove the identity

$$
(f(x)-2 f(x / 2))^{2}=f(x)-x f^{\prime}(x)
$$

using closure properties.

Example: Let B_{n} be the Bernoulli numbers defined through

$$
f(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

with $x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0$.
We want to prove the identity

$$
(f(x)-2 f(x / 2))^{2}-f(x)+x f^{\prime}(x)=0
$$

using closure properties.

Example: Let B_{n} be the Bernoulli numbers defined through

$$
f(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

with $x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0$.
We want to prove the identity

$$
h(x):=(f(x)-2 f(x / 2))^{2}-f(x)+x f^{\prime}(x)=0
$$

using closure properties.

Example: Let B_{n} be the Bernoulli numbers defined through

$$
f(x)=\sum_{n=0}^{\infty} \frac{B_{n}}{n!} x^{n}
$$

with $x f^{\prime}(x)-(1-x) f(x)+f(x)^{2}=0$.
We want to prove the identity

$$
h(x):=(f(x)-2 f(x / 2))^{2}-f(x)+x f^{\prime}(x)=0
$$

using closure properties.
Compute an ADE for $h(x)$ and check that its unique power series solution starting like $0+0 x+0 x^{2}+\cdots$ is the zero series.

$$
\begin{aligned}
& 12 x^{4} h(x)^{2} h^{\prime \prime}(x)^{2}-12 x^{2} h(x)^{4} h^{\prime \prime}(x)+\left(12 x^{4}-16 x^{2}\right) h(x)^{3} h^{\prime \prime}(x) \\
& +32 x^{4} h^{\prime}(x)^{4}+28 x^{3} h(x)^{3} h^{\prime}(x)-96 x^{3} h(x) h^{\prime}(x)^{3} \\
& +16 x^{2} h(x)^{3} h^{\prime}(x)^{2}+\left(80 x^{2}-19 x^{4}\right) h(x)^{2} h^{\prime}(x)^{2} \\
& -16 x h(x)^{4} h^{\prime}(x)-40 x^{4} h(x) h^{\prime}(x)^{2} h^{\prime \prime}(x)+64 x^{3} h(x)^{2} h^{\prime}(x) h^{\prime \prime}(x) \\
& -\left(6 x^{2}+8\right) h(x)^{5}+\left(3 x^{4}-4 x^{2}-16\right) h(x)^{4}+3 h(x)^{6}=0 .
\end{aligned}
$$

Lesson 9: We are not limited to D-finite functions

Exercises.

- Find a linear recurrence equation for $\binom{2 n}{n}+2^{n}-\sum_{k=1}^{n} \frac{1}{1+k^{2}}$, and a differential equation for its generating function.
- How do we need to define σ and δ in order to obtain an Ore algebra where ∂ acts like $\partial \cdot f(x)=f(x+1)-f(x)$?
- Show that when $f(x)$ is differentially algebraic, then so are $1 / f(x), \sqrt{f(x)}, \exp (f(x))$, and $\log (f(x))$.

Lesson 1: Fast algorithms are really fast
Lesson 2: Organize your computations well
Lesson 3: Sometimes it's faster to take a detour
Lesson 4: Gröbner bases can not only solve nonlinear systems
Lesson 5: Computing a Gröbner basis is not hopeless
Lesson 6: Gröbner bases are useful
Lesson 7: Guessing is easy, but proving is not necessarily harder
Lesson 8: We are not limited to one variable and shift or derivation
Lesson 9: We are not limited to D-finite functions

