Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

An overview of difference Galois theory

Charlotte Hardouin

BIRS, 17-22 september 2017

イロト イヨト イヨト イヨト

臣

Some transcendence results for special functions

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and

Galois correspondance

Some applications

Picard Vession pseudofields :

Proposition

The function $\Gamma(x)$ satisfying $\Gamma(x + 1) = x\Gamma(x)$ is transcendental over $C_1(x)$ where C_1 is the field of 1-periodic meromorphic functions over \mathbb{C} .

heorem

Let $b_1, \ldots, b_r \in \mathbb{C}(x)$ and f_1, \ldots, f_r meromorphic functions over \mathbb{C} solutions of

$$f_i(x+1) = f_i(x) + b_i(x)$$
 for all $i = 1, ..., r$

The f_i 's are algebraically dependent over $C_1(x)$ if and only if there exist $\gamma_1, \ldots, \gamma_r \in \mathbb{C}$ not all zero and $g \in \mathbb{C}(x)$ such that

 $\gamma_1 b_1(x) + \cdots + \gamma_r b_r(x) = g(x+1) - g(x).$

< D > < B > < E > < E >

Some transcendence results for special functions

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples

Galois correspondance

Some applications

Picard Vessiot pseudofields :

Proposition

The function $\Gamma(x)$ satisfying $\Gamma(x + 1) = x\Gamma(x)$ is transcendental over $C_1(x)$ where C_1 is the field of 1-periodic meromorphic functions over \mathbb{C} .

Theorem

Let $b_1, \ldots, b_r \in \mathbb{C}(x)$ and f_1, \ldots, f_r meromorphic functions over \mathbb{C} solutions of

$$f_i(x+1) = f_i(x) + b_i(x)$$
 for all $i = 1, ..., r$

The f_i 's are algebraically dependent over $C_1(x)$ if and only if there exist $\gamma_1, \ldots, \gamma_r \in \mathbb{C}$ not all zero and $g \in \mathbb{C}(x)$ such that

$$\gamma_1 b_1(x) + \cdots + \gamma_r b_r(x) = g(x+1) - g(x).$$

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessio Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem (Roques 2007)

For $q \in \mathbb{C}$ with |q| > 1. Let $y_1(x), y_2(x)$ two linearly independent solutions of

$$y(q^{2}x) - \frac{2ax - 2}{a^{2}x - 1}y(qx) - \frac{x - 1}{a^{2}x - q^{2}x}y(x) = 0$$

with $a \notin q^{\mathbb{Z}}$ and $a^2 \in q^{\mathbb{Z}}$. Then, $y_1(x), y_2(x), y_1(qx)$ are algebraically independent.

(日) (四) (三) (三) (三)

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem (Roques 2007)

For $q \in \mathbb{C}$ with |q| > 1. Let $y_1(x), y_2(x)$ two linearly independent solutions of

$$y(q^{2}x) - \frac{2ax - 2}{a^{2}x - 1}y(qx) - \frac{x - 1}{a^{2}x - q^{2}x}y(x) = 0$$

with $a \notin q^{\mathbb{Z}}$ and $a^2 \in q^{\mathbb{Z}}$. Then, $y_1(x), y_2(x), y_1(qx)$ are algebraically independent.

(日) (四) (三) (三) (三)

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

These results come from a Galois theory for linear discrete equations and from the comprehension of the associated linear algebraic groups

・ロト ・日ト ・ヨト ・ヨト

臣

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : These results come from a Galois theory for linear discrete equations and from the comprehension of the associated linear algebraic groups

イロン イヨン イヨン イヨン

臣

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Suppose to the contrary that $\Gamma(x)$ is algebraic.

Let

 $\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0, \qquad (1.1)$ minimal relation with $a_{n}(x) \in \mathbb{C}(x)$ and $a_{n}(x) \neq 0$

be a minimal relation with $a_i(x) \in \mathbb{C}(x)$ and $a_0(x) \neq 0$ Change x into x + 1 in (1.1) to find

 $\Gamma(x+1)^n + a_{n-1}(x+1)\Gamma(x+1)^{n-1} + \ldots + a_0(x+1) = 0.$ (1.2)

Use $\Gamma(x + 1) = x\Gamma(x)$ in (1.2) and eliminate $\Gamma(x)^n$ between (1.1) and (1.2), we find

 $x^{n-1}(a_{n-1}(x+1)-xa_{n-1}(x))\Gamma(x)^{n-1}\ldots+(a_0(x+1)-x^na_0(x))=0.$

By minimality, we must have $a_0(x + 1) = x^n a_0(x)$ with $a_0(x) \in \mathbb{C}(x)^*$. Absurd !

イロン 不同 とくほど 不同 とう

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Suppose to the contrary that $\Gamma(x)$ is algebraic.

Let

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0, \qquad (1.1)$$

be a minimal relation with $a_i(x) \in \mathbb{C}(x)$ and $a_0(x) \neq 0$. Change x into x + 1 in (1.1) to find

 $\Gamma(x+1)^n + a_{n-1}(x+1)\Gamma(x+1)^{n-1} + \ldots + a_0(x+1) = 0.$ (1.2)

Jse $\Gamma(x + 1) = x\Gamma(x)$ in (1.2) and eliminate $\Gamma(x)^n$ between 1.1) and (1.2), we find

 $\kappa^{n-1}(a_{n-1}(x+1)-xa_{n-1}(x))\Gamma(x)^{n-1}\ldots+(a_0(x+1)-x^na_0(x))=0.$

By minimality, we must have $a_0(x+1) = x^n a_0(x)$ with $a_0(x) \in \mathbb{C}(x)^*$. Absurd !

イロン 不同 とうほう 不同 とう

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Suppose to the contrary that $\Gamma(x)$ is algebraic. Let

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0, \qquad (1.1)$$

be a minimal relation with $a_i(x) \in \mathbb{C}(x)$ and $a_0(x) \neq 0$. Change x into x + 1 in (1.1) to find

 $\Gamma(x+1)^n + a_{n-1}(x+1)\Gamma(x+1)^{n-1} + \ldots + a_0(x+1) = 0.$ (1.2)

Use $\Gamma(x + 1) = x\Gamma(x)$ in (1.2) and eliminate $\Gamma(x)^n$ between (1.1) and (1.2), we find

 $x^{n-1}(a_{n-1}(x+1)-xa_{n-1}(x))\Gamma(x)^{n-1}\ldots+(a_0(x+1)-x^na_0(x))=0.$

By minimality, we must have $a_0(x + 1) = x^n a_0(x)$ with $a_0(x) \in \mathbb{C}(x)^*$. Absurd !

イロン 不良 とくほどう

Э

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Suppose to the contrary that $\Gamma(x)$ is algebraic. Let

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0, \qquad (1.1)$$

be a minimal relation with $a_i(x) \in \mathbb{C}(x)$ and $a_0(x) \neq 0$. Change x into x + 1 in (1.1) to find

 $\Gamma(x+1)^{n} + a_{n-1}(x+1)\Gamma(x+1)^{n-1} + \ldots + a_0(x+1) = 0.$ (1.2)

Use $\Gamma(x + 1) = x\Gamma(x)$ in (1.2) and eliminate $\Gamma(x)^n$ between (1.1) and (1.2), we find

 $x^{n-1}(a_{n-1}(x+1)-xa_{n-1}(x))\Gamma(x)^{n-1}\ldots+(a_0(x+1)-x^na_0(x))=0.$

By minimality, we must have $a_0(x+1) = x^n a_0(x)$ with $a_0(x) \in \mathbb{C}(x)^*$. Absurd !

(日) (四) (三) (三) (三)

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Suppose to the contrary that $\Gamma(x)$ is algebraic. Let

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0, \qquad (1.1)$$

be a minimal relation with $a_i(x) \in \mathbb{C}(x)$ and $a_0(x) \neq 0$. Change x into x + 1 in (1.1) to find

 $x^{n}\Gamma(x)^{n} + a_{n-1}(x+1)x^{n-1}\Gamma(x)^{n-1} + \ldots + a_{0}(x+1) = 0.$ (1.2)

Use $\Gamma(x + 1) = x\Gamma(x)$ in (1.2) and eliminate $\Gamma(x)^n$ between (1.1) and (1.2), we find

 $\kappa^{n-1}(a_{n-1}(x+1)-xa_{n-1}(x))\Gamma(x)^{n-1}\ldots+(a_0(x+1)-x^na_0(x))=0.$

By minimality, we must have $a_0(x+1) = x^n a_0(x)$ with $a_0(x) \in \mathbb{C}(x)^*$. Absurd !

(日) (四) (三) (三) (三)

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Suppose to the contrary that $\Gamma(x)$ is algebraic. Let

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0, \qquad (1.1)$$

be a minimal relation with $a_i(x) \in \mathbb{C}(x)$ and $a_0(x) \neq 0$. Change x into x + 1 in (1.1) to find

$$x^{n}\Gamma(x)^{n} + a_{n-1}(x+1)x^{n-1}\Gamma(x)^{n-1} + \ldots + a_{0}(x+1) = 0.$$
 (1.2)

Use $\Gamma(x + 1) = x\Gamma(x)$ in (1.2) and eliminate $\Gamma(x)^n$ between (1.1) and (1.2), we find

$$x^{n-1}(a_{n-1}(x+1)-xa_{n-1}(x))\Gamma(x)^{n-1}\ldots+(a_0(x+1)-x^na_0(x))=0.$$

By minimality, we must have $a_0(x + 1) = x^n a_0(x)$ with $a_0(x) \in \mathbb{C}(x)^*$. Absurd !

A D D A D D A D D A D D A

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : Suppose to the contrary that $\Gamma(x)$ is algebraic. Let

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0, \qquad (1.1)$$

be a minimal relation with $a_i(x) \in \mathbb{C}(x)$ and $a_0(x) \neq 0$. Change x into x + 1 in (1.1) to find

$$x^{n}\Gamma(x)^{n} + a_{n-1}(x+1)x^{n-1}\Gamma(x)^{n-1} + \ldots + a_{0}(x+1) = 0.$$
 (1.2)

Use $\Gamma(x + 1) = x\Gamma(x)$ in (1.2) and eliminate $\Gamma(x)^n$ between (1.1) and (1.2), we find

$$x^{n-1}(a_{n-1}(x+1)-xa_{n-1}(x))\Gamma(x)^{n-1}\ldots+(a_0(x+1)-x^na_0(x))=0.$$

By minimality, we must have $a_0(x+1) = x^n a_0(x)$ with $a_0(x) \in \mathbb{C}(x)^*$. Absurd !

イロト イポト イヨト イヨト

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Suppose to the contrary that $\Gamma(x)$ is algebraic. Let

$$\Gamma(x)^{n} + a_{n-1}(x)\Gamma(x)^{n-1} + \ldots + a_{0}(x) = 0, \qquad (1.1)$$

be a minimal relation with $a_i(x) \in \mathbb{C}(x)$ and $a_0(x) \neq 0$. Change x into x + 1 in (1.1) to find

$$x^{n}\Gamma(x)^{n} + a_{n-1}(x+1)x^{n-1}\Gamma(x)^{n-1} + \ldots + a_{0}(x+1) = 0.$$
 (1.2)

Use $\Gamma(x + 1) = x\Gamma(x)$ in (1.2) and eliminate $\Gamma(x)^n$ between (1.1) and (1.2), we find

$$x^{n-1}(a_{n-1}(x+1)-xa_{n-1}(x))\Gamma(x)^{n-1}\ldots+(a_0(x+1)-x^na_0(x))=0.$$

By minimality, we must have $a_0(x + 1) = x^n a_0(x)$ with $a_0(x) \in \mathbb{C}(x)^*$. Absurd !

イロト イポト イヨト イヨト

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields :

Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$.

These fields are closed under $\sigma(f(x)) = f(x+1)$ and

 $\sigma(\Gamma) = x\Gamma$

$$K_{\Gamma}^{\sigma} := \{ f \in K_{\Gamma} | \sigma(f) = f \} = C_1 = K^{\sigma}$$

Consider

 $\mathsf{Gal}(K_{\Gamma}|K) = \{\tau \in \mathsf{Aut}(K_{\Gamma}) \ \tau|_{K} = id_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

Let $\tau \in \operatorname{Gal}(K_{\Gamma}|K)$. Then

 $\sigma\left(\tau(\Gamma(x))\right) = \tau\left(\sigma(\Gamma(x))\right) = \tau\left(x\Gamma(x)\right) = x\tau(\Gamma(x)).$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoret proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields : Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

 $\sigma(\Gamma) = x\Gamma$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(K_{\mathsf{\Gamma}}|K) = \{\tau \in \mathsf{Aut}(K_{\mathsf{\Gamma}}) \ \tau|_{K} = id_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

Let $\tau \in \operatorname{Gal}(K_{\Gamma}|K)$. Then

 $\sigma\left(\tau(\Gamma(x))\right) = \tau\left(\sigma(\Gamma(x))\right) = \tau\left(x\Gamma(x)\right) = x\tau(\Gamma(x)).$

・ロト ・回ト ・ヨト ・ヨト … ヨ

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields : Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

 $\sigma(\Gamma) = x\Gamma$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(K_{\Gamma}|K) = \{\tau \in \mathsf{Aut}(K_{\Gamma}) \ \tau|_{K} = id_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

Let $au \in \mathsf{Gal}(K_{\Gamma}|K)$. Then

 $\sigma(\tau(\Gamma(x))) = \tau(\sigma(\Gamma(x))) = \tau(x\Gamma(x)) = x\tau(\Gamma(x)).$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group

examples Galois correspondance

Some applications

Picard Vession pseudofields : Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

$$\sigma(\Gamma) = x\Gamma$$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(K_{\Gamma}|K) = \{\tau \in \mathsf{Aut}(K_{\Gamma}) \ \tau|_{K} = id_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

Let $au \in \operatorname{Gal}(K_{\mathsf{F}}|K)$. Then

 $\sigma(\tau(\Gamma(x))) = \tau(\sigma(\Gamma(x))) = \tau(x\Gamma(x)) = x\tau(\Gamma(x)).$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group

Galois correspondance

Some applications

Picard Vessiot pseudofields :

Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

$$\sigma(\Gamma) = x\Gamma$$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(K_{\Gamma}|K) = \{\tau \in \mathsf{Aut}(K_{\Gamma}) \ \tau|_{K} = id_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

• Let $\tau \in Gal(K_{\Gamma}|K)$. Then

 $\sigma(\tau(\Gamma(x))) = \tau(\sigma(\Gamma(x))) = \tau(x\Gamma(x)) = x\tau(\Gamma(x)).$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples

Galois correspondance

Some applications

Picard Vessiot pseudofields :

Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

$$\sigma(\Gamma) = x\Gamma$$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(K_{\Gamma}|K) = \{\tau \in \mathsf{Aut}(K_{\Gamma}) \ \tau|_{K} = \mathit{id}_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

• Let $\tau \in Gal(K_{\Gamma}|K)$. Then

 $\sigma(\tau(\Gamma(x))) = \tau(\sigma(\Gamma(x))) = \tau(x\Gamma(x)) = x\tau(\Gamma(x)).$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples

Galois correspondance

Some applications

Picard Vessiot pseudofields :

Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

 $\sigma(\Gamma) = x\Gamma$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(\mathsf{K}_{\Gamma}|\mathsf{K}) = \{\tau \in \mathsf{Aut}(\mathsf{K}_{\Gamma}) \ \tau|_{\mathsf{K}} = id_{\mathsf{K}} \ \tau \circ \sigma = \sigma \circ \tau \}.$

• Let $\tau \in \text{Gal}(K_{\Gamma}|K)$. Then

 $\sigma(\tau(\Gamma(x))) = \tau(\sigma(\Gamma(x))) = \tau(x\Gamma(x)) = x\tau(\Gamma(x)).$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and

Galois correspondance

Some applications

Picard Vessiot pseudofields :

Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

$$\sigma(\Gamma) = x\Gamma$$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(K_{\Gamma}|K) = \{\tau \in \mathsf{Aut}(K_{\Gamma}) \ \tau|_{K} = id_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

• Let $\tau \in \text{Gal}(K_{\Gamma}|K)$. Then

 $\sigma(\tau(\Gamma(x))) = \tau(\sigma(\Gamma(x))) = \tau(x\Gamma(x)) = x\tau(\Gamma(x)).$

Thus, there exists $c_{\tau} \in C_1^*$ such that $\tau(\Gamma) = c_{\tau}\Gamma$.

Э

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

correspondanc

Some applications

Picard Vessiot pseudofields : Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

 $\sigma(\Gamma) = x\Gamma$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(K_{\Gamma}|K) = \{ \tau \in \mathsf{Aut}(K_{\Gamma}) \ \tau|_{K} = id_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

• Let $\tau \in Gal(K_{\Gamma}|K)$. Then

 $\sigma\left(\tau(\Gamma)\right) = x\tau(\Gamma)$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

correspondanc

Some applications

Picard Vessiot pseudofields : Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

 $\sigma(\Gamma) = x\Gamma$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(K_{\Gamma}|K) = \{ \tau \in \mathsf{Aut}(K_{\Gamma}) \ \tau|_{K} = id_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

• Let $\tau \in Gal(K_{\Gamma}|K)$. Then

 $\sigma\left(\tau(\Gamma)\right) = x\tau(\Gamma)$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

correspondanc

Some applications

Picard Vessiot pseudofields : Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

 $\sigma(\Gamma) = x\Gamma$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(K_{\Gamma}|K) = \{ \tau \in \mathsf{Aut}(K_{\Gamma}) \ \tau|_{K} = id_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

• Let $\tau \in Gal(K_{\Gamma}|K)$. Then

 $\sigma\left(\tau(\Gamma)\right) = x\tau(\Gamma)$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

correspondanc

Some applications

Picard Vessiot pseudofields : Set $K = C_1(x)$ and $K_{\Gamma} = C_1(x)(\Gamma) \subset \operatorname{Mer}(\mathbb{C})$. These fields are closed under $\sigma(f(x)) = f(x+1)$ and

 $\sigma(\Gamma) = x\Gamma$

•
$$K_{\Gamma}^{\sigma} := \{f \in K_{\Gamma} | \sigma(f) = f\} = C_1 = K^{\sigma}$$

• Consider

 $\mathsf{Gal}(K_{\Gamma}|K) = \{ \tau \in \mathsf{Aut}(K_{\Gamma}) \ \tau|_{K} = id_{K} \ \tau \circ \sigma = \sigma \circ \tau \}.$

• Let $\tau \in Gal(K_{\Gamma}|K)$. Then

 $\sigma\left(\tau(\Gamma)\right) = x\tau(\Gamma)$

Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic

Algebraic framework

proof

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

First, some Galoisian facts

• $Gal(K_{\Gamma}|K) = \{c_{\tau}\}$ is an algebraic subgroup of $(C_1, *)$

 $f \in K_{\Gamma} \text{ fixed by } \mathsf{Gal}(K_{\Gamma}|K) \Leftrightarrow f \in K$

• $\operatorname{trdeg}(K_{\Gamma}|K) = \operatorname{dim}(\operatorname{Gal}(K_{\Gamma}|K)|C_1)$

イロン 不同 とうほう 不同 とう

크

Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic

Algebraic framework

proof

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields :

First, some Galoisian facts

- $Gal(K_{\Gamma}|K) = \{c_{\tau}\}$ is an algebraic subgroup of $(C_1, *)$
- $f \in K_{\Gamma}$ fixed by $\operatorname{Gal}(K_{\Gamma}|K) \Leftrightarrow f \in K$

• $\operatorname{trdeg}(K_{\Gamma}|K) = \operatorname{dim}(\operatorname{Gal}(K_{\Gamma}|K)|C_1)$

イロン 不同 とうほう 不同 とう

臣

Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic

proof Algebraic

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

correspondance

Some applications

Picard Vession pseudofields :

First, some Galoisian facts

- $Gal(K_{\Gamma}|K) = \{c_{\tau}\}$ is an algebraic subgroup of $(C_1, *)$
- $f \in K_{\Gamma}$ fixed by $\operatorname{Gal}(K_{\Gamma}|K) \Leftrightarrow f \in K$
- $\operatorname{trdeg}(K_{\Gamma}|K) = \operatorname{dim}(\operatorname{Gal}(K_{\Gamma}|K)|C_1)$

A D D A D D A D D A D D A

Э

> Charlotte Hardouin

Motivations

Elementary proof of transcendence

proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : $\Gamma(x)$ algebraic over $C_1(x) \Leftrightarrow$ $\operatorname{trdeg}(K_{\Gamma}|K) = 0 = \dim(\operatorname{Gal}(K_{\Gamma}|K)|C_1)).$

 $\blacksquare \exists n | \operatorname{Gal}(K_{\Gamma}|K) = \{c_{\tau}\} \subset \mu_n, \text{ i.e.}$

 $c_{\tau}^n = 1$

$\tau(\Gamma^n) = (\tau(\Gamma))^n = (c_{\tau}\Gamma)^n = \Gamma^n \text{ for all } \tau \in \text{Gal}(K_{\Gamma}|K)$ $\Gamma^n \in C_1(x)$

There exists $g(x) = \Gamma(x)^n \in C_1(x)$ such that $g(x+1) = x^n g(x)$

イロト イボト イヨト

크

> Charlotte Hardouin

Motivations

Elementary proof of transcendence

proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :
$$\begin{split} &\Gamma(x) \text{ algebraic over } C_1(x) \Leftrightarrow \\ &\operatorname{trdeg}(K_{\Gamma}|K) = 0 = \dim(\operatorname{Gal}(K_{\Gamma}|K)|C_1)). \\ &\bullet \exists n |\operatorname{Gal}(K_{\Gamma}|K) = \{c_{\tau}\} \subset \mu_n, \text{ i.e.} \end{split}$$

 $c_{\tau}^n = 1$

 $\tau(\Gamma^n) = (\tau(\Gamma))^n = (c_{\tau}\Gamma)^n = \Gamma^n \text{ for all } \tau \in \text{Gal}(K_{\Gamma}|K)$ $\Gamma^n \in C_1(x)$

There exists $g(x) = \Gamma(x)^n \in C_1(x)$ such that $g(x+1) = x^n g(x)$

イロト イボト イヨト

크

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic

proof

Algebraic framework

Difference algebra Difference equation: and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

$$\begin{split} &\Gamma(x) \text{ algebraic over } C_1(x) \Leftrightarrow \\ &\operatorname{trdeg}(K_{\Gamma}|K) = 0 = \dim(\operatorname{Gal}(K_{\Gamma}|K)|C_1)). \\ &\bullet \exists n |\operatorname{Gal}(K_{\Gamma}|K) = \{c_{\tau}\} \subset \mu_n, \text{ i.e.} \end{split}$$

 $c_{\tau}^n = 1$

• $\tau(\Gamma^n) = (\tau(\Gamma))^n = (c_\tau \Gamma)^n = \Gamma^n$ for all $\tau \in \operatorname{Gal}(K_\Gamma | K)$

There exists $g(x) = \Gamma(x)^n \in C_1(x)$ such that

イロン 不良 とくほどう

3

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic

proof

Algebraic framework

Difference algebra Difference equation: and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

$$\begin{split} &\Gamma(x) \text{ algebraic over } C_1(x) \Leftrightarrow \\ &\operatorname{trdeg}(K_{\Gamma}|K) = 0 = \dim(\operatorname{Gal}(K_{\Gamma}|K)|C_1)). \\ &\bullet \exists n |\operatorname{Gal}(K_{\Gamma}|K) = \{c_{\tau}\} \subset \mu_n, \text{ i.e.} \end{split}$$

 $c_{\tau}^n = 1$

• $\tau(\Gamma^n) = (\tau(\Gamma))^n = (c_{\tau}\Gamma)^n = \Gamma^n$ for all $\tau \in Gal(K_{\Gamma}|K)$ $\Gamma^n \in C_1(x)$

There exists $g(x) = \Gamma(x)^n \in C_1(x)$ such that

(日) (四) (三) (三) (三)

> Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic

proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples

Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$\begin{aligned} \bar{f}(x) &= \text{lgebraic over } C_1(x) \Leftrightarrow \\ &\text{srdeg}(K_{\Gamma}|K) = 0 = \text{dim}(\text{Gal}(K_{\Gamma}|K)|C_1)). \\ & \quad \exists n | \text{Gal}(K_{\Gamma}|K) = \{c_{\tau}\} \subset \mu_n, \text{ i.e.} \end{aligned}$$

 $c_{\tau}^n = 1$

• $\tau(\Gamma^n) = (\tau(\Gamma))^n = (c_{\tau}\Gamma)^n = \Gamma^n$ for all $\tau \in Gal(K_{\Gamma}|K)$ $\Gamma^n \in C_1(x)$

There exists $g(x) = \Gamma(x)^n \in C_1(x)$ such that $g(x+1) = x^n g(x)$

イロト イボト イヨト

크

Conclusion of the proof

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence

Galois theoret proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields :

Galois theory for difference fields

- Application to transcendence and differential transcendence
- General framework : Galois theory for difference rings

イロト イヨト イヨト イヨト
Conclusion of the proof

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence

Galois theoret proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

correspondance

Some applications

Picard Vession pseudofields :

- Galois theory for difference fields
- Application to transcendence and differential transcendence

General framework : Galois theory for difference rings

Conclusion of the proof

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence

Galois theoret proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples

Galois correspondance

Some applications

Picard Vession pseudofields :

- Galois theory for difference fields
- Application to transcendence and differential transcendence
- General framework : Galois theory for difference rings

Conclusion of the proof

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence

Galois theoret proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples

Galois correspondance

Some applications

Picard Vession pseudofields :

- Galois theory for difference fields
- Application to transcendence and differential transcendence
- General framework : Galois theory for difference rings

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : A difference field (K, σ) is a field K together with $\sigma : K \to K$ an automorphism.

xamples (Endomorphism of the complex variable)

 $K = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1);$

• $K = \mathbb{C}(x), \ \sigma(f(x)) = f(qx) \text{ for } |q| > 1$

 $K = \mathbb{C}(x), \sigma(f(x)) = f(x^p)$ with $p \in \mathbb{N}$; This is not surjective! Replace K by $\hat{K} = \bigcup_{n=0}^{\infty} \mathbb{C}(x^{1/p^n})$ and set $\sigma(x^{1/p^n}) = x^{1/p^{n-1}}$.

Algebraic notions and compatibility with σ : σ -ring, σ -morphism, σ -subfield, σ -field extension etc

イロン 不同 とくほと 不良 とう

æ

> Charlotte Hardouin

Motivations

Elementary proof transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : A difference field (K, σ) is a field K together with $\sigma : K \to K$ an automorphism.

Examples (Endomorphism of the complex variable)

• $K = \mathbb{C}(x), \sigma(f(x)) = f(x+1);$

• $K = \mathbb{C}(x), \ \sigma(f(x)) = f(qx) \text{ for } |q| > 1$

 $K = \mathbb{C}(x), \ \sigma(f(x)) = f(x^p) \text{ with } p \in \mathbb{N} \text{ ; This is not}$ surjective ! Replace K by $\hat{K} = \bigcup_{n=0}^{\infty} \mathbb{C}(x^{1/p^n}) \text{ and set}$ $\sigma(x^{1/p^n}) = x^{1/p^{n-1}}.$

Algebraic notions and compatibility with σ : σ -ring, σ -morphism, σ -subfield, σ -field extension etc

イロン 不同 とくほと 不良 とう

æ

> Charlotte Hardouin

Motivations

Elementary proof transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : A difference field (K, σ) is a field K together with $\sigma : K \to K$ an automorphism.

Examples (Endomorphism of the complex variable)

•
$$K = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1);$$

•
$$K = \mathbb{C}(x)$$
, $\sigma(f(x)) = f(qx)$ for $|q| > 1$

■ $K = \mathbb{C}(x)$, $\sigma(f(x)) = f(x^p)$ with $p \in \mathbb{N}$; This is not surjective ! Replace K by $\hat{K} = \bigcup_{n=0}^{\infty} \mathbb{C}(x^{1/p^n})$ and set $\sigma(x^{1/p^n}) = x^{1/p^{n-1}}$.

Algebraic notions and compatibility with σ : σ -ring, σ -morphism, σ -subfield, σ -field extension etc

イロン 不同 とくほと 不良 とう

臣

> Charlotte Hardouin

Motivations

Elementary proof transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation

Picard-Vession Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : A difference field (K, σ) is a field K together with $\sigma : K \to K$ an automorphism.

Examples (Endomorphism of the complex variable)

•
$$\mathcal{K} = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1);$$

•
$$K = \mathbb{C}(x)$$
, $\sigma(f(x)) = f(qx)$ for $|q| > 1$

 K = C(x), σ(f(x)) = f(x^p) with p ∈ N; This is not surjective! Replace K by K̂ = ∪_{n=0}[∞]C(x^{1/pⁿ}) and set

Algebraic notions and compatibility with σ : σ -ring, σ -morphism, σ -subfield, σ -field extension etc

イロン 不同 とくほと 不良 とう

臣

> Charlotte Hardouin

Motivations

Elementary proof transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation

Picard-Vession Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : A difference field (K, σ) is a field K together with $\sigma : K \to K$ an automorphism.

Examples (Endomorphism of the complex variable)

•
$$\mathcal{K} = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1);$$

•
$$K = \mathbb{C}(x)$$
, $\sigma(f(x)) = f(qx)$ for $|q| > 1$

• $K = \mathbb{C}(x), \sigma(f(x)) = f(x^p)$ with $p \in \mathbb{N}$; This is not surjective! Replace K by $\hat{K} = \bigcup_{n=0}^{\infty} \mathbb{C}(x^{1/p^n})$ and set $\sigma(x^{1/p^n}) = x^{1/p^{n-1}}$.

Algebraic notions and compatibility with σ : σ -ring, σ -morphism, σ -subfield, σ -field extension etc

イロン 不同 とくほと 不良 とう

æ

> Charlotte Hardouin

Motivations

Elementary proof transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation

Picard-Vession Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : A difference field (K, σ) is a field K together with $\sigma : K \to K$ an automorphism.

Examples (Endomorphism of the complex variable)

•
$$\mathcal{K} = \mathbb{C}(x), \ \sigma(f(x)) = f(x+1);$$

•
$$K = \mathbb{C}(x)$$
, $\sigma(f(x)) = f(qx)$ for $|q| > 1$

• $K = \mathbb{C}(x), \sigma(f(x)) = f(x^p)$ with $p \in \mathbb{N}$; This is not surjective! Replace K by $\hat{K} = \bigcup_{n=0}^{\infty} \mathbb{C}(x^{1/p^n})$ and set $\sigma(x^{1/p^n}) = x^{1/p^{n-1}}$.

Algebraic notions and compatibility with σ : σ -ring, σ -morphism, σ -subfield, σ -field extension etc

イロト イヨト イヨト イヨト

3

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Examples (Automorphisms of an elliptic curve)

Let (E, ⊕) ⊂ P²C be an elliptic curve and let Ω ∈ E.
 Let C_E be the field of elliptic functions.
 Then, (C_E, σ : C_E → C_E, f(P) ↦ f(P ⊕ Ω)) is σ-field.

Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$ a lattice such that $\mathbb{C}/\Lambda \simeq E$ The application $\mathbb{C} \to E, \omega \mapsto (x(\omega), y(\omega))$ identifies

• $C_E = \{(\omega_1, \omega_2) \text{ -periodic functions }\} \subset \mathcal{M}er(\mathbb{C})$

• the action of σ to $\sigma(f(\omega)) = f(\omega + \omega_3)$ with $\omega_3 \in \mathbb{C}$ such that $\Omega = (x(\omega_3), y(\omega_3))$.

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Examples (Automorphisms of an elliptic curve)

 Let (E, ⊕) ⊂ P²C be an elliptic curve and let Ω ∈ E. Let C_E be the field of elliptic functions. Then, (C_E, σ : C_E → C_E, f(P) → f(P ⊕ Ω)) is σ-field
 Let Λ = Zω₁ + Zω₂ ⊂ C a lattice such that C/Λ ≃ E.

The application $\mathbb{C} \to E, \omega \mapsto (x(\omega), y(\omega))$ identifies

• $C_E = \{(\omega_1, \omega_2) \text{ -periodic functions }\} \subset \mathcal{M}er(\mathbb{C})$

• the action of σ to $\sigma(f(\omega)) = f(\omega + \omega_3)$ with $\omega_3 \in \mathbb{C}$ such that $\Omega = (x(\omega_3), y(\omega_3))$.

イロン 不同 とくほど 不同 とう

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Examples (Automorphisms of an elliptic curve)

Let (E, ⊕) ⊂ P²C be an elliptic curve and let Ω ∈ E.
 Let C_E be the field of elliptic functions.
 Then, (C_E, σ : C_E → C_E, f(P) ↦ f(P ⊕ Ω)) is σ-field.

Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$ a lattice such that $\mathbb{C}/\Lambda \simeq E$. The application $\mathbb{C} \to E, \omega \mapsto (x(\omega), y(\omega))$ identifies

• $C_E = \{(\omega_1, \omega_2) \text{ -periodic functions }\} \subset \mathcal{M}er(\mathbb{C})$

the action of σ to σ(f(ω)) = f(ω + ω₃) with ω₃ ∈ C such that Ω = (x(ω₃), y(ω₃)).

イロン 不同 とくほど 不同 とう

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Examples (Automorphisms of an elliptic curve)

• Let $(E, \oplus) \subset \mathbb{P}^2 \mathbb{C}$ be an elliptic curve and let $\Omega \in E$. Let C_E be the field of elliptic functions. Then, $(C_E, \sigma : C_E \to C_E, f(P) \mapsto f(P \oplus \Omega))$ is σ -field.

• Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$ a lattice such that $\mathbb{C}/\Lambda \simeq E$. The application $\mathbb{C} \to E, \omega \mapsto (x(\omega), y(\omega))$ identifies

• $C_E = \{(\omega_1, \omega_2) \text{ -periodic functions }\} \subset \mathcal{M}er(\mathbb{C})$

• the action of σ to $\sigma(f(\omega)) = f(\omega + \omega_3)$ with $\omega_3 \in \mathbb{C}$ such that $\Omega = (x(\omega_3), y(\omega_3))$.

イロン 不同 とくほと 不良 とう

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Examples (Automorphisms of an elliptic curve)

Let (E, ⊕) ⊂ P²C be an elliptic curve and let Ω ∈ E.
 Let C_E be the field of elliptic functions.
 Then, (C_E, σ : C_E → C_E, f(P) ↦ f(P ⊕ Ω)) is σ-field.

• Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$ a lattice such that $\mathbb{C}/\Lambda \simeq E$. The application $\mathbb{C} \to E, \omega \mapsto (x(\omega), y(\omega))$ identifies

• $C_E = \{(\omega_1, \omega_2) \text{ -periodic functions }\} \subset \mathcal{M}er(\mathbb{C})$

• the action of σ to $\sigma(f(\omega)) = f(\omega + \omega_3)$ with $\omega_3 \in \mathbb{C}$ such that $\Omega = (x(\omega_3), y(\omega_3))$.

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Examples (Automorphisms of an elliptic curve)

Let (E, ⊕) ⊂ P²C be an elliptic curve and let Ω ∈ E.
 Let C_E be the field of elliptic functions.
 Then, (C_E, σ : C_E → C_E, f(P) ↦ f(P ⊕ Ω)) is σ-field.

- Let $\Lambda = \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2 \subset \mathbb{C}$ a lattice such that $\mathbb{C}/\Lambda \simeq E$. The application $\mathbb{C} \to E, \omega \mapsto (x(\omega), y(\omega))$ identifies
 - $C_E = \{(\omega_1, \omega_2) \text{ -periodic functions }\} \subset \mathcal{M}er(\mathbb{C})$
 - the action of σ to σ(f(ω)) = f(ω + ω₃) with ω₃ ∈ C such that Ω = (x(ω₃), y(ω₃)).

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Let (K, σ) be a difference field. The field of constants is $k = K^{\sigma} = \{a \in K | \sigma(a) = a\}.$

zxamples

K = C(x), σ(x) = x + 1. Then k = C;
K = Mer(C), σ(x) = x + 1. Then k = C₁;
K = C_E with σ(ω) = ω + ω₃ and for all n ∈ Z*, nω₃ ∉ Zω₁ + Zω₂. Then k = C.
K = Mer(C), σ(ω) = ω + ω₃. Then k is the field of ω₃-periodic functions.

イロン イヨン イヨン

æ

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra

and systems

Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : Let (K, σ) be a difference field. The field of constants is $k = K^{\sigma} = \{a \in K | \sigma(a) = a\}.$

Examples

•
$$K = \mathbb{C}(x)$$
, $\sigma(x) = x + 1$. Then $k = \mathbb{C}$;

•
$$K = \mathcal{M}er(\mathbb{C}), \ \sigma(x) = x + 1.$$
 Then $k = C_1$;

• $K = C_E$ with $\sigma(\omega) = \omega + \omega_3$ and for all $n \in \mathbb{Z}^*$, $n\omega_3 \notin \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. Then $k = \mathbb{C}$.

K = Mer(ℂ), σ(ω) = ω + ω₃. Then k is the field of ω₃-periodic functions.

イロン 不同 とくほと 不良 とう

臣

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra

Picard-Vessiot Field

Galois group Definitions and examples Galois correspondence

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a difference field. The field of constants is $k = K^{\sigma} = \{a \in K | \sigma(a) = a\}.$

Examples

•
$$K = \mathbb{C}(x)$$
, $\sigma(x) = x + 1$. Then $k = \mathbb{C}$;

•
$$K = \mathcal{M}er(\mathbb{C})$$
, $\sigma(x) = x + 1$. Then $k = C_1$;

- $K = C_E$ with $\sigma(\omega) = \omega + \omega_3$ and for all $n \in \mathbb{Z}^*$, $n\omega_3 \notin \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. Then $k = \mathbb{C}$.
- $K = Mer(\mathbb{C}), \sigma(\omega) = \omega + \omega_3$. Then k is the field of ω_3 -periodic functions.

イロン 不同 とくほど 不同 とう

æ

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra

Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a difference field. The field of constants is $k = K^{\sigma} = \{a \in K | \sigma(a) = a\}.$

Examples

•
$$K = \mathbb{C}(x), \sigma(x) = x + 1$$
. Then $k = \mathbb{C}$;

•
$$K = \mathcal{M}er(\mathbb{C}), \ \sigma(x) = x + 1.$$
 Then $k = C_1$;

- $K = C_E$ with $\sigma(\omega) = \omega + \omega_3$ and for all $n \in \mathbb{Z}^*$, $n\omega_3 \notin \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. Then $k = \mathbb{C}$.
- $K = Mer(\mathbb{C}), \sigma(\omega) = \omega + \omega_3$. Then k is the field of ω_3 -periodic functions.

イロン イヨン イヨン イヨン

크

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra

Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : Let (K, σ) be a difference field. The field of constants is $k = K^{\sigma} = \{a \in K | \sigma(a) = a\}.$

Examples

•
$$K = \mathbb{C}(x)$$
, $\sigma(x) = x + 1$. Then $k = \mathbb{C}$;

•
$$K = \mathcal{M}er(\mathbb{C}), \ \sigma(x) = x + 1.$$
 Then $k = C_1$;

- $K = C_E$ with $\sigma(\omega) = \omega + \omega_3$ and for all $n \in \mathbb{Z}^*$, $n\omega_3 \notin \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. Then $k = \mathbb{C}$.
- K = Mer(ℂ), σ(ω) = ω + ω₃. Then k is the field of ω₃-periodic functions.

イロン イヨン イヨン イヨン

Э

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra

Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : Let (K, σ) be a difference field. The field of constants is $k = K^{\sigma} = \{a \in K | \sigma(a) = a\}.$

Examples

•
$$K = \mathbb{C}(x)$$
, $\sigma(x) = x + 1$. Then $k = \mathbb{C}$;

•
$$K = \mathcal{M}er(\mathbb{C}), \ \sigma(x) = x + 1.$$
 Then $k = C_1$;

- $K = C_E$ with $\sigma(\omega) = \omega + \omega_3$ and for all $n \in \mathbb{Z}^*$, $n\omega_3 \notin \mathbb{Z}\omega_1 + \mathbb{Z}\omega_2$. Then $k = \mathbb{C}$.
- K = Mer(ℂ), σ(ω) = ω + ω₃. Then k is the field of ω₃-periodic functions.

イロン イヨン イヨン イヨン

Э

Difference equations

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field

Galois group

examples Galois correspondance

Some applications

Picard Vession pseudofields :

Let
$$(K, \sigma)$$
 be a σ -field and g a solution of
 $\sigma^n(y) + a_{n-1}\sigma^{n-1}(y) + \dots + a_0y = 0$ (\mathcal{L}),
with $a_0 \neq 0$, $a_i \in K$. Then, $Z := \begin{pmatrix} g \\ \sigma(g) \\ \vdots \\ \sigma^{n-1}(g) \end{pmatrix}$ is solution of
 $\sigma(Y) = A c Y$

with

Charlotte Hardouin

An overview of difference Galois theory

Difference equations

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra

Difference equations and systems

Picard-Vession Field extensions

Galois group Definitions and examples

Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let
$$(K, \sigma)$$
 be a σ -field and g a solution of
 $\sigma^n(y) + a_{n-1}\sigma^{n-1}(y) + \dots + a_0y = 0$ (\mathcal{L}),
with $a_0 \neq 0, a_i \in K$. Then, $Z := \begin{pmatrix} g \\ \sigma(g) \\ \vdots \\ \sigma^{n-1}(g) \end{pmatrix}$ is solution of
 $\sigma(Y) = A_{\mathcal{L}}Y$

with

$$A_{\mathcal{L}} = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ -\frac{a_0}{a_n} & -\frac{a_1}{a_n} & \cdots & \cdots & -\frac{a_{n-1}}{a_n} \end{pmatrix} \in \operatorname{GL}_n(\mathcal{K}). \quad (2.1)$$

Difference systems

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations

and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields :

Let (K, σ) be a σ -field. An equation $\sigma(Y) = AY$ with $A \in GL_n(K)$ is called difference system.

From now on, we will always consider σ -fields with non periodic element.

イロン イヨン イヨン イヨン

Difference systems

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields :

Let (K, σ) be a σ -field. An equation $\sigma(Y) = AY$ with $A \in GL_n(K)$ is called difference system.

From now on, we will always consider σ -fields with non periodic element.

Fundamental solution matrix

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Definition

Let (K, σ) be a σ -field and $A \in GL_n(K)$. Let L be a σ -field extension of K. An matrix $U \in GL_n(L)$ such that $\sigma(U) = AU$ is called fundamental solution matrix of $\sigma(Y) = AY$

Let $U_1, U_2 \in \operatorname{GL}_n(L)$ two fundamental solution matrices for $\sigma(Y) = AY$ then there exists $D \in \operatorname{GL}_n(L^{\sigma})$ such that

 $U_1=U_2\mathbf{D}.$

イロン 不同 とくほと 不良 とう

크

Fundamental solution matrix

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference equations and systems

Picard-Vessio Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Definition

Let (K, σ) be a σ -field and $A \in GL_n(K)$. Let L be a σ -field extension of K. An matrix $U \in GL_n(L)$ such that $\sigma(U) = AU$ is called fundamental solution matrix of $\sigma(Y) = AY$

Let $U_1, U_2 \in \operatorname{GL}_n(L)$ two fundamental solution matrices for $\sigma(Y) = AY$ then there exists $D \in \operatorname{GL}_n(L^{\sigma})$ such that

$$U_1 = U_2 \mathbf{D}.$$

Fundamental solution matrix

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference equations and systems

Picard-Vessio Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Definition

Let (K, σ) be a σ -field and $A \in GL_n(K)$. Let L be a σ -field extension of K. An matrix $U \in GL_n(L)$ such that $\sigma(U) = AU$ is called fundamental solution matrix of $\sigma(Y) = AY$

Let $U_1, U_2 \in \operatorname{GL}_n(L)$ two fundamental solution matrices for $\sigma(Y) = AY$ then there exists $D \in \operatorname{GL}_n(L^{\sigma})$ such that

$$U_1 = U_2 \mathbf{D}.$$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra

Difference equations and systems

Picard-Vessio Field extensions

Galois group

examples Galois correspondance

Some applications

Picard Vession pseudofields :

Consider the difference field extension $(\mathbb{C}(x), \sigma(f(x)) = f(x+1)) \subset (Mer(\mathbb{C}), \sigma(f(x)) = f(x+1)).$

Then $\Gamma \in \operatorname{Mer}(\mathbb{C})^*$ is a fundamental solution matrix for $\sigma(y) = xy$.

Let $\psi(x)$ be the digamma function $\frac{\Gamma'}{\Gamma}$. Then, $\sigma(\psi(x)) = \psi(x) + \frac{1}{x}$. This correspond to the difference system

$$\sigma(Y) = \begin{pmatrix} 1 & \frac{1}{x} \\ 0 & 1 \end{pmatrix} Y$$

with fundamental solution matrix $U = \begin{pmatrix} 1 & \psi(x) \\ 0 & 1 \end{pmatrix} \in Gl_2(\mathcal{M}er(\mathbb{C}))$

イロン 不同 とくほど 不同 とう

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra

Difference equations and systems

Picard-Vession Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Consider the difference field extension $(\mathbb{C}(x), \sigma(f(x)) = f(x+1)) \subset (Mer(\mathbb{C}), \sigma(f(x)) = f(x+1)).$

Then $\Gamma \in \operatorname{Mer}(\mathbb{C})^*$ is a fundamental solution matrix for $\sigma(y) = xy$.

■ Let $\psi(x)$ be the digamma function $\frac{\Gamma'}{\Gamma}$. Then, $\sigma(\psi(x)) = \psi(x) + \frac{1}{x}$. This correspond to the difference system

$$\sigma(Y) = \begin{pmatrix} 1 & \frac{1}{x} \\ 0 & 1 \end{pmatrix} Y$$

with fundamental solution matrix $U = \begin{pmatrix} 1 & \psi(x) \\ 0 & 1 \end{pmatrix} \in Gl_2(\mathcal{M}er(\mathbb{C}))$

イロン 不同 とくほど 不同 とう

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra

Difference equations and systems

Picard-Vession Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Consider the difference field extension $\left(\mathbb{C}(x), \sigma(f(x)) = f(x+1)\right) \subset \left(\mathcal{M}er(\mathbb{C}), \sigma(f(x)) = f(x+1)\right).$

• Then $\Gamma \in \operatorname{Mer}(\mathbb{C})^*$ is a fundamental solution matrix for $\sigma(y) = xy$.

• Let $\psi(x)$ be the digamma function $\frac{\Gamma'}{\Gamma}$. Then, $\sigma(\psi(x)) = \psi(x) + \frac{1}{x}$. This correspond to the difference system

$$\sigma(Y) = \begin{pmatrix} 1 & rac{1}{\chi} \\ 0 & 1 \end{pmatrix} Y$$

with fundamental solution matrix $U = \begin{pmatrix} 1 & \psi(x) \\ 0 & 1 \end{pmatrix} \in Gl_2(\mathcal{M}er(\mathbb{C}))$

イロン 不同 とうほう 不同 とう

Э

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra

Difference equations and systems

Picard-Vessio Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Consider the difference field extension $\left(\mathbb{C}(x), \sigma(f(x)) = f(x+1)\right) \subset \left(\mathcal{M}er(\mathbb{C}), \sigma(f(x)) = f(x+1)\right).$

- Then $\Gamma \in \operatorname{Mer}(\mathbb{C})^*$ is a fundamental solution matrix for $\sigma(y) = xy$.
- Let $\psi(x)$ be the digamma function $\frac{\Gamma'}{\Gamma}$. Then, $\sigma(\psi(x)) = \psi(x) + \frac{1}{x}$. This correspond to the difference system

$$\sigma(Y) = \begin{pmatrix} 1 & \frac{1}{x} \\ 0 & 1 \end{pmatrix} Y$$

with fundamental solution matrix $U = \begin{pmatrix} 1 & \psi(x) \\ 0 & 1 \end{pmatrix} \in \mathsf{Gl}_2(\mathcal{M}er(\mathbb{C}))$

イロン 不同 とうほう 不同 とう

3

More generally, the difference equations $\sigma(y_i) = y_i + \frac{(-1)^{i-1}}{\sqrt{i}}$ for An overview of difference $i = 1, \ldots, r$ are encoded by the difference system Galois theory Charlotte $\sigma(Y) = \begin{pmatrix} 1 & \frac{1}{x} & 0 & \dots & 0 \\ 0 & 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 & 0 \\ 0 & \dots & 0 & 1 & \frac{(-1)^{r-1}}{x^r} \\ 0 & 0 & 0 & 1 \end{pmatrix} Y$ Hardouin Difference equations and systems with $U = \begin{pmatrix} 1 & \psi(x) & 0 & \dots & 0 \\ 0 & 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & 0 \\ 0 & \dots & 0 & 1 & \frac{d^{r}}{dx^{r}}(\psi(x)) \\ 0 & \dots & 0 & 0 & 1 \end{pmatrix} \in \operatorname{GL}_{2(r+1)}(\mathcal{M}er(\mathbb{C}))$ イロト イヨト イヨト イヨト

Picard-Vessiot field extensions

An overview of difference Galois theory

> Charlotte Hardouin

Picard-Vessiot Field extensions

Definition

Let (K, σ) be a σ -field and let $A \in GL_n(K)$. A σ -field extension $K_A|K$ is called a Picard-Vessiot field extension of $\sigma(Y) = AY$ over K if

イロト イヨト イヨト イヨト

æ

Picard-Vessiot field extensions

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Definition

Let (K, σ) be a σ -field and let $A \in GL_n(K)$. A σ -field extension $K_A|K$ is called a Picard-Vessiot field extension of $\sigma(Y) = AY$ over K if

• $K^{\sigma}_{\Delta} = K^{\sigma}$;

• there exists $U \in GL_n(K_A)$ fundamental solution matrix such that $K_A = K(U)$.

The K- σ -algebra $R_A = K[U, \frac{1}{\det(U)}] \subset K_A$ is called a **PV-** ring.

イロン 不同 とくほど 不同 とう

Picard-Vessiot field extensions

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Definition

Let (K, σ) be a σ -field and let $A \in GL_n(K)$. A σ -field extension $K_A|K$ is called

a Picard-Vessiot field extension of $\sigma(Y) = AY$ over K if

$$K_A^\sigma = K^\sigma$$
 ;

■ there exists U ∈ GL_n(K_A) fundamental solution matrix such that K_A = K(U).

The K- σ -algebra $R_A = K[U, \frac{1}{\det(U)}] \subset K_A$ is called a PV- ring.
Picard-Vessiot field extensions

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Definition

Let (K, σ) be a σ -field and let $A \in GL_n(K)$. A σ -field extension $K_A|K$ is called

a Picard-Vessiot field extension of $\sigma(Y) = AY$ over K if

•
$$K^{\sigma}_A = K^{\sigma}$$
 ;

■ there exists U ∈ GL_n(K_A) fundamental solution matrix such that K_A = K(U).

The K- σ -algebra $R_A = K[U, \frac{1}{\det(U)}] \subset K_A$ is called a **PV**- ring.

Picard-Vessiot field extensions

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Definition

Let (K, σ) be a σ -field and let $A \in GL_n(K)$. A σ -field extension $K_A|K$ is called

a Picard-Vessiot field extension of $\sigma(Y) = AY$ over K if

•
$$K^{\sigma}_A = K^{\sigma}$$
 ;

■ there exists U ∈ GL_n(K_A) fundamental solution matrix such that K_A = K(U).

The K- σ -algebra $R_A = K[U, \frac{1}{\det(U)}] \subset K_A$ is called a **PV**- ring.

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Existence of a Picard-Vessiot extension for $\sigma(Y) = AY$: No general results for arbitrary difference fields BUT via analytic resolution, we get

• $(\mathcal{M}er(\mathbb{C}), \sigma(f(x)) = f(x+1))$ with $\mathcal{M}er(\mathbb{C})^{\sigma} = C_1$. For any $A \in Gl_n(\mathcal{M}er(\mathbb{C}))$, there exists $U \in GL_n(\mathcal{M}er(\mathbb{C}))$ such that $\sigma(U) = AU$ (Praagman). Then, $K_A = C_1(x)(U) \subset Mer(\mathbb{C})$ is a PV-field extension for $\sigma(Y) = AY$ over $K = C_1(x)$.

• Similar result for $\mathcal{M}er(\mathbb{C}^*)$ and $\sigma(f(x)) = f(qx)$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Existence of a Picard-Vessiot extension for $\sigma(Y) = AY$: No general results for arbitrary difference fields BUT via analytic resolution, we get • $\left(\mathcal{M}er(\mathbb{C}), \sigma(f(x)) = f(x+1)\right)$ with $\mathcal{M}er(\mathbb{C})^{\sigma} = C_1$. For any $A \in \operatorname{Gl}_n(\mathcal{M}er(\mathbb{C}))$, there exists $U \in \operatorname{GL}_n(\mathcal{M}er(\mathbb{C}))$ such that $\sigma(U) = AU$ (Praagman). Then, $K_A = C_1(x)(U) \subset \operatorname{Mer}(\mathbb{C})$ is a PV-field extension for $\sigma(Y) = AY$ over $K = C_1(x)$.

• Similar result for $\mathcal{M}er(\mathbb{C}^*)$ and $\sigma(f(x)) = f(qx)$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Existence of a Picard-Vessiot extension for $\sigma(Y) = AY$: No general results for arbitrary difference fields BUT via analytic resolution, we get

 $(\mathcal{M}er(\mathbb{C}), \sigma(f(x)) = f(x+1))$ with $\mathcal{M}er(\mathbb{C})^{\sigma} = C_1$. For any $A \in Gl_n(\mathcal{M}er(\mathbb{C}))$, there exists $U \in GL_n(\mathcal{M}er(\mathbb{C}))$ such that $\sigma(U) = AU$ (Praagman). Then, $K_A = C_1(x)(U) \subset Mer(\mathbb{C})$ is a PV-field extension for $\sigma(Y) = AY$ over $K = C_1(x)$.

• Similar result for $\mathcal{M}er(\mathbb{C}^*)$ and $\sigma(f(x)) = f(qx)$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Existence of a Picard-Vessiot extension for $\sigma(Y) = AY$: No general results for arbitrary difference fields BUT via analytic resolution, we get

• $\left(\mathcal{M}er(\mathbb{C}), \sigma(f(x)) = f(x+1)\right)$ with $\mathcal{M}er(\mathbb{C})^{\sigma} = C_1$. For any $A \in \operatorname{Gl}_n(\mathcal{M}er(\mathbb{C}))$, there exists $U \in \operatorname{GL}_n(\mathcal{M}er(\mathbb{C}))$ such that $\sigma(U) = AU$ (Praagman). Then, $K_A = C_1(x)(U) \subset \operatorname{Mer}(\mathbb{C})$ is a PV-field extension for $\sigma(Y) = AY$ over $K = C_1(x)$.

Similar result for $\mathcal{M}er(\mathbb{C}^*)$ and $\sigma(f(x)) = f(qx)$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Existence of a Picard-Vessiot extension for $\sigma(Y) = AY$: No general results for arbitrary difference fields BUT via analytic resolution, we get

• $\left(\mathcal{M}er(\mathbb{C}), \sigma(f(x)) = f(x+1)\right)$ with $\mathcal{M}er(\mathbb{C})^{\sigma} = C_1$. For any $A \in Gl_n(\mathcal{M}er(\mathbb{C}))$, there exists $U \in GL_n(\mathcal{M}er(\mathbb{C}))$ such that $\sigma(U) = AU$ (Praagman). Then, $K_A = C_1(x)(U) \subset Mer(\mathbb{C})$ is a PV-field extension for $\sigma(Y) = AY$ over $K = C_1(x)$.

Similar result for $\mathcal{M}er(\mathbb{C}^*)$ and $\sigma(f(x)) = f(qx)$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Existence of a Picard-Vessiot extension for $\sigma(Y) = AY$: No general results for arbitrary difference fields BUT via analytic resolution, we get

- $\left(\mathcal{M}er(\mathbb{C}), \sigma(f(x)) = f(x+1)\right)$ with $\mathcal{M}er(\mathbb{C})^{\sigma} = C_1$. For any $A \in Gl_n(\mathcal{M}er(\mathbb{C}))$, there exists $U \in GL_n(\mathcal{M}er(\mathbb{C}))$ such that $\sigma(U) = AU$ (Praagman). Then, $K_A = C_1(x)(U) \subset Mer(\mathbb{C})$ is a PV-field extension for $\sigma(Y) = AY$ over $K = C_1(x)$.
- Similar result for $\mathcal{M}er(\mathbb{C}^*)$ and $\sigma(f(x)) = f(qx)$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a σ -field and $A \in \operatorname{GL}_n(K)$.

Definition

Let $K_A|K$ be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over K. The Galois group $Gal(K_A|K)$ of K_A over K is defined by

 $Gal(K_A|K) = \{\tau : K_A \to K_A | \tau \text{ is a } K \text{-}\sigma\text{-}automorphism}\}.$

Let $U \in \operatorname{GL}_n(K_A)$ be a fundamental solution matrix and $r \in \operatorname{Gal}(K_A|K)$. Then,

 $\sigma(\tau(U)) = \tau(\sigma(U)) = \tau(AU) = A\tau(U).$

Thus, there exists $[au]_U\in \mathrm{GL}_n(K^\sigma)$ such that $au(U)=U[au]_U.$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vession Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a σ -field and $A \in \operatorname{GL}_n(K)$.

Definition

Let $K_A|K$ be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over K. The Galois group $Gal(K_A|K)$ of K_A over K is defined by

 $Gal(K_A|K) = \{\tau : K_A \to K_A | \tau \text{ is a } K \text{-}\sigma \text{-}automorphism}\}.$

Let $U \in \operatorname{GL}_n(K_A)$ be a fundamental solution matrix and $\tau \in \operatorname{Gal}(K_A|K)$. Then,

 $\sigma(\tau(U)) = \tau(\sigma(U)) = \tau(AU) = A\tau(U).$

Thus, there exists $[au]_U\in \operatorname{GL}_n({\mathcal K}^\sigma)$ such that $au(U)=U[au]_U.$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vession Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a σ -field and $A \in \operatorname{GL}_n(K)$.

Definition

Let $K_A|K$ be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over K. The Galois group $Gal(K_A|K)$ of K_A over K is defined by

 $Gal(K_A|K) = \{\tau : K_A \to K_A | \tau \text{ is a } K \text{-}\sigma\text{-}automorphism}\}.$

Let $U \in \operatorname{GL}_n(K_A)$ be a fundamental solution matrix and $\tau \in \operatorname{Gal}(K_A|K)$. Then,

 $\sigma(\tau(U)) = \tau(\sigma(U)) = \tau(AU) = A\tau(U).$

Thus, there exists $[au]_U\in \operatorname{GL}_n({\mathcal K}^\sigma)$ such that $au(U)=U[au]_U.$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vession Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a σ -field and $A \in \operatorname{GL}_n(K)$.

Definition

Let $K_A|K$ be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over K. The Galois group $Gal(K_A|K)$ of K_A over K is defined by

 $Gal(K_A|K) = \{\tau : K_A \to K_A | \tau \text{ is a } K \text{-}\sigma \text{-}automorphism}\}.$

Let $U \in \operatorname{GL}_n(K_A)$ be a fundamental solution matrix and $\tau \in \operatorname{Gal}(K_A|K)$. Then,

$$\sigma(\tau(U)) = \tau(\sigma(U)) = \tau(AU) = A\tau(U)$$

Thus, there exists $[au]_U\in \operatorname{GL}_n({\mathcal K}^\sigma)$ such that $au(U)=U[au]_U.$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vession Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a σ -field and $A \in \operatorname{GL}_n(K)$.

Definition

Let $K_A|K$ be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over K. The Galois group $Gal(K_A|K)$ of K_A over K is defined by

 $Gal(K_A|K) = \{\tau : K_A \to K_A | \tau \text{ is a } K \text{-}\sigma\text{-}automorphism}\}.$

Let $U \in \operatorname{GL}_n(K_A)$ be a fundamental solution matrix and $\tau \in \operatorname{Gal}(K_A|K)$. Then,

 $\sigma(\tau(U)) = \tau(\sigma(U)) = \tau(AU) = A\tau(U)$

Thus, there exists $[au]_U\in \operatorname{GL}_n({\mathcal K}^\sigma)$ such that $au(U)=U[au]_U.$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a σ -field and $A \in \operatorname{GL}_n(K)$.

Definition

Let $K_A|K$ be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over K. The Galois group $Gal(K_A|K)$ of K_A over K is defined by

 $Gal(K_A|K) = \{\tau : K_A \to K_A | \tau \text{ is a } K \text{-}\sigma \text{-}automorphism}\}.$

Let $U \in GL_n(K_A)$ be a fundamental solution matrix and $\tau \in Gal(K_A|K)$. Then,

$$\sigma(\tau(U)) = A\tau(U).$$

Thus, there exists $[\tau]_U \in \operatorname{GL}_n(K^{\sigma})$ such that $\tau(U) = U[\tau]_U$.

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a σ -field and $A \in \operatorname{GL}_n(K)$.

Definition

Let $K_A|K$ be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over K. The Galois group $Gal(K_A|K)$ of K_A over K is defined by

 $Gal(K_A|K) = \{\tau : K_A \to K_A | \tau \text{ is a } K \text{-}\sigma \text{-}automorphism}\}.$

Let $U \in GL_n(K_A)$ be a fundamental solution matrix and $\tau \in Gal(K_A|K)$. Then,

$$\sigma(\tau(U)) = A\tau(U).$$

Thus, there exists $[\tau]_U \in \operatorname{GL}_n(K^{\sigma})$ such that $\tau(U) = U[\tau]_U$.

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a σ -field and $A \in \operatorname{GL}_n(K)$.

Definition

Let $K_A|K$ be a Picard-Vessiot field extension for $\sigma(Y) = AY$ over K. The Galois group $Gal(K_A|K)$ of K_A over K is defined by

 $Gal(K_A|K) = \{\tau : K_A \to K_A | \tau \text{ is a } K \text{-}\sigma \text{-}automorphism}\}.$

Let $U \in GL_n(K_A)$ be a fundamental solution matrix and $\tau \in Gal(K_A|K)$. Then,

$$\sigma(\tau(U)) = A\tau(U).$$

Thus, there exists $[\tau]_U \in \operatorname{GL}_n(K^{\sigma})$ such that $\tau(U) = U[\tau]_U$.

Group representation

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem

The application

$$\rho_U: \quad \operatorname{Gal}(K_A|K) \longrightarrow \operatorname{GL}_n(K^{\sigma})$$

$$\tau \longrightarrow [\tau]_U$$

イロン 不同 とくほと 不良 とう

臣

where $\tau(U) = U[\tau]_U$ identifies $Gal(K_A|K)$ with an algebraic subgroup of $GL_n(K^{\sigma})$.

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples

Galois correspondance

Some applications

Picard Vession pseudofields :

H is an algebraic subgroup of $GL_n(k)$ if

• *H* subgroup of $GL_n(k)$

• $H = \{M | P(M) = 0 \text{ for all } P \in S\}$ with $S \subset k[X, \frac{1}{\det(X)}]$

xamples

■ $\mu_n = \{x_{1,1}^n = 1\} \subset Gl_1(k)$ ■ $Sl_n(k) = \{X = (x_{i,j})_{i,j=1,...,n} | \det(X) = 1\}$

イロト イヨト イヨト イヨト

臣

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

examples Galois correspondance

Some applications

Picard Vession pseudofields :

H is an algebraic subgroup of $\operatorname{GL}_n(k)$ if

• *H* subgroup of $GL_n(k)$

• $H = \{M | P(M) = 0 \text{ for all } P \in S\}$ with $S \subset k[X, \frac{1}{\det(X)}]$

ixamples

 $\mu_n = \{x_{1,1}^n = 1\} \subset \mathsf{Gl}_1(k)$ $\operatorname{Sl}_n(k) = \{X = (x_{i,j})_{i,j=1,\dots,n} | \det(X) = 1\}$

イロン 不同 とくほど 不同 とう

臣

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

H is an algebraic subgroup of $GL_n(k)$ if

- *H* subgroup of $GL_n(k)$
- $H = \{M | P(M) = 0 \text{ for all } P \in S\}$ with $S \subset k[X, \frac{1}{\det(X)}]$

:xamples

• $\mu_n = \{x_{1,1}^n = 1\} \subset Gl_1(k)$ • $Sl_n(k) = \{X = (x_{i,j})_{i,j=1,\dots,n} | \det(X) = 1\}$

イロン 不同 とくほと 不良 とう

크

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessio Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields : H is an algebraic subgroup of $GL_n(k)$ if

- *H* subgroup of $GL_n(k)$
- $H = \{M | P(M) = 0 \text{ for all } P \in S\}$ with $S \subset k[X, \frac{1}{\det(X)}]$

Examples

•
$$\mu_n = \{x_{1,1}^n = 1\} \subset Gl_1(k)$$

• $Sl_n(k) = \{X = (x_{i,j})_{i,j=1,...,n} | \det(X) = 1\}$

イロン 不同 とくほど 不同 とう

臣

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessio Field extensions

Galois group

examples Galois correspondance

Some applications

Picard Vession pseudofields :

H is an algebraic subgroup of $GL_n(k)$ if

- *H* subgroup of $GL_n(k)$
- $H = \{M | P(M) = 0 \text{ for all } P \in S\}$ with $S \subset k[X, \frac{1}{\det(X)}]$

Examples

•
$$\mu_n = \{x_{1,1}^n = 1\} \subset Gl_1(k)$$

• $Sl_n(k) = \{X = (x_{i,j})_{i,j=1,\dots,n} | \det(X) = 1\}$

イロン 不同 とくほど 不同 とう

臣

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

 $(K,\sigma) = (C_1(x),\sigma(f(x)) = f(x+1)), b \in \mathbb{C}(x)$ and $\sigma(y) = y + b$;

Matrix form $\sigma(Y) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} Y$ and $U = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$ where $u \in \mathcal{M}er(\mathbb{C})$ solution of $\sigma(y) = y + b$. Then, $\mathcal{K}_A = C_1(x)(u)$ and $\mathcal{K}_A^{\sigma} = C_1$

 $\rho_U : \operatorname{Gal}(K_A | K) \longrightarrow \operatorname{GL}_2(C_1)$ $\tau \longmapsto [\tau]_U = \begin{pmatrix} 1 & c_\tau \\ 0 & 1 \end{pmatrix}$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$(K, \sigma) = (C_{1}(x), \sigma(f(x)) = f(x + 1)), b \in \mathbb{C}(x) \text{ and}$$

$$\sigma(y) = y + b;$$

Matrix form $\sigma(Y) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} Y \text{ and } U = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \text{ where}$

$$u \in \mathcal{M}er(\mathbb{C}) \text{ solution of } \sigma(y) = y + b.$$

Then,

$$K_{A} = C_{1}(x)(u) \text{ and } K_{A}^{\sigma} = C_{1}$$

$$\rho_{U} : \operatorname{Gal}(K_{A}|K) \longrightarrow \operatorname{GL}_{2}(C_{1})$$

$$\tau \qquad \mapsto [\tau]_{U} = \begin{pmatrix} 1 & c_{\tau} \\ 0 & 1 \end{pmatrix}$$

. .

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$(K, \sigma) = (C_{1}(x), \sigma(f(x)) = f(x + 1)), \ b \in \mathbb{C}(x) \text{ and } \\ \sigma(y) = y + b;$$

Matrix form $\sigma(Y) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} Y \text{ and } U = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \text{ where } \\ u \in \mathcal{M}er(\mathbb{C}) \text{ solution of } \sigma(y) = y + b.$
Then,
 $\mathbf{K}_{A} = C_{1}(x)(u) \text{ and } K_{A}^{\sigma} = C_{1}$
 $\rho_{U} : \operatorname{Gal}(K_{A}|K) \longrightarrow \operatorname{GL}_{2}(C_{1})$
 $\tau \longrightarrow [\tau]_{U} = \begin{pmatrix} 1 & c_{\tau} \\ 0 & 1 \end{pmatrix}$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$(K, \sigma) = (C_1(x), \sigma(f(x)) = f(x+1)), \ b \in \mathbb{C}(x) \text{ and } \\ \sigma(y) = y + b;$$

Matrix form $\sigma(Y) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} Y \text{ and } U = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$ where $u \in \mathcal{M}er(\mathbb{C})$ solution of $\sigma(y) = y + b$.
Then,
 $\mathbf{K}_A = C_1(x)(u)$ and $K_A^{\sigma} = C_1$
 $\rho_U : \operatorname{Gal}(K_A|K) \longrightarrow \operatorname{GL}_2(C_1)$

. .

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$(K, \sigma) = (C_1(x), \sigma(f(x)) = f(x+1)), \ b \in \mathbb{C}(x) \text{ and } \\ \sigma(y) = y + b;$$

Matrix form $\sigma(Y) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} Y \text{ and } U = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix}$ where $u \in \mathcal{M}er(\mathbb{C})$ solution of $\sigma(y) = y + b$.
Then,
• $K_A = C_1(x)(u) \text{ and } K_A^{\sigma} = C_1$
• $\rho_U : \operatorname{Gal}(K_A|K) \longrightarrow \operatorname{GL}_2(C_1)$
 $\tau \longrightarrow [\tau]_U = \begin{pmatrix} 1 & c_\tau \\ 0 & 1 \end{pmatrix}$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$(K, \sigma) = (C_1(x), \sigma(f(x)) = f(x+1)), \ b \in \mathbb{C}(x) \text{ and}$$

$$\sigma(y) = y + b;$$

Matrix form $\sigma(Y) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} Y \text{ and } U = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \text{ where}$

$$u \in \mathcal{M}er(\mathbb{C}) \text{ solution of } \sigma(y) = y + b.$$

Then,

$$K_A = C_1(x)(u) \text{ and } K_A^{\sigma} = C_1$$

$$\kappa_A = C_1(x)(u) \text{ and } K_A^{\sigma} = C_1$$

$$\tau \qquad \mapsto [\tau]_U = \begin{pmatrix} 1 & c_\tau \\ 0 & 1 \end{pmatrix}$$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$(K, \sigma) = (C_1(x), \sigma(f(x)) = f(x+1)), \ b \in \mathbb{C}(x) \text{ and } \\ \sigma(y) = y + b;$$

Matrix form $\sigma(Y) = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} Y \text{ and } U = \begin{pmatrix} 1 & u \\ 0 & 1 \end{pmatrix} \text{ where } \\ u \in \mathcal{M}er(\mathbb{C}) \text{ solution of } \sigma(y) = y + b.$
Then,
• $K_A = C_1(x)(u) \text{ and } K_A^{\sigma} = C_1$
• $\rho_U : \operatorname{Gal}(K_A|K) \longrightarrow \operatorname{GL}_2(C_1)$
 $\tau \longrightarrow [\tau]_U = \begin{pmatrix} 1 & c_\tau \\ 0 & 1 \end{pmatrix}$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vession Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$(K, \sigma) = (C_1(x), \sigma(f(x)) = f(x+1)) \text{ and } b_1, \dots, b_r \in C_1(x).$$
$$\sigma(y_1) = y_1 + b_1$$
$$\sigma(y_2) = y_2 + b_2$$
$$\vdots = \vdots$$
$$\sigma(y_r) = y_r + b_r$$

l hen

• $K_A = C_1(x)(u_1, \ldots, u_r) \subset Mer(\mathbb{C})$ with $u_i \in Mer(\mathbb{C})$ solution of $\sigma(y_i) = y_i + b_i$.

 $\rho_U: \qquad \operatorname{Gal}(K_A|K) \longrightarrow (C_1^r, +)$

イロン 不同 とくほど 不同 とう

臣

An overview of difference Galois theory

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$(K, \sigma) = (C_1(x), \sigma(f(x)) = f(x+1)) \text{ and } b_1, \dots, b_r \in C_1(x).$$
$$\sigma(y_1) = y_1 + b_1$$
$$\sigma(y_2) = y_2 + b_2$$
$$\vdots = \vdots$$
$$\sigma(y_r) = y_r + b_r$$

Then

• $K_A = C_1(x)(u_1, \ldots, u_r) \subset \operatorname{Mer}(\mathbb{C})$ with $u_i \in \mathcal{M}er(\mathbb{C})$ solution of $\sigma(y_i) = y_i + b_i$.

 $\rho_U: \quad \operatorname{Gal}(K_A|K) \longrightarrow (C_1^r, +)$

臣

An overview of difference Galois theory

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessio Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$(K, \sigma) = (C_1(x), \sigma(f(x)) = f(x+1)) \text{ and } b_1, \dots, b_r \in C_1(x).$$

$$\sigma(y_1) = y_1 + b_1$$

$$\sigma(y_2) = y_2 + b_2$$

$$\vdots = \vdots$$

$$\sigma(y_r) = y_r + b_r$$

Then

• $K_A = C_1(x)(u_1, \ldots, u_r) \subset Mer(\mathbb{C})$ with $u_i \in Mer(\mathbb{C})$ solution of $\sigma(y_i) = y_i + b_i$.

 $\rho_U: \qquad \operatorname{Gal}(K_A|K) \longrightarrow (C_1^r, +)$

 $\longrightarrow (c_{\tau}^{1}, \ldots, c_{\tau}^{r})$

臣

where $\tau(u_i) = u_i + c_{\tau}^i$.

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessio Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$$(K, \sigma) = (C_1(x), \sigma(f(x)) = f(x+1)) \text{ and } b_1, \dots, b_r \in C_1(x).$$

$$\sigma(y_1) = y_1 + b_1$$

$$\sigma(y_2) = y_2 + b_2$$

$$\vdots = \vdots$$

$$\sigma(y_r) = y_r + b_r$$

Then

• $K_A = C_1(x)(u_1, \ldots, u_r) \subset Mer(\mathbb{C})$ with $u_i \in Mer(\mathbb{C})$ solution of $\sigma(y_i) = y_i + b_i$.

 $\rho_U: \qquad \operatorname{Gal}(K_A|K) \longrightarrow (C_1^r, +)$

 $\longrightarrow (c_{\tau}^{1}, \ldots, c_{\tau}^{r})$

臣

where $\tau(u_i) = u_i + c_{\tau}^i$.

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vessio pseudofields :

• Algebraic subgroups of $(C_1^r, +)$ are C_1 -vector spaces

$\operatorname{Gal}(K_A|K) \begin{cases} = (C_1^r, +) \\ \subset \{(c_i)|\gamma_1 c_1 + \dots + \gamma_r c_r = 0\} \text{ for } \gamma_i \in C_1 \end{cases}$

イロン イヨン イヨン イヨン

크

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : • Algebraic subgroups of $(C_1^r, +)$ are C_1 -vector spaces

$$\mathsf{Gal}(\mathcal{K}_{\mathcal{A}}|\mathcal{K}) \begin{cases} = (\mathcal{C}_{1}^{r}, +) \\ \subset \{(c_{i})|\gamma_{1}c_{1} + \dots + \gamma_{r}c_{r} = 0\} \text{ for } \gamma_{i} \in \mathcal{C}_{1} \end{cases}$$

イロト イヨト イヨト イヨト

臣

Main results

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem

Let (K, σ) be a σ -field. Let $A \in GL_n(K)$ and $K_A|K$ a PV-field extension for $\sigma(Y) = Y$. Then,

$K_A^{\mathsf{Gal}(K_A|K)} := \{ f \in K_A | \tau(f) = f \text{ for all } \tau \in \mathsf{Gal}(K_A|K) \} = K$

 $\operatorname{degtr}(K_A|K) = \operatorname{dim}_k(\operatorname{Gal}(K_A|K))$

イロン 不同 とくほと 不良 とう

크
Main results

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem

Let (K, σ) be a σ -field. Let $A \in \operatorname{GL}_n(K)$ and $K_A | K$ a PV-field extension for $\sigma(Y) = Y$. Then,

$$K_A^{\mathsf{Gal}(K_A|K)} := \{ f \in K_A | \tau(f) = f \text{ for all } \tau \in \mathsf{Gal}(K_A|K) \} = K$$

 $\operatorname{degtr}(K_A|K) = \operatorname{dim}_k(\operatorname{\mathsf{Gal}}(K_A|K)).$

イロン 不同 とくほど 不同 とう

Main results

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples

Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem

Let (K, σ) be a σ -field. Let $A \in \operatorname{GL}_n(K)$ and $K_A | K$ a PV-field extension for $\sigma(Y) = Y$. Then,

$$\mathcal{K}_{\mathcal{A}}^{\mathsf{Gal}(\mathcal{K}_{\mathcal{A}}|\mathcal{K})} := \{f \in \mathcal{K}_{\mathcal{A}}| \tau(f) = f \text{ for all } \tau \in \mathsf{Gal}(\mathcal{K}_{\mathcal{A}}|\mathcal{K})\} = \mathcal{K}$$

 $\operatorname{degtr}(K_A|K) = \operatorname{dim}_k(\operatorname{Gal}(K_A|K)).$

イロン 不同 とうほう 不同 とう

The general idea

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and

Galois correspondance

Some applications

Picard Vession pseudofields :

Defining equations of the Galois group

 \updownarrow

Algebraic relations between solutions

イロン イヨン イヨン

The general idea

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and

Galois correspondance

Some applications

Picard Vession pseudofields : Defining equations of the Galois group

 \uparrow

Algebraic relations between solutions

イロト イヨト イヨト イヨト

The general idea

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and

Galois correspondance

Some applications

Picard Vession pseudofields : Defining equations of the Galois group

 \uparrow

Algebraic relations between solutions

イロト イヨト イヨト イヨト

Independence of discrete logarithms

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Set
$$(K, \sigma) = (C_1(x), \sigma(f(x) = f(x + 1)))$$
.
Let $b_1, \ldots, b_r \in \mathbb{C}(x)$ and $u_1, \ldots, u_r \in \mathcal{M}er(\mathbb{C})$ solutions of

 $\sigma(y_1) = y_1 + b_1$ $\sigma(y_2) = y_2 + b_2$ $\vdots = \vdots$ $\sigma(y_r) = y_r + b_r$

If the u_i are algebraically dependent over K then there exists $\gamma_1, \ldots, \gamma_r \in \mathbb{C}$ not all zero and $g \in \mathbb{C}(x)$ such that

$$\gamma_1 b_1 + \dots + \gamma_r b_r = \sigma(g) - g. \tag{5.1}$$

イロン 不同 とうほう 不同 とう

Independence of discrete logarithms

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vession Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Set
$$(K, \sigma) = (C_1(x), \sigma(f(x) = f(x + 1)))$$
.
Let $b_1, \ldots, b_r \in \mathbb{C}(x)$ and $u_1, \ldots, u_r \in \mathcal{M}er(\mathbb{C})$ solutions of

 $\sigma(y_1) = y_1 + b_1$ $\sigma(y_2) = y_2 + b_2$ $\vdots = \vdots$ $\sigma(y_r) = y_r + b_r$

If the u_i are algebraically dependent over K then there exists $\gamma_1, \ldots, \gamma_r \in \mathbb{C}$ not all zero and $g \in \mathbb{C}(x)$ such that

$$\gamma_1 b_1 + \dots + \gamma_r b_r = \sigma(g) - g. \tag{5.1}$$

A D D A D D A D D A D D A

Э

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : • $K_A = C_1(x)(u_1, \dots, u_r)$ and $Gal(K_A|K) = \{(c_{\tau}^i)_{i=1\dots r} | \tau(u_i) = u_i + c_{\tau}^i\}$ • u_i alg. dep implies $Gal(K_A|K) \subseteq (C_1^r, +)$

There exist $\gamma_1, \ldots, \gamma_r \in C_1$ not all zero such that

 $\mathsf{Gal}(K_{\mathcal{A}}|K) \subset \{c_i|\gamma_1c_1 + \cdots + \gamma_rc_r = 0\}.$

Group equation : $\gamma_1 c_1 + \cdots + \gamma_r c_r = 0$

Relation for solutions $:\gamma_1u_1 + \cdots + \gamma_ru_r = g$ with $g \in K$

Relation for coefficients : $\gamma_1 b_1 + \cdots + \gamma_r b_r = \sigma(g) - g$

イロン イヨン イヨン

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : • $K_A = C_1(x)(u_1, \ldots, u_r)$ and $Gal(K_A|K) = \{(c_{\tau}^i)_{i=1..r} | \tau(u_i) = u_i + c_{\tau}^i\}$ • u_i alg. dep implies $Gal(K_A|K) \subsetneq (C_1^r, +)$ • There exist $\gamma_1, \ldots, \gamma_r \in C_1$ not all zero such the second second

 $\mathsf{Gal}(K_A|K) \subset \{c_i|\gamma_1c_1 + \cdots + \gamma_rc_r = 0\}.$

Group equation : $\gamma_1 c_1 + \cdots + \gamma_r c_r = 0$

Relation for solutions $:\gamma_1 u_1 + \cdots + \gamma_r u_r = g$ with $g \in K$

Relation for coefficients : $\gamma_1 b_1 + \cdots + \gamma_r b_r = \sigma(g) - g$

イロン イヨン イヨン

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : • $K_A = C_1(x)(u_1, \dots, u_r)$ and $Gal(K_A|K) = \{(c_{\tau}^i)_{i=1..r} | \tau(u_i) = u_i + c_{\tau}^i\}$ • u_i alg. dep implies $Gal(K_A|K) \subsetneq (C_1^r, +)$ • There exist $\gamma_1, \dots, \gamma_r \in C_1$ not all zero such that $Gal(K_A|K) \subset \{c_i|\gamma_1c_1 + \dots + \gamma_rc_r = 0\}.$

Group equation : $\gamma_1 c_1 + \cdots + \gamma_r c_r = 0$

Relation for solutions $:\gamma_1 u_1 + \cdots + \gamma_r u_r = g$ with $g \in K$

Relation for coefficients : $\gamma_1 b_1 + \cdots + \gamma_r b_r = \sigma(g) - g$

イロト イポト イヨト イヨト

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : • $K_A = C_1(x)(u_1, \dots, u_r)$ and $Gal(K_A|K) = \{(c_{\tau}^i)_{i=1..r} | \tau(u_i) = u_i + c_{\tau}^i\}$ • u_i alg. dep implies $Gal(K_A|K) \subsetneq (C_1^r, +)$ • There exist $\gamma_1, \dots, \gamma_r \in C_1$ not all zero such that $Gal(K_A|K) \subset \{c_i|\gamma_1c_1 + \dots + \gamma_rc_r = 0\}.$

Group equation : $\gamma_1 c_1 + \cdots + \gamma_r c_r = 0$

Relation for solutions $:\gamma_1 u_1 + \cdots + \gamma_r u_r = g$ with $g \in K$

Relation for coefficients : $\gamma_1 b_1 + \cdots + \gamma_r b_r = \sigma(g) - g$

イロト イポト イヨト イヨト

æ

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

•
$$K_A = C_1(x)(u_1, \dots, u_r)$$
 and
 $Gal(K_A|K) = \{(c_{\tau}^i)_{i=1..r} | \tau(u_i) = u_i + c_{\tau}^i\}$
• u_i alg. dep implies $Gal(K_A|K) \subsetneq (C_1^r, +)$
• There exist $\gamma_1, \dots, \gamma_r \in C_1$ not all zero such that
 $Gal(K_A|K) \subset \{c_i|\gamma_1c_1 + \dots + \gamma_rc_r = 0\}.$

Group equation : $\gamma_1 c_1 + \cdots + \gamma_r c_r = 0$

Relation for solutions $:\gamma_1 u_1 + \cdots + \gamma_r u_r = g$ with $g \in K$

Relation for coefficients : $\gamma_1 b_1 + \cdots + \gamma_r b_r = \sigma(g) - g$

・ロト ・四ト ・ヨト ・ヨト

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

•
$$\mathcal{K}_A = C_1(x)(u_1, \dots, u_r)$$
 and
 $\operatorname{Gal}(\mathcal{K}_A|\mathcal{K}) = \{(c_{\tau}^i)_{i=1\dots r} | \tau(u_i) = u_i + c_{\tau}^i\}$
• u_i alg. dep implies $\operatorname{Gal}(\mathcal{K}_A|\mathcal{K}) \subsetneq (C_1^r, +)$
• There exist $\gamma_1, \dots, \gamma_r \in C_1$ not all zero such that
 $\operatorname{Gal}(\mathcal{K}_A|\mathcal{K}) \subset \{c_i|\gamma_1c_1 + \dots + \gamma_rc_r = 0\}.$

Group equation : $\gamma_1 c_1 + \cdots + \gamma_r c_r = 0$

 $\begin{aligned} & \downarrow \\ & \mathsf{Relation for solutions } :\gamma_1 u_1 + \dots + \gamma_r u_r = g \text{ with } g \in K \end{aligned}$

Relation for coefficients : $\gamma_1 b_1 + \dots + \gamma_r b_r = \sigma(g) - g_r$

イロン 不同 とうほう 不同 とう

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields :

•
$$K_A = C_1(x)(u_1, \dots, u_r)$$
 and
 $Gal(K_A|K) = \{(c_{\tau}^i)_{i=1..r} | \tau(u_i) = u_i + c_{\tau}^i\}$
• u_i alg. dep implies $Gal(K_A|K) \subsetneq (C_1^r, +)$
• There exist $\gamma_1, \dots, \gamma_r \in C_1$ not all zero such that
 $Gal(K_A|K) \subset \{c_i|\gamma_1c_1 + \dots + \gamma_rc_r = 0\}.$

Group equation : $\gamma_1 c_1 + \cdots + \gamma_r c_r = 0$

 $\begin{aligned} & \downarrow \\ & \mathsf{Relation for solutions } : \gamma_1 u_1 + \dots + \gamma_r u_r = g \text{ with } g \in K \end{aligned}$

Relation for coefficients : $\gamma_1 b_1 + \cdots + \gamma_r b_r = \sigma(g) - g$

イロン 不同 とうほう 不同 とう

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields :

•
$$K_A = C_1(x)(u_1, \dots, u_r)$$
 and
 $Gal(K_A|K) = \{(c_{\tau}^i)_{i=1..r} | \tau(u_i) = u_i + c_{\tau}^i\}$
• u_i alg. dep implies $Gal(K_A|K) \subsetneq (C_1^r, +)$
• There exist $\gamma_1, \dots, \gamma_r \in C_1$ not all zero such that
 $Gal(K_A|K) \subset \{c_i|\gamma_1c_1 + \dots + \gamma_rc_r = 0\}.$

Group equation : $\gamma_1 c_1 + \cdots + \gamma_r c_r = 0$

 $\begin{aligned} & \downarrow \\ & \mathsf{Relation for solutions } : \gamma_1 u_1 + \dots + \gamma_r u_r = g \text{ with } g \in K \end{aligned}$

Relation for coefficients : $\gamma_1 b_1 + \cdots + \gamma_r b_r = \sigma(g) - g$

イロン 不同 とうほう 不同 とう

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Let
$$K = \mathbb{C}(x)$$
 with $\sigma(f(x)) = f(x+1)$ and $\sigma(y) = xy$.

s Γ differentially transcendental $\mathbb{C}(x)$, i.e.

 $\Gamma, \frac{d}{dx}(\Gamma), \ldots, \frac{d^r}{dx^r}(\Gamma), \ldots$ are alg. independent over $\mathbb{C}(x)$.

Vith $\psi(x) = \frac{a}{dx}(\Gamma)$

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Let $K = \mathbb{C}(x)$ with $\sigma(f(x)) = f(x+1)$ and $\sigma(y) = xy$. Is Γ differentially transcendental $\mathbb{C}(x)$, i.e.

 $\mathbb{C}, \frac{d}{dx}(\Gamma), \dots, \frac{d'}{dx'}(\Gamma), \dots$ are alg. independent over $\mathbb{C}(x)$.

/ith $\psi(x) = rac{a}{dx}(\Gamma)$

 $\begin{array}{l} \mbox{$\Gamma$ is diff.alg $\mathbb{C}(x)$} \\ \mbox{$\psi(x)$ is diff alg over $\mathbb{C}(x)$}. \end{array}$

イロン 不同 とくほど 不同 とう

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Let $K = \mathbb{C}(x)$ with $\sigma(f(x)) = f(x+1)$ and $\sigma(y) = xy$. Is Γ differentially transcendental $\mathbb{C}(x)$, i.e. $\Gamma, \frac{d}{dx}(\Gamma), \dots, \frac{d^r}{dx^r}(\Gamma), \dots$ are alg. independent over $\mathbb{C}(x)$.

 $\begin{array}{c} \mathsf{F} \text{ is diff.alg } \mathbb{C}(x) \\ \\ \\ \psi(x) \text{ is diff alg over } \mathbb{C}(x) \end{array}$

イロン 不同 とうほう 不同 とう

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Let $K = \mathbb{C}(x)$ with $\sigma(f(x)) = f(x+1)$ and $\sigma(y) = xy$. Is Γ differentially transcendental $\mathbb{C}(x)$, i.e. $\Gamma, \frac{d}{dx}(\Gamma), \dots, \frac{d^r}{dx^r}(\Gamma), \dots$ are alg. independent over $\mathbb{C}(x)$.

With $\psi(x) = \frac{\frac{d}{dx}(\Gamma)}{\Gamma}$,

イロン 不同 とくほど 不同 とう

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Let $K = \mathbb{C}(x)$ with $\sigma(f(x)) = f(x+1)$ and $\sigma(y) = xy$. Is Γ differentially transcendental $\mathbb{C}(x)$, i.e. $\Gamma, \frac{d}{dx}(\Gamma), \dots, \frac{d^r}{dx^r}(\Gamma), \dots$ are alg. independent over $\mathbb{C}(x)$.

With $\psi(x) = \frac{\frac{d}{dx}(\Gamma)}{\Gamma}$,

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vession Field extensions

Galois group Definitions and examples

correspondance

Some applications

Picard Vessiot pseudofields : Deriving the functional equation for Γ and using $\frac{d}{dx}\circ\sigma=\sigma\circ\frac{d}{dx}$ we find

$$\sigma(\psi(x)) = \psi(x) + \frac{1}{x}$$
$$\sigma(\frac{d}{dx}(\psi(x))) = \frac{d}{dx}(\psi(x)) + \frac{d}{dx}(\frac{1}{x})$$
$$\vdots = \vdots$$
$$\sigma(\frac{d^{r}}{dx^{r}}(\psi(x))) = \frac{d^{r}}{dx^{r}}(\psi(x)) + \frac{d^{r}}{dx^{r}}(\frac{1}{x}).$$

Thus $\Gamma(x)$ diff.alg iff $\exists r \ \psi(x), \dots, \frac{d^r}{dx^r}(\psi(x))$ algebraically dependent $\Rightarrow \exists r, \gamma_1, \dots, \gamma_{r+1} \in \mathbb{C}$, not all zero $g \in \mathbb{C}(x)$ such that

< ロ > < 同 > < 三 > < 三 >

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessio Field extensions

Galois group Definitions and examples Galois

correspondance

Some applications

Picard Vessiot pseudofields : Deriving the functional equation for Γ and using $\frac{d}{dx}\circ\sigma=\sigma\circ\frac{d}{dx}$ we find

$$\sigma(\psi(x)) = \psi(x) + \frac{1}{x}$$
$$\sigma(\frac{d}{dx}(\psi(x))) = \frac{d}{dx}(\psi(x)) + \frac{d}{dx}(\frac{1}{x})$$
$$\vdots = \vdots$$
$$\sigma(\frac{d^{r}}{dx^{r}}(\psi(x))) = \frac{d^{r}}{dx^{r}}(\psi(x)) + \frac{d^{r}}{dx^{r}}(\frac{1}{x}).$$

Thus $\Gamma(x)$ diff.alg iff $\exists r \ \psi(x), \dots, \frac{d^r}{dx^r}(\psi(x))$ algebraically dependent

 $\Rightarrow \exists r, \gamma_1, \dots, \gamma_{r+1} \in \mathbb{C}, ext{ not all zero } g \in \mathbb{C}(x)$ such that

$$\gamma_1 \frac{1}{x} + \dots + \gamma_{r+1} \frac{d^r}{dx^r} (\frac{1}{x}) = g(x+1) - g(x).$$

<ロ> (四) (四) (三) (三) (三)

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vessiot pseudofields : Deriving the functional equation for Γ and using $\frac{d}{dx} \circ \sigma = \sigma \circ \frac{d}{dx}$ we find

$$\sigma(y_1) = y_1 + \frac{d}{dx}(\frac{1}{x})$$

$$\sigma(y_2) = y_2 + \frac{d^2}{dx^2}(\frac{1}{x})$$

$$\vdots = \vdots$$

$$\sigma(y_{r+1})=y_{r+1}+\frac{d^r}{dx^r}(\frac{1}{x}).$$

Thus $\Gamma(x)$ diff.alg iff $\exists r \ \psi(x), \dots, \frac{d^r}{dx^r}(\psi(x))$ algebraically dependent

 $\Rightarrow \exists r, \gamma_1, \dots, \gamma_{r+1} \in \mathbb{C}, ext{ not all zero } g \in \mathbb{C}(x)$ such that

$$\gamma_1 \frac{1}{x} + \dots + \gamma_{r+1} \frac{d^r}{dx^r} (\frac{1}{x}) = g(x+1) - g(x).$$

<ロ> (四) (四) (三) (三) (三)

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : Deriving the functional equation for Γ and using $\frac{d}{dx} \circ \sigma = \sigma \circ \frac{d}{dx}$ we find

$$\sigma(y_1) = y_1 + \frac{d}{dx}(\frac{1}{x})$$

$$\sigma(y_2) = y_2 + \frac{d^2}{dx^2}(\frac{1}{x})$$

$$\vdots = \vdots$$

$$\sigma(y_{r+1}) = y_{r+1} + \frac{d^r}{dx^r}(\frac{1}{x}).$$

Thus $\Gamma(x)$ diff.alg iff $\exists r \ \psi(x), \dots, \frac{d^r}{dx^r}(\psi(x))$ algebraically dependent

 $\Rightarrow \exists r, \gamma_1, \dots, \gamma_{r+1} \in \mathbb{C}, \text{ not all zero } g \in \mathbb{C}(x) \text{ such that}$

$$\gamma_1\frac{1}{x}+\cdots+\gamma_{r+1}\frac{d^r}{dx^r}(\frac{1}{x})=g(x+1)-g(x).$$

<ロ> (四) (四) (三) (三) (三)

General criteria

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem

Let (K, σ) a σ -field with a derivation δ commuting with σ and let $b \in K$. Let $f \in L$, a σ - δ -field extension of K, such that $\sigma(f) = f + b$.

Assume that K^{σ} is algebraically closed. Then, f is differentially transcendental over K if there are no $r \in \mathbb{N}, \gamma_1, \ldots, \gamma_{r+1} \in k$ and $g \in K$ such that

 $\gamma_1 b + \ldots + \gamma_{r+1} \delta^r(b) = \sigma(g) - g.$

General criteria

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem

Let (K, σ) a σ -field with a derivation δ commuting with σ and let $b \in K$. Let $f \in L$, a σ - δ -field extension of K, such that $\sigma(f) = f + b$. Assume that K^{σ} is algebraically closed. Then, f is differentially transcendental over K if there are no

 $\in \mathbb{N}$, $\gamma_1, \ldots, \gamma_{r+1} \in k$ and $g \in K$ such that

 $\gamma_1 b + \ldots + \gamma_{r+1} \delta^r(b) = \sigma(g) - g.$

イロト イヨト イヨト イヨト

Э

General criteria

Theorem

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Let (K, σ) a σ -field with a derivation δ commuting with σ and let $b \in K$.

Let $f \in L$, a σ - δ -field extension of K, such that $\sigma(f) = f + b$. Assume that K^{σ} is algebraically closed.

Then, f is differentially transcendental over K if there are no $r \in \mathbb{N}$, $\gamma_1, \ldots, \gamma_{r+1} \in k$ and $g \in K$ such that

$$\gamma_1 b + \ldots + \gamma_{r+1} \delta^r(b) = \sigma(g) - g.$$

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some

Picard Vession pseudofields :

Examples

 $(K, \sigma) = (\mathbb{C}(x), \sigma(f(x)) = f(x+1))$ and $\sigma(y) = -y$. Suppose that there exists a solution $u \neq 0$ in a σ -field L with $L^{\sigma} = \mathbb{C}(x)^{\sigma} = \mathbb{C}$.

Then $\sigma(u^2) = (-u)^2 = u^2$ and $u^2 \in L^{\sigma} = \mathbb{C}$. Then $u \in \mathbb{C}$ and $\sigma(u) = u$. Contradiction !

イロン 不同 とうほう 不同 とう

Examples

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof o transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

correspondance

Some applications

Picard Vessiot pseudofields :

$(K, \sigma) = (\mathbb{C}(x), \sigma(f(x)) = f(x+1))$ and $\sigma(y) = -y$. Suppose that there exists a solution $u \neq 0$ in a σ -field L with $L^{\sigma} = \mathbb{C}(x)^{\sigma} = \mathbb{C}$. Then $\sigma(u^2) = (-u)^2 = u^2$ and $u^2 \in L^{\sigma} = \mathbb{C}$. Then $u \in \mathbb{C}$ and $\sigma(u) = u$. Contradiction

イロン 不同 とうほう 不同 とう

Examples

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessio Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$(K, \sigma) = (\mathbb{C}(x), \sigma(f(x)) = f(x+1))$ and $\sigma(y) = -y$. Suppose that there exists a solution $u \neq 0$ in a σ -field L with $L^{\sigma} = \mathbb{C}(x)^{\sigma} = \mathbb{C}$. Then $\sigma(u^2) = (-u)^2 = u^2$ and $u^2 \in L^{\sigma} = \mathbb{C}$. Then $u \in \mathbb{C}$ and $\sigma(u) = u$. Contradiction !

イロト イヨト イヨト イヨト

æ

Examples

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessio Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

$(K, \sigma) = (\mathbb{C}(x), \sigma(f(x)) = f(x+1))$ and $\sigma(y) = -y$. Suppose that there exists a solution $u \neq 0$ in a σ -field L with $L^{\sigma} = \mathbb{C}(x)^{\sigma} = \mathbb{C}$. Then $\sigma(u^2) = (-u)^2 = u^2$ and $u^2 \in L^{\sigma} = \mathbb{C}$. Then $u \in \mathbb{C}$ and $\sigma(u) = u$. Contradiction !

イロト イヨト イヨト イヨト

æ

An overview of difference Galois theory

Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

For difference systems, one has a kind of dichotomy

• either, one solves in a field extension L BUT $L^{\sigma} \neq K^{\sigma}$.

 $K = \mathbb{C}(x), \ \sigma(x) = x + 1$. For any $\sigma(Y) = AY$ with $A \in \mathrm{GL}_n(\mathbb{C}(x))$ there exists a fundamental solution matrix $U \in \mathrm{GL}_n(\mathrm{Mer}(\mathbb{C}))$.

• or one solves in σ -rings *L* that might not be interested as L that might not be interested as L that might not be interested as L and L as L

(General Picard Vessiot theory *cf.* van der Put-Singer, Wibmer)

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : For difference systems, one has a kind of dichotomy

• either, one solves in a field extension L BUT $L^{\sigma} \neq K^{\sigma}$. $K = \mathbb{C}(x), \sigma(x) = x + 1$. For any $\sigma(Y) = AY$ with $A \in \operatorname{GL}_n(\mathbb{C}(x))$ there exists a fundamental solution matrix $U \in \operatorname{GL}_n(\operatorname{Mer}(\mathbb{C}))$.

 or one solves in σ-rings L that might not be integral domains BUT L^σ = K^σ

(General Picard Vessiot theory *cf.* van der Put-Singer, Wibmer)

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : For difference systems, one has a kind of dichotomy

either, one solves in a field extension L BUT $L^{\sigma} \neq K^{\sigma}$. $K = \mathbb{C}(x), \ \sigma(x) = x + 1$. For any $\sigma(Y) = AY$ with $A \in \operatorname{GL}_n(\mathbb{C}(x))$ there exists a fundamental solution matrix $U \in \operatorname{GL}_n(\operatorname{Mer}(\mathbb{C}))$. But $\mathcal{M}er(\mathbb{C})^{\sigma} = C_1 \neq \mathbb{C}(x)^{\sigma} = \mathbb{C}$.

• or one solves in σ -rings L that might not be integral domains BUT $L^{\sigma} = K^{\sigma}$

(General Picard Vessiot theory *cf.* van der Put-Singer, Wibmer)

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vessiot pseudofields : For difference systems, one has a kind of dichotomy

- either, one solves in a field extension L BUT $L^{\sigma} \neq K^{\sigma}$. $K = \mathbb{C}(x), \ \sigma(x) = x + 1$. For any $\sigma(Y) = AY$ with $A \in \operatorname{GL}_n(\mathbb{C}(x))$ there exists a fundamental solution matrix $U \in \operatorname{GL}_n(\operatorname{Mer}(\mathbb{C}))$. But $\mathcal{M}er(\mathbb{C})^{\sigma} = C_1 \neq \mathbb{C}(x)^{\sigma} = \mathbb{C}$.
- or one solves in σ -rings L that might not be integral domains BUT $L^{\sigma} = K^{\sigma}$

(General Picard Vessiot theory *cf.* van der Put-Singer, Wibmer)

Existence and uniqueness of Picard-Vessiot pseudofields

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Theorem

Let (K, σ) a σ -field with K^{σ} algebraically closed and $A \in Gl_n(K)$.

Then, there exists a unique Picard-Vessiot pseudofield K_A for the system $\sigma(Y) = AY$.

hat is

• $K_A = K(U)$ with U a fundamental solution matrix • $K_A^{\sigma} = K^{\sigma}$

d all the results for fields hold in this context

・ロ・ ・ 日・ ・ ヨ・ ・ 日・
Existence and uniqueness of Picard-Vessiot pseudofields

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Theorem

Let (K, σ) a σ -field with K^{σ} algebraically closed and $A \in Gl_n(K)$.

Then, there exists a unique Picard-Vessiot pseudofield K_A for the system $\sigma(Y) = AY$.

That is

• $K_A = K(U)$ with U a fundamental solution matrix • $K_A^{\sigma} = K^{\sigma}$

nd all the results for fields hold in this context

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Existence and uniqueness of Picard-Vessiot pseudofields

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vession Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Theorem

Let (K, σ) a σ -field with K^{σ} algebraically closed and $A \in Gl_n(K)$.

Then, there exists a unique Picard-Vessiot pseudofield K_A for the system $\sigma(Y) = AY$.

That is

K_A = K(U) with U a fundamental solution matrix
 K^σ_A = K^σ

nd all the results for fields hold in this context

・ロ・ ・ 日・ ・ ヨ・ ・ 日・

Existence and uniqueness of Picard-Vessiot pseudofields

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessio Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Theorem

Let (K, σ) a σ -field with K^{σ} algebraically closed and $A \in Gl_n(K)$.

Then, there exists a unique Picard-Vessiot pseudofield K_A for the system $\sigma(Y) = AY$.

That is

K_A = K(U) with U a fundamental solution matrix
 K^σ_A = K^σ

And all the results for fields hold in this context

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Let $\mathbb{C}^{\mathbb{N}}$ the ring of $\mathbb{C}\text{-valued}$ sequences with addition and multiplication defined component by component. The morphism

 $\sigma: \mathbb{C}^{\mathbb{N}} \to \mathbb{C}^{\mathbb{N}}, (a(0), a(1), \dots, a(n), \dots) \mapsto (a(1), \dots, a(n), \dots)$

is not injective Set

 $a \sim b$ iff $\exists N | a(n) = b(n)$ for all n > N.

Then σ induces on $S = \mathbb{C}^{\mathbb{N}} / \sim$ an injective morphism. The σ -ring S is called the ring of germs of sequences.

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vession pseudofields : Let $\mathbb{C}^{\mathbb{N}}$ the ring of $\mathbb{C}\text{-valued}$ sequences with addition and multiplication defined component by component. The morphism

$$\sigma:\mathbb{C}^{\mathbb{N}}
ightarrow\mathbb{C}^{\mathbb{N}},$$
 (a(0), a(1), \ldots , a(n), \ldots) \mapsto (a(1), \ldots , a(n), \ldots)

is not injective.

Set

$$a \sim b$$
 iff $\exists N | a(n) = b(n)$ for all $n > N$.

Then σ induces on $S = \mathbb{C}^{\mathbb{N}} / \sim$ an injective morphism. The σ -ring S is called the ring of germs of sequences.

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

examples Galois correspondance

Some applications

Picard Vession pseudofields : Let $\mathbb{C}^{\mathbb{N}}$ the ring of $\mathbb{C}\text{-valued}$ sequences with addition and multiplication defined component by component. The morphism

$$\sigma:\mathbb{C}^{\mathbb{N}} \to \mathbb{C}^{\mathbb{N}}, (a(0), a(1), \dots, a(n), \dots) \mapsto (a(1), \dots, a(n), \dots)$$

is not injective. Set

 $a \sim b$ iff $\exists N | a(n) = b(n)$ for all n > N.

Then σ induces on $S = \mathbb{C}^{\mathbb{N}} / \sim$ an injective morphism. The σ -ring S is called the ring of germs of sequences.

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : Let $\mathbb{C}^{\mathbb{N}}$ the ring of $\mathbb{C}\text{-valued}$ sequences with addition and multiplication defined component by component. The morphism

$$\sigma:\mathbb{C}^{\mathbb{N}}
ightarrow\mathbb{C}^{\mathbb{N}},$$
 (a(0), a(1), $\ldots,$ a(n), \ldots) \mapsto (a(1), $\ldots,$ a(n), \ldots)

is not injective. Set

$$a \sim b$$
 iff $\exists N | a(n) = b(n)$ for all $n > N$.

Then σ induces on $S = \mathbb{C}^{\mathbb{N}} / \sim$ an injective morphism. The σ -ring S is called the ring of germs of sequences.

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : Let $\mathbb{C}^{\mathbb{N}}$ the ring of $\mathbb{C}\text{-valued}$ sequences with addition and multiplication defined component by component. The morphism

$$\sigma:\mathbb{C}^{\mathbb{N}}
ightarrow\mathbb{C}^{\mathbb{N}},$$
 (a(0), a(1), $\ldots,$ a(n), \ldots) \mapsto (a(1), $\ldots,$ a(n), \ldots)

is not injective. Set

$$a \sim b$$
 iff $\exists N | a(n) = b(n)$ for all $n > N$.

Then σ induces on $S = \mathbb{C}^{\mathbb{N}} / \sim$ an injective morphism. The σ -ring S is called the ring of germs of sequences.

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields : Consider $\mathbb{C}(x)$ endowed with $\sigma(f(x)) = f(x+1)$. The application

$$f \longmapsto (f(0), \ldots, f(n), \ldots)$$

is an injective ring morphism, the identity on $\mathbb{C},$ commutes with $\sigma.$

The difference field $(\mathbb{C}(x), \sigma)$ is a σ -subring of S.

イロン 不同 とうほう 不同 とう

크

A universal Picard-Vessiot ring

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

An example

Examples

$$K = (\mathbb{C}(x), \sigma(f(x)) = f(x+1)) \subset S$$
 and $\sigma(y) = -y$.
Then $u = ((-1)^n)_{n \in \mathbb{N}}$ is a fundamental solution matrix. In S , we have

■
$$u - 1 \neq 0$$
 and $u + 1 \neq 0$ but $(u - 1)(u + 1) = u^2 - 1 = 0$.
■ $\mathbb{C}(x)(u) = L_1 \times L_2 \subset S$ with $L_1 = \mathbb{C}(x).(u - 1)$ and $L_2 = \mathbb{C}(x).(u + 1)$.

A general result : Let $\mathbb{C}(x) \subset S$ and $A \in \operatorname{GL}_n(\mathbb{C}(x))$. There exists a Picard-Vessiot ring $R_A := \mathbb{C}(x)[U, \frac{1}{\det(U)}] \subset S$.

イロン イヨン イヨン

A universal Picard-Vessiot ring

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vession Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

An example

Examples

$$K = (\mathbb{C}(x), \sigma(f(x)) = f(x+1)) \subset S$$
 and $\sigma(y) = -y$.
Then $u = ((-1)^n)_{n \in \mathbb{N}}$ is a fundamental solution matrix. In S , we have

A general result : Let $\mathbb{C}(x) \subset S$ and $A \in \mathrm{GL}_n(\mathbb{C}(x))$. There exists a Picard-Vessiot ring $R_A := \mathbb{C}(x)[U, \frac{1}{\det(U)}] \subset S$.

・ロト ・日ト ・ヨト ・ヨト

A universal Picard-Vessiot ring

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vession Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

An example

Examples

$$K = (\mathbb{C}(x), \sigma(f(x)) = f(x+1)) \subset S$$
 and $\sigma(y) = -y$.
Then $u = ((-1)^n)_{n \in \mathbb{N}}$ is a fundamental solution matrix. In S , we have

■
$$u - 1 \neq 0$$
 and $u + 1 \neq 0$ but $(u - 1)(u + 1) = u^2 - 1 = 0$.
■ $\mathbb{C}(x)(u) = L_1 \times L_2 \subset S$ with $L_1 = \mathbb{C}(x).(u - 1)$ and $L_2 = \mathbb{C}(x).(u + 1)$.

A general result : Let $\mathbb{C}(x) \subset S$ and $A \in GL_n(\mathbb{C}(x))$. There exists a Picard-Vessiot ring $R_A := \mathbb{C}(x)[U, \frac{1}{\det(U)}] \subset S$.

Application of the pseudofield structure

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem (Larson-Tarft-1990)

Let $u, v \in S$ two sequences each of them satisfying a difference equation over $\mathbb{C}(x)$ and such that uv = 0. Then, there exist $u_0, \ldots, u_{t-1}, v_0, \ldots, v_{t-1} \in S$ such that

• u (resp.v) is the interlacing of the u_i (resp. v_i)

for all i either $u_i = 0$ or $v_i = 0$

Theorem (Wibmer 2012)

et $u \in S$ satisfying a linear difference equation \mathcal{L} over $\mathbb{C}(x)$. The following are equivalent

Skolem Mahler Lech problem : the set {i|u(i) = 0} is a finite union of arithmetic progressions

there exists a Picard-Vessiot pseudofield for L inside S.

イロト イヨト イヨト イヨト

Application of the pseudofield structure

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem (Larson-Tarft-1990)

Let $u, v \in S$ two sequences each of them satisfying a difference equation over $\mathbb{C}(x)$ and such that uv = 0. Then, there exist $u_0, \ldots, u_{t-1}, v_0, \ldots, v_{t-1} \in S$ such that

- u (resp.v) is the interlacing of the u_i(resp. v_i)
- for all *i* either $u_i = 0$ or $v_i = 0$

Theorem (Wibmer 2012)

et $u \in S$ satisfying a linear difference equation \mathcal{L} over $\mathbb{C}(x)$. he following are equivalent

Skolem Mahler Lech problem : the set {i|u(i) = 0} is a finite union of arithmetic progressions

there exists a Picard-Vessiot pseudofield for L inside S.

・ロト ・日ト ・ヨト ・ヨト

Application of the pseudofield structure

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Theorem (Larson-Tarft-1990)

Let $u, v \in S$ two sequences each of them satisfying a difference equation over $\mathbb{C}(x)$ and such that uv = 0. Then, there exist $u_0, \ldots, u_{t-1}, v_0, \ldots, v_{t-1} \in S$ such that

- u (resp.v) is the interlacing of the u_i(resp. v_i)
- for all *i* either $u_i = 0$ or $v_i = 0$

Theorem (Wibmer 2012)

Let $u \in S$ satisfying a linear difference equation \mathcal{L} over $\mathbb{C}(x)$. The following are equivalent

Skolem Mahler Lech problem : the set {i|u(i) = 0} is a finite union of arithmetic progressions

• there exists a Picard-Vessiot pseudofield for $\mathcal L$ inside $\mathcal S$.

イロン 不同 とくほど 不同 とう

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Theorem (Larson-Tarft-1990)

Let $u, v \in S$ two sequences each of them satisfying a difference equation over $\mathbb{C}(x)$ and such that uv = 0. Then, there exist $u_0, \ldots, u_{t-1}, v_0, \ldots, v_{t-1} \in S$ such that

- u (resp.v) is the interlacing of the u_i(resp. v_i)
- for all *i* either $u_i = 0$ or $v_i = 0$

Theorem (Wibmer 2012)

Let $u \in S$ satisfying a linear difference equation \mathcal{L} over $\mathbb{C}(x)$. The following are equivalent

Skolem Mahler Lech problem : the set {i|u(i) = 0} is a finite union of arithmetic progressions

• there exists a Picard-Vessiot pseudofield for \mathcal{L} inside \mathcal{S} .

イロン 不同 とくほど 不同 とう

크

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Theorem (Larson-Tarft-1990)

Let $u, v \in S$ two sequences each of them satisfying a difference equation over $\mathbb{C}(x)$ and such that uv = 0. Then, there exist $u_0, \ldots, u_{t-1}, v_0, \ldots, v_{t-1} \in S$ such that

- u (resp.v) is the interlacing of the u_i(resp. v_i)
- for all *i* either $u_i = 0$ or $v_i = 0$

Theorem (Wibmer 2012)

Let $u \in S$ satisfying a linear difference equation \mathcal{L} over $\mathbb{C}(x)$. The following are equivalent

- Skolem Mahler Lech problem : the set {i|u(i) = 0} is a finite union of arithmetic progressions
- there exists a Picard-Vessiot pseudofield for \mathcal{L} inside \mathcal{S} .

イロト イヨト イヨト イヨト

æ

Comparing "special functions" and "abstract solutions"

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Let (K, σ) be a σ -field with K^{σ} algebraically closed and $A \in \operatorname{GL}_n(K)$. Let L be a σ -field and let $Z \in L^n$ anon zero solution of $\sigma(Y) = AY$.

Then, there exists a Picard-Vessiot extension for $\sigma(Y) = AY$ containing Z.

xamples

 $K = \bigcup_{n \in \mathbb{N}} \mathbb{C}(z^{1/p^n})$ and $\sigma(f(z)) = f(z^p)$. Generating series for automatic sequences belong to some $L = \mathbb{C}((z^{1/p^k}))$. One has $L^{\sigma} = \mathbb{C}$.

・ロト ・日ト ・ヨト ・ヨト

Comparing "special functions" and "abstract solutions"

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group

Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields : Let (K, σ) be a σ -field with K^{σ} algebraically closed and $A \in \operatorname{GL}_n(K)$. Let L be a σ -field and let $Z \in L^n$ anon zero solution of $\sigma(Y) = AY$. *First case* : $L^{\sigma} = K^{\sigma}$

Then, there exists a Picard-Vessiot extension for $\sigma(Y) = AY$ containing Z.

xamples

 $K = \bigcup_{n \in \mathbb{N}} \mathbb{C}(z^{1/p^n})$ and $\sigma(f(z)) = f(z^p)$. Generating series for automatic sequences belong to some $L = \mathbb{C}((z^{1/p^k}))$. One has $L^{\sigma} = \mathbb{C}$.

・ロト ・日ト ・ヨト ・ヨト

Comparing "special functions" and "abstract solutions"

An overview of difference Galois theory

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and

examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Let (K, σ) be a σ -field with K^{σ} algebraically closed and $A \in \operatorname{GL}_n(K)$. Let L be a σ -field and let $Z \in L^n$ anon zero solution of $\sigma(Y) = AY$. *First case*: $L^{\sigma} = K^{\sigma}$

Then, there exists a Picard-Vessiot extension for $\sigma(Y) = AY$ containing Z.

Examples

 $K = \bigcup_{n \in \mathbb{N}} \mathbb{C}(z^{1/p^n})$ and $\sigma(f(z)) = f(z^p)$. Generating series for automatic sequences belong to some $L = \mathbb{C}((z^{1/p^k}))$. One has $L^{\sigma} = \mathbb{C}$.

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equations and systems

Picard-Vessiot Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vession pseudofields :

Second case : $L^{\sigma} \neq K^{\sigma}$

If Z satisfies an algebraic relation over K, there exists a Picard-Vessiot extension for $\sigma(Y) = AY$ where a solution vector satisfies the same relation.

xamples

 $\mathcal{C} = \mathbb{C}(x) \subset \operatorname{Mer}(\mathbb{C}) = L$ with $\sigma(f(x)) = f(x+1)$. Then $\mathbb{C}(x)^{\sigma} = \mathbb{C} \neq \operatorname{Mer}(\mathbb{C})^{\sigma}$. If $\Gamma(x)$ is algebraic over $\mathbb{C}(x)$ here exists a Picard-Vessiot extension for $\sigma(y) = xy$ containing a non zero solution algebraic solution.

イロト イヨト イヨト イヨト

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vession Field extensions

Galois group Definitions and examples Galois correspondance

Some applications

Picard Vessiot pseudofields :

Second case : $L^{\sigma} \neq K^{\sigma}$

If Z satisfies an algebraic relation over K, there exists a Picard-Vessiot extension for $\sigma(Y) = AY$ where a solution vector satisfies the same relation.

Examples

 $K = \mathbb{C}(x) \subset \operatorname{Mer}(\mathbb{C}) = L \text{ with } \sigma(f(x)) = f(x+1).$ Then $\mathbb{C}(x)^{\sigma} = \mathbb{C} \neq \operatorname{Mer}(\mathbb{C})^{\sigma}$. If $\Gamma(x)$ is algebraic over $\mathbb{C}(x)$ there exists a Picard-Vessiot extension for $\sigma(y) = xy$ containing a non-zero solution algebraic solution

イロト イヨト イヨト イヨト

크

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessio Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vessiot pseudofields :

Second case : $L^{\sigma} \neq K^{\sigma}$

If Z satisfies an algebraic relation over K, there exists a Picard-Vessiot extension for $\sigma(Y) = AY$ where a solution vector satisfies the same relation.

Examples

 $K = \mathbb{C}(x) \subset \operatorname{Mer}(\mathbb{C}) = L$ with $\sigma(f(x)) = f(x+1)$. Then $\mathbb{C}(x)^{\sigma} = \mathbb{C} \neq \operatorname{Mer}(\mathbb{C})^{\sigma}$. If $\Gamma(x)$ is algebraic over $\mathbb{C}(x)$ there exists a Picard-Vessiot extension for $\sigma(y) = xy$ containing a non zero solution algebraic solution.

> Charlotte Hardouin

Motivations

Elementary proof of transcendence Galois theoretic proof

Algebraic framework

Difference algebra Difference equation and systems

Picard-Vessio Field extensions

Galois group Definitions and examples Galois

Some applications

Picard Vessiot pseudofields :

Second case : $L^{\sigma} \neq K^{\sigma}$

If Z satisfies an algebraic relation over K, there exists a Picard-Vessiot extension for $\sigma(Y) = AY$ where a solution vector satisfies the same relation.

Examples

 $K = \mathbb{C}(x) \subset \operatorname{Mer}(\mathbb{C}) = L$ with $\sigma(f(x)) = f(x+1)$. Then $\mathbb{C}(x)^{\sigma} = \mathbb{C} \neq \operatorname{Mer}(\mathbb{C})^{\sigma}$. If $\Gamma(x)$ is algebraic over $\mathbb{C}(x)$ there exists a Picard-Vessiot extension for $\sigma(y) = xy$ containing a non zero solution algebraic solution.