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MAPS, EULERIAN MAPS AND ORIENTATIONS

A planar map is a proper embedding of a connected graph on the
surface of a sphere.
An Eulerian map is a planar map with all vertices of even degree.
An Eulerian orientation is an oriented Eulerian map in which
each vertex has equal in-degree and out-degree
A 4-valent Eulerian orientation has each vertex obeying the
ice-rule, so is in the 6-vertex model universality class
This problem was studied by Kostov and Zinn-Justin (2000).
Kostov gives

log Z ∼ c(T − Tc)
2

log(T − Tc)
.

For Eulerian maps the o.g.f. corresponds to the derivative of
log Z, so should behave as (T − Tc)/log(T − Tc).
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EULERIAN ORIENTATIONS

The generating function for the number of rooted planar Eulerian
maps is just (Tutte, 1963)

M(t) =
8t2 + 12t − 1 + (1− 8t)3/2

32t2 .

Planar maps with additional structure are much studied in both
enumerative combinatorics and mathematical physics.

Eulerian orientations have recently been studied by Bonichon,
Bousquet-Mélou, Dorbec and Pennarun (Europ. J. Combin. 65
(2017) 59-91.)

They focus on Eulerian orientations counted by edges, and on
4-valent Eulerian orientations counted by vertices.
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Figure shows a rooted Eulerian map and a rooted Eulerian orientation.
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APPROACH OF BONICHON ET AL.

They count by generating a sequence of subsets and supersets,
indexed by k, each of which have algebraic o.g.fs.

At order k each subset gives coefficients correct to order
O(zk+2), and in this way they calculate the first 15 terms.

This approach is of exponential complexity, and they found the
growth constant 11.56 ≤ µ ≤ 13.005 and is around 12.5.

We have developed a polynomial-time algorithm, and used this
to generate 100 terms in the generating functions.

Analysing these series, we conjecture that the growth constant
for Eulerian orientations counted by edges is exactly 4π, and for
4-valent Eulerian orientations counted by vertices is 4

√
3π.

Both behave as A(1− µz)/log(1− µz).
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APPROACH OF ELVEY PRICE AND G.

Let U(x) be the ogf for Eulerian orientations, counted by edges.
We find a system of functional equations which gives the
generating function U(x).

Similarly, we find a system of functional equations for the ogf
A(x) for 4-valent planar Eulerian orientations, counted by
vertices.

In each case these functional equations give rise to a polynomial
time algorithm for computing the coefficients.

The key idea is to define a class of maps in bijection with
Eulerian orientations, and count the maps.
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APPROACH OF ELVEY PRICE AND G.

Define a numbered rooted planar map (N-map) to be a rooted
planar map in which each vertex is labelled by a number such
that the root vertex is labelled by 0 and any two vertices which
are joined by an edge have labels differing by 1.

Planar rooted Eulerian orientations with n edges are in bijection
with N-maps with n edges, so that we just need to count N-maps
by edges.

Proposition
For any positive integer n, the number of N-maps with n edges equals
the number of rooted orientations with n edges. Also, the number of
N-maps with n edges, where each face has degree 4 is equal to the
number of 4-valent rooted orientations with n edges.
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An example of the transformation between an N-map (left of diagram) and
the corresponding Eulerian orientation (right of diagram).
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PROOF

Proof.
Given an N-map, construct a directed map by orienting each edge
from the lower number to the higher number. Around each face, the
number of clockwise edges is equal to the number of anticlockwise
edges. Hence the dual of this map (where the orientations of the edges
are defined by rotating the original edges 90◦ clockwise) is an
Eulerian orientation. Reversing each of these steps shows that that
this transformation is bijective. Hence, the number of N-maps with n
edges is equal to the number of rooted Eulerian orientations with n
edges. Using the same bijection, the number of 4-valent rooted
Eulerian orientations with n edges is equal to the number of N-maps
with n edges, where each face has degree 4.
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THE 4-VALENT CASE

We define an operation called a contraction on some vertices,
some of which are highlighted.

The root-0 vertex, v0, is the only contracted vertex.

We need to define three catalytic variables:

a is conjugate to the number of highlighted corners in those
maps in which the root-0 vertex, v0, is the only contracted vertex.

b is conjugate to the degree of the adjacent root-1 vertex v1.

c is conjugate to the half-degree of the outer face.

x is conjugate to the number of edges.

Counting planar Eulerian orientations. Tony Guttmann
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These series are characterised by the following system of equations:

G(x, b, c) = 1 + Λz(P(x, z, b, c)),

J(x, c) = G(x, 1, c),

P(x, a, b, c) = x2b2 P(x, a, b, c)− P(x, a, 1, c)

b− 1
+ xbP(x, a, b, c)(a + 2[c1]G(x, b, c))

+ xbc(1 + P(x, a, 1, c))G(x, b, c),

Λz (zn) = [cn]J(x, c) for n ≥ 0.

The generating function K(x) is given by the equation

K(x) =
1
x

[c1]J(x, c).

Counting planar Eulerian orientations. Tony Guttmann
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Since there are only finitely many such maps with any given number
of vertices, each of these generating functions is a series in x where
each coefficient is a polynomial in the other variables. The first few
terms of each series are as follows:

J(x, c) = 1 + cx + 2c2x2 + (4c + 5c3)x3 + . . .

G(x, b, c) = 1 + cbx + (bc2 + b2c2)x2+

(2b2c + 2b3c + 2bc3 + 2b2c3 + b3c3)x3 + . . .

P(x, a, b, c) = bcx + (ab2c + bc2 + b2c2)x2+

x3(a2b3c + ab3c2 + ab2c2 + abc2 + b3c3 + 2b3c + 2b2c3 + b2c + 2bc3) + . . .

Counting planar Eulerian orientations. Tony Guttmann
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CALCULATING THE COEFFICIENTS FROM THESE

EQUATIONS

We use a dynamic program to calculate the coefficients in
polynomial time.

For 4-valent Eulerian orientations counted by vertices, if we
calculate the coefficient of xn in each of the functions P, G, J in
that order, for n = 0, 1, 2, . . . , then each coefficient is determined
only by values which have been previously calculated.

The coefficients were calculated modulo a prime smaller than
231, repeated for several different primes, sufficient to calculate
the coefficient by use of the Chinese Remainder Theorem.

We calculated 90 terms of the o.g.f. for Eulerian orientations
counted by edges U(x), and 100 terms for the o.g.f. for 4-valent
Eulerian orientations counted by vertices, A(x).
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SERIES ANALYSIS 101. RATIO METHOD.

F(z) =
∑

n

cn · zn ∼ C · (1− z/zc)
−γ ,

cn ∼
C

Γ(γ)
· z−n

c · nγ−1.

rn = cn
cn−1

= 1
zc

(
1 + γ−1

n + o(1
n)
)
.
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Ratios vs. 1/n for triang. SAPs. Inter/grad 1/zc, γ
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SERIES ANALYSIS 101. DIFFERENTIAL APPROXIMANTS.

∑M
k=0 Qk(z)(z d

dz)kF̃(z) = P(z)

The singularities of F̃(z) are approximated by zeros
zi, i = 1, . . . ,NM of QM(z).

Critical exponents γi from the indicial equation. If only a single
root at zi,

γi = M − 1− QM−1(zi)

ziQ′M(zi)
.
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EXAMPLE OF DIFFERENTIAL APPROXIMANTS.

Critical point and exponent estimates for self-avoiding polygons. Numbers in
parentheses give the uncertainty in the last quoted digits.

L Second order DA Third order DA
x2

c 2 − α x2
c 2 − α

0 0.29289321854(19) 1.50000065(41) 0.29289321865(12) 1.50000040(28)
5 0.29289321875(21) 1.50000010(59) 0.29289321852(48) 1.50000041(99)
10 0.29289321855(23) 1.50000060(48) 0.29289321878(32) 1.49999999(97)
15 0.29289321859(19) 1.50000054(43) 0.29289321861(37) 1.50000035(67)
20 0.29289321866(15) 1.50000038(33) 0.29289321860(21) 1.50000049(43)

Counting planar Eulerian orientations. Tony Guttmann



MIN2Col

ANALYSING EULERIAN ORIENTATION SERIES.

Analysing our series by the method of differential approximants
(DAs), we assumed a power-law singularity of the form

f (x) ∼ C(1− x/xc)
α.

For U(x) we found the closest singularity to the origin to be at
xc ≈ 0.07957736, with an exponent around α ≈ 1.24. However there
was a second very close singularity at x ≈ 0.0795789, with an
exponent around 2.26, and a third, less precisely located singularity at
around x ≈ 0.0798. 1/4π = 0.0795774 · · · .
This behaviour, where one has two singularities very close together,
with an exponent separated by about 1.0, is known to be characteristic
of a confluent singularity involving a logarithmic term.
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SWITCH TO RATIO METHOD

If the generating function behaves as A(1− µx)/ log(1− µx), then

[xn]f (x) =
c · µn

n2

(
1

log2 n
+

a
log3 n

+
b

log4 n
+

c
log5 n

+ o
(

1
log5 n

))
.

(1)
Logs make life difficult!
The ratio of successive coefficients is

rn =
[xn]f (x)

[xn−1]f (x)
= µ

(
1− 2

n
− 2

n log n

(
1 +

c1

log n
+

c2

log2 n
+

c3

log3 n

)
+ o

(
1

n log4 n

))
.

Ratios for U(x) and A(x) plotted against 1/n below. Note curvature.
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RATIO PLOTS

Ratio plot of coefficients of U(x). Ratio plot of coefficients of A(x).
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REFINED RATIOS

If we eliminate the O(1/n) term by constructing linear intercepts,

ln = n·rn−(n−1)·rn−1 = µ

(
1 +

2
n log2 n

+
4c1

n log3 n
+

6c2

n log4 n
+ · · ·

)

Lin. int. of ratios vs. 1/n log2 n. Lin. int. of ratios vs. 1/n log2 n.
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GETTING MORE RATIOS

Gradient wrong – we are far from asymtopia. We need more terms!
Not realistic to get vastly more terms exactly, but we can get them
approximately with high enough precision for our purposes by using
the method of series extension.
The idea is simply to use the method of differential approximants to
predict subsequent ratios/terms.
Every differential approximant naturally reproduces exactly all
coefficients used in its derivation.
Being a D-finite differential equation, it implies the value of all
subsequent coefficients.
These subsequent coefficients will usually be approximate.
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GETTING MORE RATIOS II

The first approximate coefficient will be the most accurate, with
accuracy declining with increasing order of predicted coefficients.
In practice we construct many DAs. We then calculate the average of
the predicted coefficients (or ratios) across all constructed DAs, as
well as their standard deviation.
We have experimentally found the true error to be between 1 and 2
standard deviations.
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THE METHOD OF SERIES EXTENSION BY DIFFERENTIAL

APPROXIMANTS

The number of terms we can predict varies from problem to problem.
In this case we are extremely fortunate, in that the standard deviation
of the coefficient estimates increases extremely slowly, and so we are
confident in predicting 1000 extra ratios for both series, which we
expect to be accurate to more than 10 significant digits.
Using these additional 1000 terms, we reconstruct the above plots.
The locus passes through a maximum, as expected, and the linear
intercepts are now decreasing with increasing n, as predicted. We also
show the same plot, but with the abscissa restricted to ratios
corresponding to 700 ≤ n ≤ 1100. The value of the ordinate at the
origin is precisely 4

√
3π, and the extrapolated locus is convincingly

going through the origin.
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Plot of linear intercepts of ratios of
A(x) vs. 1/n log2 n, using an extra
1000 ratios.

Plot of linear intercepts of ratios of
A(x) vs. 1/n log2 n, using ratios 700
to 1100.

Counting planar Eulerian orientations. Tony Guttmann



MIN2Col

The corresponding plots for planar orientations where the value of the
ordinate at the origin is precisely 4π is:

Plot of linear intercepts of ratios of
U(x) vs. 1/n log2 n, using an extra
1000 ratios.

Plot of linear intercepts of ratios of
U(x) vs. 1/n log2 n, using ratios 700
to 1100.
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ESTIMATING THE EXPONENT I

Now that we have good grounds to conjecture the exact value of the
critical points, we are in a better position to estimate the exponent. If

f (x) = (1− µ · x)−α
(

1
µ · x

log
1

1− µ · x

)β
,

then

[xn]f (x) =
µn · nα−1

Γ(α)
(log n)β

(
1 +

c1

log n
+

c2

log2 n
+

c3

log3 n
+

c4

log4 n
+ · · ·

)
,

where

ck =

(
β

k

)
Γ(α)

dk

dsk
1

Γ(s)

∣∣∣∣
s=α

.
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When α is a negative integer the Γ function diverges, so that certain
constants vanish. In particular, provided that α is a negative integer
and β is not a positive integer, one has

[xn]f (x) =
µn · nα−1

Γ(α)
(log n)β

(
c1

log n
+

c2

log2 n
+

c3

log3 n
+

c4

log4 n
+ · · ·

)
,

Then the ratio of successive coefficients is

rn =
[xn]f (x)

[xn−1]f (x)
= µ

(
1 +

α− 1
n

+
β − 1
n log n

− c1

n log2 n
+ o

(
1

n log2 n

))
,

So one can estimate α from the sequence

αn =

(
rn

µ
− 1
)
· n + 1 = α+

β − 1
log n

− c1

log2 n
+ o

(
1

log2 n

)
.

Plots of αn against 1/ log n for both U(x) and A(x) respectively are
shown below, and it can be seen that having many more than 100
terms is essential. In fact the minimum in both plots occurs at around
n = 100, and it is only with our extended data that the limit α = −1
becomes plausible.
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Plot of exponent α estimates from
U(x) vs. 1/ log n, using an extra
1000 ratios.

Plot of exponent α estimates from
A(x) vs. 1/ log n, using an extra 1000
ratios.

Counting planar Eulerian orientations. Tony Guttmann



MIN2Col

To take into account higher-order terms in the asymptotics, we
attempted a linear fit to the assumed form (also assuming α is a
negative integer, otherwise β replaces β − 1),(

rn

µ
− 1
)
· n + 1 = α+

β − 1
log n

− c1

log2 n
+ o

(
1

log2 n

)
. (2)

We did this by solving the linear system given by setting
n = m− 1, n = m, n = m + 1 in the preceding equation, and solving
for α, β, c1, with m ranging from 20 to the maximum possible value
1100. We obtain an m-dependent sequence of estimates of the terms
α, β, c1, which we show plotted against appropriate powers of 1/m.
These are shown below for planar orientations. (The corresponding
plots for 4-valent orientations are similar in appearance, so are not
shown).
In this way we see that both α and β are plausibly going to −1, as
appropriate for a singularity of the form

c · µ · x · (1− µ · x)

log(1− µ · x)
.
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Plot of exponent α estimates from
eqn (2).

Plot of exponent β−1 estimates from
eqn (2).
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Finally, if we accept that α = −1, we can refine the estimate of β,
since in that case(

rn

µ
− 1 +

2
n

)
n log n = β − 1 + O

(
1

log n

)
. (3)

This curve is plausibly tending to β = −1, though the fact that the
abscissa is 1/ log n means that one would really need many more
terms, around 22,000, even to get to 0.1 on the abscissa.

Plot of exponent β estimates from eqn (3).

Counting planar Eulerian orientations. Tony Guttmann



MIN2Col

CONCLUSION

We conjecture that both general Eulerian orientations enumerated by
edges, U(x) and 4-valent Eulerian orientations enumerated by vertices
A(x) (generalised 6-vertex model) have a singularity structure of the
form

c · µ · x · (1− µ · x)

log(1− µ · x)
.

For U(x), µ = 4π, and for A(x), µ = 4
√

3π.
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POSTSCRIPT

It’s all true!
As for the method of series extension
The ratio c998/c997 is exactly
21.718170986407648634371728755726..... Our prediction was
21.718170986407648634371728755826.....
That is to say, it differs only in the 30th digit!
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SOLUTIONS ARE DIFFERENTIALLY ALGEBRAIC

General:
432 ∗ z2 − 864 ∗ z + 192 + (972 ∗ z5 − 648 ∗ z4 + 120 ∗ z3 − 4 ∗ z2) ∗
diff (diff (F(z), z), z) + (3240 ∗ z4 − 3024 ∗ z3 + 648 ∗ z2 − 24 ∗ z) ∗
diff (F(z), z) + (−648 ∗ z6 + 108 ∗ z5) ∗ diff (F(z), z)2 − 54 ∗ z8 ∗
diff (F(z), z)3 +(1944∗z3−2592∗z2 +528∗z−24)∗F(z)+(972∗z6−
324∗z5 +6∗z4)∗F(z)∗diff (diff (F(z), z), z)+(1944∗z5−1296∗z4 +
36 ∗ z3) ∗F(z) ∗ diff (F(z), z)− 486 ∗ z7 ∗F(z) ∗ diff (F(z), z)2 + (972 ∗
z4− 972∗ z3 + 36∗ z2)∗F(z)2 + 243∗ z7 ∗F(z)2 ∗diff (diff (F(z), z), z)
4-valent:
2+(16∗z3−z2)∗diff (diff (F(z), z), z)+(52∗z2−4∗z)∗diff (F(z), z)+
24 ∗ z4 ∗ diff (F(z), z)2− 16 ∗ z6 ∗ diff (F(z), z)3 + (−2 + 8 ∗ z) ∗F(z) +
(−64∗ z4 + 2∗ z3)∗F(z)∗diff (diff (F(z), z), z) + (−160∗ z3 + 8∗ z2)∗
F(z)∗diff (F(z), z)−96∗ z5 ∗F(z)∗diff (F(z), z)2 +(−32∗ z2 +4∗ z)∗
F(z)2+64∗z5∗F(z)2∗diff (diff (F(z), z), z)+64∗z4∗F(z)2∗diff (F(z), z)
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