How to prove algorithmically

 the transcendence of D-finite power series
Alin Bostan

Cnでa

Algebraic and transcendental power series

> In contrast with the "hard" theory of arithmetic transcendence, it is usually "easy" to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]
\triangleright Definition: A power series f in $\mathrm{Q}[[t]]$ is called algebraic if it is a root of some algebraic equation $P(t, f(t))=0$, where $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\}$.
Otherwise, f is called transcendental.
\triangleright Goal: Given $f \in \mathbb{Q}[[t]]$, either in explicit form (by a formula), or in implicit form (by a functional equation), determine its algebraicity or transcendence.

Motivations

- Number theory: first step towards proving the transcendence of a complex number is to prove that some power series is transcendental
- Combinatorics: nature of generating functions may reveal strong underlying structures
- Computer science: are algebraic power series (intrinsically) easier to manipulate?

An important particular case: transcendence of hypergeometric series

An important particular case: transcendence of hypergeometric series

$$
f(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, f(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\}$

An important particular case: transcendence of hypergeometric series

$$
f(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, f(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\}$
$\triangleright D$-finite if $c_{r}(t) f^{(r)}(t)+\cdots+c_{0}(t) f(t)=0$ for some $c_{i} \in \mathbb{Z}[t]$, not all zero

An important particular case: transcendence of hypergeometric series

$$
f(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, f(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\}$
$\triangleright D$-finite if $c_{r}(t) f^{(r)}(t)+\cdots+c_{0}(t) f(t)=0$ for some $c_{i} \in \mathbb{Z}[t]$, not all zero
\triangleright hypergeometric if $\frac{a_{n+1}}{a_{n}} \in \mathbb{Q}(n)$. E.g., $\ln (1-t) ; \frac{\arcsin (\sqrt{t})}{\sqrt{t}} ;(1-t)^{\alpha}, \alpha \in \mathbb{Q}$

An important particular case: transcendence of hypergeometric series

$$
f(t)=\sum_{n=0}^{\infty} a_{n} t^{n} \in \mathbb{Q}[[t]] \text { is }
$$

\triangleright algebraic if $P(t, f(t))=0$ for some $P(x, y) \in \mathbb{Z}[x, y] \backslash\{0\}$
$\triangleright D$-finite if $c_{r}(t) f^{(r)}(t)+\cdots+c_{0}(t) f(t)=0$ for some $c_{i} \in \mathbb{Z}[t]$, not all zero
\triangleright hypergeometric if $\frac{a_{n+1}}{a_{n}} \in \mathbb{Q}(n)$. E.g., $\ln (1-t) ; \frac{\arcsin (\sqrt{t})}{\sqrt{t}} ;(1-t)^{\alpha}, \alpha \in \mathbb{Q}$

Theorem [Schwarz, 1873; Beukers, Heckman, 1989]
Characterization of $\{$ hypergeom $\} \cap\{$ algebraic $\} \longrightarrow$ nice transcendence test

Stanley's problem

Design an algorithm suitable for computer implementations which decides if a D-finite power series —represented by a linear differential equation with polynomial coefficients and suitable initial conditionsis transcendental, or not.
[Stanley, 1980]

Stanley's problem

Design an algorithm suitable for computer implementations which decides if a D-finite power series —represented by a linear differential equation with polynomial coefficients and suitable initial conditionsis transcendental, or not.
[Stanley, 1980]
E.g.,

$$
f=\ln (1-t)=-t-\frac{t^{2}}{2}-\frac{t^{3}}{3}-\frac{t^{4}}{4}-\frac{t^{5}}{5}-\frac{t^{6}}{6}-\cdots
$$

is D-finite and can be represented by the second-order equation

$$
\left((t-1) \partial_{t}^{2}+\partial_{t}\right)(f)=0, \quad f(0)=0, f^{\prime}(0)=-1
$$

The algorithm should recognize that f is transcendental.

Stanley's problem

Design an algorithm suitable for computer implementations which decides if a D-finite power series —represented by a linear differential equation with polynomial coefficients and suitable initial conditionsis transcendental, or not.
[Stanley, 1980]
\triangleright Notation: For a D-finite series f, we write $L_{f}^{\min }$ for its differential resolvent,
i.e. the least order monic differential operator in $\mathbb{Q}(t)\left\langle\partial_{t}\right\rangle$ that cancels f.

Stanley's problem

Design an algorithm suitable for computer implementations which decides if a D-finite power series -represented by a linear differential equation with polynomial coefficients and suitable initial conditionsis transcendental, or not.
[Stanley, 1980]
\triangleright Notation: For a D-finite series f, we write $L_{f}^{\min }$ for its differential resolvent, i.e. the least order monic differential operator in $\mathbb{Q}(t)\left\langle\partial_{t}\right\rangle$ that cancels f.
\triangleright Warning: $L_{f}^{\min }$ is not known a priori; only some multiple L of it is given.

Stanley's problem

Design an algorithm suitable for computer implementations which decides if a D-finite power series -represented by a linear differential equation with polynomial coefficients and suitable initial conditionsis transcendental, or not.
[Stanley, 1980]
\triangleright Notation: For a D-finite series f, we write $L_{f}^{\min }$ for its differential resolvent, i.e. the least order monic differential operator in $\mathbb{Q}(t)\left\langle\partial_{t}\right\rangle$ that cancels f.
\triangleright Warning: $L_{f}^{\min }$ is not known a priori; only some multiple L of it is given.
\triangleright Difficulty: $L_{f}^{\min }$ might not be irreducible. E.g., $L_{\ln (1-t)}^{\min }=\left(\partial_{t}+\frac{1}{t-1}\right) \partial_{t}$.

Three examples

(A) Apéry's power series [Apéry, 1978] (used in his proof of $\zeta(3) \notin \mathbb{Q}$)

$$
\sum_{n} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} t^{n}=1+5 t+73 t^{2}+1445 t^{3}+33001 t^{4}+\cdots
$$

(B) GF of trident walks in the quarter plane

$$
\sum_{n} a_{n} t^{n}=1+2 t+7 t^{2}+23 t^{3}+84 t^{4}+301 t^{5}+1127 t^{6}+\cdots
$$

where $a_{n}=\#\left\{\begin{array}{l}\text {. } \\ .\end{array}\right.$
(C) GF of a quadrant model with repeated steps

$$
\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+520 t^{6}+\cdots
$$

where $a_{n}^{n}=\#\left\{\begin{array}{l}\text { a } \\ \swarrow\end{array}\right.$ - walks of length n in \mathbb{N}^{2} from $(0,0)$ to $\left.(\star, 0)\right\}$

Three examples

(A) Apéry's power series [Apéry, 1978] (used in his proof of $\zeta(3) \notin \mathrm{Q}$)

$$
\sum_{n} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} t^{n}=1+5 t+73 t^{2}+1445 t^{3}+33001 t^{4}+\cdots
$$

(B) GF of trident walks in the quarter plane

$$
\sum_{n} a_{n} t^{n}=1+2 t+7 t^{2}+23 t^{3}+84 t^{4}+301 t^{5}+1127 t^{6}+\cdots
$$

where $a_{n}=\#\left\{\mathcal{S}^{-}\right.$. - walks of length n in \mathbb{N}^{2} starting at $\left.(0,0)\right\}$
(C) GF of a quadrant model with repeated steps

$$
\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+520 t^{6}+\cdots
$$

where $a_{n}^{n}=\#\left\{\underset{\sim}{n}\right.$ - walks of length n in \mathbb{N}^{2} from $(0,0)$ to $\left.(\star, 0)\right\}$

Question: How to prove that these three power series are transcendental?

Main properties of algebraic series

$$
\text { If } f=\sum_{n} a_{n} t^{n} \in \mathbb{Q}[[t]] \text { is algebraic, then }
$$

- [Algebraic prop.] f is D-finite; $L_{f}^{\min }$ has a basis of algebraic solutions [Abel, 1827; Tannery, 1875]
- [Arithmetic prop.]
f is globally bounded
[Eisenstein, 1852]

$$
\exists C \in \mathbb{N}^{*} \text { with } a_{n} C^{n} \in \mathbb{Z} \text { for } n \geq 1
$$

- [Analytic prop.]
$\left(a_{n}\right)_{n}$ has "nice" asymptotics [Puiseux, 1850; Flajolet, 1987]
Typically, $a_{n} \sim \kappa \rho^{n} n^{\alpha}$ with $\alpha \in \mathbb{Q} \backslash \mathbb{Z}_{<0}$ and $\rho \in \overline{\mathbb{Q}}$ and $\kappa \cdot \Gamma(\alpha+1) \in \overline{\mathbb{Q}}$

... and resulting transcendence criteria

$$
\text { For } f=\sum_{n} a_{n} t^{n} \in \mathbb{Q}[[t]] \text {, if one of the following holds }
$$

- f is not D-finite
- f is not globally bounded

$$
\begin{array}{r}
\sum_{n} \frac{1}{n} t^{n} \\
\sum_{n} \sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2} t^{n}(\dagger)
\end{array}
$$

- $\left(a_{n}\right)_{n}$ has incompatible asymptotics
then f is transcendental
$\overline{(\dagger)} a_{n} \sim \frac{(1+\sqrt{2})^{4 n+2}}{2^{9 / 4} \pi^{3 / 2} n^{3 / 2}}$ and $\frac{\Gamma(-1 / 2)}{\pi^{3 / 2}}=-\frac{2}{\pi} \notin \overline{\mathbf{Q}}$

Singer's algorithm (I)

Problem: Decide if all solutions of a given equation L of order n are algebraic

- Starting point [Jordan, 1878]: If so, then for some solution y of $L, u=y^{\prime} / y$ has alg. degree at most $(49 n)^{n^{2}}$ and satisfies a Riccati equation of order $n-1$

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
(1) Decide if the Riccati equation has an algebraic solution u of degree at most $(49 n)^{n^{2}}$
degree bounds + algebraic elimination
(2) (Abel's problem) Given an algebraic u, decide whether $y^{\prime} / y=u$ has an algebraic solution y
[Risch 1970], [Baldassarri \& Dwork 1979]

Singer's algorithm (I)

Problem: Decide if all solutions of a given equation L of order n are algebraic

- Starting point [Jordan, 1878]: If so, then for some solution y of $L, u=y^{\prime} / y$ has alg. degree at most $(49 n)^{n^{2}}$ and satisfies a Riccati equation of order $n-1$

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
(1) Decide if the Riccati equation has an algebraic solution u of degree at most $(49 n)^{n^{2}}$
degree bounds + algebraic elimination
(2) (Abel's problem) Given an algebraic u, decide whether $y^{\prime} / y=u$ has an algebraic solution $y \quad$ [Risch 1970], [Baldassarri \& Dwork 1979]
\triangleright [Singer, 1979]: generalization to any input $L \quad \longrightarrow$ requires ODE factoring

Singer's algorithm (I)

Problem: Decide if all solutions of a given equation L of order n are algebraic

- Starting point [Jordan, 1878]: If so, then for some solution y of $L, u=y^{\prime} / y$ has alg. degree at most $(49 n)^{n^{2}}$ and satisfies a Riccati equation of order $n-1$

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]
(1) Decide if the Riccati equation has an algebraic solution u of degree at most $(49 n)^{n^{2}}$
degree bounds + algebraic elimination
(2) (Abel's problem) Given an algebraic u, decide whether $y^{\prime} / y=u$ has an algebraic solution y
[Risch 1970], [Baldassarri \& Dwork 1979]
\triangleright [Singer, 1979]: generalization to any input $L \quad \longrightarrow$ requires ODE factoring
\triangleright [Singer, 2014]: computation of $L^{\text {alg }}$, the factor of L whose solution space is spanned by all algebraic solutions of $L \quad \longrightarrow$ requires ODE factoring

Singer's algorithm (II)

Problem: Decide if a D-finite power series $f \in \mathbb{Q}[[t]]$, given by a differential equation $L(f)=0$ and sufficiently many initial terms, is transcendental.
(1) Compute $L^{\text {alg }}$
[Singer, 2014]
(2) Decide if $L^{\text {alg }}$ annihilates f
\triangleright Benefit: Solves (in principle) Stanley's problem.
\triangleright Drawbacks: Step 1 involves impractical bounds \& requires ODE factorization
\triangleright ODE factorization is effective
[Schlesinger, 1897], [Singer, 1981], [Grigoriev, 1990], [van Hoeij, 1997]
$\triangleright \ldots$ but possibly extremely costly [Grigoriev, 1990] $\exp \left(\left(\operatorname{bitsize}(L) 2^{n}\right)^{2^{n}}\right)$

New method: the basic idea

Problem: Decide if a D-finite power series $f \in \mathbb{Q}[[t]]$, given by a differential equation $L(f)=0$ and sufficiently many initial terms, is transcendental.

Basic remark: If $L_{f}^{\min }$ has a logarithmic singularity, then f is transcendental.
\triangleright Pros and cons: Avoids factorization of L, but requires to compute $L_{f}^{\min }$.

Ex. (A): Apéry's power series

$$
f(t)=\sum_{n} a_{n} t^{n}, \quad \text { where } a_{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}\binom{n+k}{k}^{2}
$$

\triangleright Creative telescoping:

$$
(n+1)^{3} a_{n}-(2 n+3)\left(17 n^{2}+51 n+39\right) a_{n+1}+(n+2)^{3} a_{n+2}=0, \quad a_{0}=1, a_{1}=5
$$

\triangleright Conversion from recurrence to differential equation $L(f)=0$, where

$$
L=\left(t^{4}-34 t^{3}+t^{2}\right) \partial_{t}^{3}+\left(6 t^{3}-153 t^{2}+3 t\right) \partial_{t}^{2}+\left(7 t^{2}-112 t+1\right) \partial_{t}+t-5
$$

$\triangleright L_{f}^{\min }=\frac{1}{t^{4}-34 t^{3}+t^{2}} L$ using L irreducible, or cf. new algorithm
\triangleright Basis of formal solutions of $L_{f}^{\min }$ at $t=0$:
$\left\{1+5 t+O\left(t^{2}\right), \ln (t)+(5 \ln (t)+12) t+O\left(t^{2}\right), \ln (t)^{2}+\left(5 \ln (t)^{2}+24 \ln (t)\right) t+O\left(t^{2}\right)\right\}$
\triangleright Conclusion: f is transcendental

Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers \& Pech, 2016]

\triangleright Computer-driven discovery and proof; no human proof yet
\triangleright Proof uses creative telescoping, ODE factorization, Singer's algorithm
\triangleright For models 5-10, asymptotics do not conclude. E.g. : $\Psi^{\sim}: a_{n} \sim \frac{4}{3 \sqrt{\pi}} \frac{4^{n}}{n^{1 / 2}}$

Ex．（B）：D－Finite quadrant models［B．，Chyzak，van Hoeij，Kauers \＆Pech，2016］

			IS	\mathfrak{S}	nature	asympt			OEIS	\mathfrak{S}	nature	asympt
1			A005566	$\stackrel{\$}{\downarrow}$	T	$\frac{4}{\pi} \frac{4}{n}$	13		A151275	込	T	$\frac{12 \sqrt{30}}{\pi} \frac{(2 \sqrt{6})^{n}}{n^{2}}$
2			A018224	义	T	$\frac{2}{\pi} \frac{4}{n}$	14		A151314	－	T	$\frac{\sqrt{6} \lambda \mu \mu^{5 / 2}}{5 \pi} \frac{(2 C)}{} n^{2}$
3			A151312	㳀	T	$\frac{\sqrt{6}}{\pi} \frac{6^{n}}{n}$	15		A151255	昘	T	$\frac{24 \sqrt{2}}{\pi} \frac{(2 \sqrt{2})^{n}}{n^{2}}$
4			A151331	䈅	T	8 $3 \pi \frac{8}{n}$	16		A151287	英	T	$\frac{2 \sqrt{2} A^{7 / 2}}{\pi} \frac{n^{2}}{(2 A)^{n}} n^{2}$
5			A151266	\％	T	$\frac{1}{2} \sqrt{\frac{3}{\pi} \frac{3}{}^{n^{n / 2}}}$	17		A001006	－	－A	$\frac{3}{2} \sqrt{\frac{3}{\pi}} \frac{3^{n}}{n^{3 / 2}}$
6			A151307	$\xrightarrow{4}$	T	$\frac{1}{2} \sqrt{\frac{5}{2 \pi} \frac{5^{n}}{n^{1 / 2}}}$	18		A129400	－	A	$\frac{3}{2} \sqrt{\frac{3}{\pi}} 6^{n^{n}} n^{3 / 2}$
7			A151291	T	T	$\frac{4}{3 \sqrt{\pi}} \frac{4^{n}}{n^{1 / 2}}$	19		A005558	S	T	$\frac{8}{\pi} \frac{4^{n}}{n^{2}}$
8			A151326	\％	T	$\frac{2}{\sqrt{3} \pi} \frac{6^{n}}{n^{1 / 2}}$						
9			A151302	式	T	$\frac{1}{3} \sqrt{\frac{5}{2 \pi}} \frac{5^{n}}{n^{1 / 2}}$	20		A151265	7	A	$\frac{2 \sqrt{2}}{\Gamma(1 / 4)} \frac{3^{n}}{n^{3 / 4}}$
10			A151329	笭	T	$\frac{1}{3} \sqrt{\frac{7}{3 \pi}} \frac{7^{n}}{n^{1 / 2}}$	21		A151278	$\xrightarrow{\text { 说 }}$	A	$\frac{3 \sqrt{3}}{\sqrt{2} \Gamma(1 / 4)} \frac{3^{n}}{n^{3 / 4}}$
11			A151261	㶱	T	$\frac{12 \sqrt{3}}{\pi} \frac{(2 \sqrt{3})^{n}}{n^{2}}$	22		A151323	盛	A	
12			A151297	或	T	$\frac{\sqrt{3} B^{7 / 2}}{2 \pi} \frac{(2 B)}{} n^{2}$	23		A060900	$\xrightarrow{\sim}$	A	$\frac{4 \sqrt{3}}{3 \Gamma(1 / 3)}{\frac{4}{}{ }^{n}}_{\frac{1}{2 / 3}}$

$$
A=1+\sqrt{2}, B=1+\sqrt{3}, C=1+\sqrt{6}, \lambda=7+3 \sqrt{6}, \mu=\sqrt{\frac{4 \sqrt{6}-1}{19}}
$$

\triangleright Asymptotics guessed by［B．，Kauers＇09］，proved by［Melczer，Wilson＇15］

Ex. (C): two difficult quadrant models with repeated steps

Case A

Case B

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

- GF is D-finite and transcendental in Case A.
- GF is algebraic in Case B.
\triangleright Computer-driven discovery and proof; no human proof yet.
\triangleright Proof uses Guess'n'Prove and new algorithm for transcendence. \triangleright All other criteria and algorithms fail or do not terminate.

The new method: a first version

Input: $f(t) \in \mathbb{Q}[[t]]$, given as the generating function of a binomial sum Output: T if $f(t)$ is transcendental, A if $f(t)$ is algebraic
(1) Compute an ODE L for $f(t)$
(2) Compute $L_{f}^{\min }$

Creative telescoping
degree bounds + diff. Hermite-Padé
(3) Decide if $L_{f}^{\min }$ has only algebraic solutions; if so return A , else return T . [Singer, 1979]
\triangleright Drawback: Step 3 can be very costly in practice.

The new method: an efficient version

Input: $f(t) \in \mathbb{Q}[[t]]$, given as the generating function of a binomial sum Output: T if $f(t)$ is transcendental, A if $f(t)$ is algebraic
(1) Compute an ODE L for $f(t)$
(2) Compute $L_{f}^{\min }$
degree bounds + diff. Hermite-Padé
(3) If $L_{f}^{\min }$ has a logarithmic singularity, return T ; otherwise return A
\triangleright This algorithm is always correct when it returns T; conjecturally, it is also always correct when it returns A
\triangleright Using p-curvatures and the Grothendieck-Katz conjecture (proved by [Katz, 1972] for Picard-Fuchs systems) yields an unconditional algorithm.

Central sub-task: computation of $L_{f}^{\min }$

Problem: Given a D-finite power series $f \in \mathbb{Q}[[t]]$ by a differential equation $L(f)=0$ and sufficiently many initial terms, compute its resolvent $L_{f}^{\min }$.
\triangleright Why isn't this easy? After all, it is just a differential analogue of:
Given an algebraic power series $f \in \mathbb{Q}[[t]]$
by an algebraic equation $P(t, f)=0$ and sufficiently many initial terms, compute its minimal polynomial $P_{f}^{\text {min }}$.
$\triangleright L_{f}^{\min }$ is a factor of L, but contrary to the commutative case:

- factorization of diff. operators is not unique $\partial_{t}^{2}=\left(\partial_{t}+\frac{1}{t-c}\right)\left(\partial_{t}-\frac{1}{t-c}\right)$
- ... and it is difficult to compute
- $\operatorname{deg}_{t} L_{f}^{\min } \gg \operatorname{deg}_{t} L$, due to apparent singularities $\quad t \partial_{t}-N \mid \partial_{t}^{N+1}$

Central sub-task: computation of $L_{f}^{\min }$

\triangleright Strategy (inspired by the approach in [van Hoeij, 1997], itself based on ideas from [Chudnovsky, 1980], [Bertrand \& Beukers, 1982], [Ohtsuki, 1982])
(1) $L_{f}^{\min }$ is Fuchsian, so it can be written

$$
L_{f}^{\min }=\partial_{t}^{n}+\frac{a_{n-1}(t)}{A(t)} \partial_{t}^{n-1}+\cdots+\frac{a_{0}(t)}{A(t)^{n}}, \quad n \leq \operatorname{ord}(L)
$$

with $A(t)$ squarefree and $\operatorname{deg}\left(a_{n-i}\right) \leq \operatorname{deg}\left(A^{i}\right)-i$.
(2) $\operatorname{deg}(A)$ can be bounded in terms of n and (local) data of L (via apparent singularities and Fuchs' relation)
(3) Guess and Prove: For $n=1,2, \ldots$,
(1) Guess differential equation of order n for f (use bounds and linear algebra)
(2) Once found a nontrivial candidate, certify it, or go to previous step.

Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
Let $a_{n}=\#\left\{\mathscr{\sim}\right.$ - walks of length n in \mathbb{N}^{2} from $(0,0)$ to $\left.(\star, 0)\right\}$. Then $f(t)=\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+\cdots$ is transcendental.

Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
 $f(t)=\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+\cdots$ is transcendental.

Proof:
(1) Discover and certify a differential equation L for $f(t)$ of order 11 and degree 73
high-tech Guess'n'Prove
(2) If $\operatorname{ord}\left(L_{f}^{\text {min }}\right) \leq 10$, then $\operatorname{deg}_{t}\left(L_{f}^{\text {min }}\right) \leq 580$ apparent singularities
(3) Rule out this possibility differential Hermite-Padé approximants
(4) Thus, $L_{f}^{\min }=L$
(5) L has a log singularity at $t=0$, and so f is transcendental

Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]
 $f(t)=\sum_{n} a_{n} t^{n}=1+t+4 t^{2}+8 t^{3}+39 t^{4}+98 t^{5}+\cdots$ is transcendental.

Proof:
(1) Discover and certify a differential equation L for $f(t)$ of order 11 and degree 73
(2) If $\operatorname{ord}\left(L_{f}^{\min }\right) \leq 10$, then $\operatorname{deg}_{t}\left(L_{f}^{\min }\right) \leq 580$ high-tech Guess'n'Prove
(3) Rule out this possibility [Beckermann, Labahn, 1994]
(4) Thus, $L_{f}^{\min }=L$
(5) L has a log singularity at $t=0$, and so f is transcendental

Conclusions

- Simple, efficient and robust algorithmic method for transcendence
- Central sub-task: computation of $L_{f}^{\min } \longrightarrow$ useful in other contexts!
- Basic theoretical tool: Fuchs' relation
- Basic algorithmic tool: Guess'n'Prove via Hermite-Padé approximants + efficient computer algebra
- Brute-force / naive algorithms = hopeless on combinatorial examples

Open problem

Find a human proof for the following statement

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

$$
\left(a_{n}\right)_{n \geq 0}=(1,0,3,0,26,0,323,0,4830,0,80910, \ldots)
$$

Then

$$
a_{2 n}=\frac{6(6 n+1)!(2 n+1)!}{(3 n)!(4 n+3)!(n+1)!}
$$

Thanks for your attention!

