

Alin Bostan (Inria, France)

How to prove algorithmically the transcendence of D-finite power series

In contrast with the "hard" theory of arithmetic transcendence, it is usually "easy" to establish transcendence of functions.

[Flajolet, Sedgewick, 2009]

▷ Definition: A power series f in $\mathbb{Q}[[t]]$ is called *algebraic* if it is a root of some algebraic equation P(t, f(t)) = 0, where $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$. Otherwise, f is called *transcendental*.

▷ Goal: Given $f \in \mathbb{Q}[[t]]$, either in explicit form (by a formula), or in implicit form (by a functional equation), determine its *algebraicity* or *transcendence*.

- Number theory: first step towards proving the transcendence of a complex number is to prove that some power series is transcendental
- Combinatorics: nature of generating functions may reveal strong underlying structures
- Computer science: are algebraic power series (intrinsically) easier to manipulate?

 $f(t) = \sum_{n=0}^{\infty} a_n t^n \in \mathbb{Q}[[t]]$ is

▷ *algebraic* if P(t, f(t)) = 0 for some $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$

 $f(t) = \sum_{n=0}^{\infty} a_n t^n \in \mathbb{Q}[[t]]$ is

▷ algebraic if P(t, f(t)) = 0 for some $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$

 \triangleright *D-finite* if $c_r(t)f^{(r)}(t) + \cdots + c_0(t)f(t) = 0$ for some $c_i \in \mathbb{Z}[t]$, not all zero

 $f(t) = \sum_{n=0}^{\infty} a_n t^n \in \mathbb{Q}[[t]]$ is

▷ *algebraic* if P(t, f(t)) = 0 for some $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$

 \triangleright *D-finite* if $c_r(t)f^{(r)}(t) + \cdots + c_0(t)f(t) = 0$ for some $c_i \in \mathbb{Z}[t]$, not all zero

▷ hypergeometric if
$$\frac{a_{n+1}}{a_n} \in \mathbb{Q}(n)$$
. E.g., $\ln(1-t)$; $\frac{\arcsin(\sqrt{t})}{\sqrt{t}}$; $(1-t)^{\alpha}$, $\alpha \in \mathbb{Q}$

 $f(t) = \sum_{n=0}^{\infty} a_n t^n \in \mathbb{Q}[[t]]$ is

▷ algebraic if P(t, f(t)) = 0 for some $P(x, y) \in \mathbb{Z}[x, y] \setminus \{0\}$

 \triangleright *D-finite* if $c_r(t)f^{(r)}(t) + \cdots + c_0(t)f(t) = 0$ for some $c_i \in \mathbb{Z}[t]$, not all zero

▷ hypergeometric if
$$\frac{a_{n+1}}{a_n} \in \mathbb{Q}(n)$$
. E.g., $\ln(1-t)$; $\frac{\arcsin(\sqrt{t})}{\sqrt{t}}$; $(1-t)^{\alpha}$, $\alpha \in \mathbb{Q}$

Theorem [Schwarz, 1873; Beukers, Heckman, 1989]Characterization of { hypergeom } \cap { algebraic } \rightarrow nice transcendence test

[Stanley, 1980]

[Stanley, 1980]

E.g., $f = \ln(1-t) = -t - \frac{t^2}{2} - \frac{t^3}{3} - \frac{t^4}{4} - \frac{t^5}{5} - \frac{t^6}{6} - \cdots$

is D-finite and can be represented by the second-order equation

$$((t-1)\partial_t^2 + \partial_t)(f) = 0, \quad f(0) = 0, f'(0) = -1.$$

The algorithm should recognize that f is transcendental.

[Stanley, 1980]

▷ Notation: For a D-finite series f, we write L_f^{\min} for its *differential resolvent*, i.e. the least order monic differential operator in $\mathbb{Q}(t)\langle\partial_t\rangle$ that cancels f.

[Stanley, 1980]

▷ Notation: For a D-finite series f, we write L_f^{\min} for its *differential resolvent*, i.e. the least order monic differential operator in $Q(t)\langle \partial_t \rangle$ that cancels f.

 \triangleright Warning: L_f^{\min} is not known a priori; only some multiple *L* of it is given.

[Stanley, 1980]

▷ Notation: For a D-finite series f, we write L_f^{\min} for its *differential resolvent*, i.e. the least order monic differential operator in $Q(t)\langle \partial_t \rangle$ that cancels f.

 \triangleright Warning: L_f^{\min} is not known a priori; only some multiple L of it is given.

▷ Difficulty: L_f^{\min} might not be irreducible. E.g., $L_{\ln(1-t)}^{\min} = \left(\partial_t + \frac{1}{t-1}\right)\partial_t$.

(A) Apéry's power series [Apéry, 1978] (used in his proof of $\zeta(3) \notin \mathbb{Q}$)

$$\sum_{n} \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} t^{n} = 1 + 5t + 73t^{2} + 1445t^{3} + 33001t^{4} + \cdots$$

(B) GF of trident walks in the quarter plane

$$\sum_{n} a_{n} t^{n} = 1 + 2t + 7t^{2} + 23t^{3} + 84t^{4} + 301t^{5} + 1127t^{6} + \cdots,$$

where $a_{n} = \# \left\{ \underbrace{\stackrel{\sim}{\vdots}}_{\cdot \cdot \cdot} - \text{walks of length } n \text{ in } \mathbb{N}^{2} \text{ starting at } (0,0) \right\}$

(C) GF of a quadrant model with repeated steps

$$\sum_{n} a_{n}t^{n} = 1 + t + 4t^{2} + 8t^{3} + 39t^{4} + 98t^{5} + 520t^{6} + \cdots,$$

where $a_{n} = \# \left\{ \bigvee_{n=1}^{\infty} -\text{walks of length } n \text{ in } \mathbb{N}^{2} \text{ from } (0,0) \text{ to } (\star,0) \right\}$

(A) Apéry's power series [Apéry, 1978] (used in his proof of $\zeta(3) \notin \mathbb{Q}$)

$$\sum_{n} \sum_{k=0}^{n} \binom{n}{k}^{2} \binom{n+k}{k}^{2} t^{n} = 1 + 5t + 73t^{2} + 1445t^{3} + 33001t^{4} + \cdots$$

(B) GF of trident walks in the quarter plane

$$\sum_{n} a_{n} t^{n} = 1 + 2t + 7t^{2} + 23t^{3} + 84t^{4} + 301t^{5} + 1127t^{6} + \cdots,$$

where $a_{n} = \# \left\{ \begin{array}{c} & & \\ & & \\ & & \\ & & \end{array} \right\}$ - walks of length *n* in \mathbb{N}^{2} starting at $(0,0) \right\}$

(C) GF of a quadrant model with repeated steps

$$\sum_{n} a_{n} t^{n} = 1 + t + 4 t^{2} + 8 t^{3} + 39 t^{4} + 98 t^{5} + 520 t^{6} + \cdots,$$

where $a_{n} = \# \left\{ \bigvee_{n=1}^{\infty} - \text{ walks of length } n \text{ in } \mathbb{N}^{2} \text{ from } (0,0) \text{ to } (\star,0) \right\}$

Question: How to prove that these three power series are transcendental?

Main properties of algebraic series

If $f = \sum_{n} a_n t^n \in \mathbb{Q}[[t]]$ is algebraic, then

- [Algebraic prop.]
 f is D-finite; L^{min}_f has a basis of algebraic solutions [Abel, 1827; Tannery, 1875]
- [Arithmetic prop.] f is globally bounded $\exists C \in \mathbb{N}^*$ with $a_n C^n \in \mathbb{Z}$ for n > 1[Eisenstein, 1852]
- [Analytic prop.]

 $(a_n)_n$ has "nice" asymptotics

[Puiseux, 1850; Flajolet, 1987]

Typically, $a_n \sim \kappa \rho^n n^{\alpha}$ with $\alpha \in \mathbb{Q} \setminus \mathbb{Z}_{<0}$ and $\rho \in \overline{\mathbb{Q}}$ and $\kappa \cdot \Gamma(\alpha + 1) \in \overline{\mathbb{Q}}$

For $f = \sum_{n} a_n t^n \in \mathbb{Q}[[t]]$, if one of the following holds

then f is transcendental

(†)
$$a_n \sim \frac{(1+\sqrt{2})^{4n+2}}{2^{9/4}\pi^{3/2}n^{3/2}}$$
 and $\frac{\Gamma(-1/2)}{\pi^{3/2}} = -\frac{2}{\pi} \notin \overline{\mathbb{Q}}$

Problem: Decide if *all* solutions of a given equation *L* of order *n* are algebraic

• Starting point [Jordan, 1878]: If so, then for some solution *y* of *L*, u = y'/y has alg. degree at most $(49n)^{n^2}$ and satisfies a Riccati equation of order n - 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]

- Decide if the Riccati equation has an algebraic solution u of degree at most $(49n)^{n^2}$ degree bounds + algebraic elimination
- 2 (Abel's problem) Given an algebraic u, decide whether y'/y = u has an algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

Problem: Decide if *all* solutions of a given equation *L* of order *n* are algebraic

• Starting point [Jordan, 1878]: If so, then for some solution *y* of *L*, u = y'/y has alg. degree at most $(49n)^{n^2}$ and satisfies a Riccati equation of order n - 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]

- ① Decide if the Riccati equation has an algebraic solution u of degree at most $(49n)^{n^2}$ degree bounds + algebraic elimination
- 2 (Abel's problem) Given an algebraic u, decide whether y'/y = u has an algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

 \triangleright [Singer, 1979]: generalization to any input $L \longrightarrow$ requires ODE factoring

Problem: Decide if *all* solutions of a given equation *L* of order *n* are algebraic

• Starting point [Jordan, 1878]: If so, then for some solution *y* of *L*, u = y'/y has alg. degree at most $(49n)^{n^2}$ and satisfies a Riccati equation of order n - 1

Algorithm (L irreducible) [Painlevé, 1887], [Boulanger, 1898], [Singer, 1979]

- Decide if the Riccati equation has an algebraic solution u of degree at most $(49n)^{n^2}$ degree bounds + algebraic elimination
- 2 (Abel's problem) Given an algebraic u, decide whether y'/y = u has an algebraic solution y [Risch 1970], [Baldassarri & Dwork 1979]

 \triangleright [Singer, 1979]: generalization to any input $L \longrightarrow$ requires ODE factoring

▷ [Singer, 2014]: computation of L^{alg} , the factor of L whose solution space is spanned by all algebraic solutions of L → requires ODE factoring

Problem: Decide if a D-finite power series $f \in \mathbb{Q}[[t]]$, given by a differential equation L(f) = 0 and sufficiently many initial terms, is transcendental.

- Compute L^{alg}
- 2 Decide if L^{alg} annihilates f

▷ Benefit: Solves (in principle) Stanley's problem.

▷ Drawbacks: Step 1 involves impractical bounds & requires ODE factorization

ODE factorization is effective [Schlesinger, 1897], [Singer, 1981], [Grigoriev, 1990], [van Hoeij, 1997]

 \triangleright ... but possibly extremely costly [Grigoriev, 1990] exp ((bitsize(L)2ⁿ)^{2ⁿ})

[Singer, 2014]

Problem: Decide if a D-finite power series $f \in \mathbb{Q}[[t]]$, given by a differential equation L(f) = 0 and sufficiently many initial terms, is transcendental.

Basic remark: If L_f^{\min} has a logarithmic singularity, then f is transcendental.

 \triangleright Pros and cons: Avoids factorization of L, but requires to compute L_f^{\min} .

$$f(t) = \sum_{n} a_n t^n$$
, where $a_n = \sum_{k=0}^n {\binom{n}{k}}^2 {\binom{n+k}{k}}^2$

Creative telescoping:

 $(n+1)^3a_n - (2n+3)(17n^2 + 51n + 39)a_{n+1} + (n+2)^3a_{n+2} = 0, \quad a_0 = 1, \ a_1 = 5$

▷ Conversion from recurrence to differential equation L(f) = 0, where

$$L = (t^4 - 34t^3 + t^2)\partial_t^3 + (6t^3 - 153t^2 + 3t)\partial_t^2 + (7t^2 - 112t + 1)\partial_t + t - 5$$

- $\triangleright L_f^{\min} = \frac{1}{t^4 34t^3 + t^2}L$ using *L* irreducible, or cf. new algorithm $\triangleright \text{ Basis of formal solutions of } L_f^{\min} \text{ at } t = 0:$ $\left\{1 + 5t + O(t^2), \ln(t) + (5\ln(t) + 12)t + O(t^2), \ln(t)^2 + (5\ln(t)^2 + 24\ln(t))t + O(t^2)\right\}$
- ▷ Conclusion: *f* is transcendental

Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

	OEIS	\mathfrak{S}	nature	ODE size		OEIS	\mathfrak{S}	nature	ODE size
1	A005566	\Leftrightarrow	Т	(3, 4)	13	A151275	\mathbf{X}	Т	(5, 24)
2	A018224	Х	Т	(3, 5)	14	A151314	\mathbb{X}	Т	(5, 24)
3	A151312	X	Т	(3, 8)	15	A151255	Å	Т	(4, 16)
4	A151331	畿	Т	(3, 6)	16	A151287	捡	Т	(5, 19)
5	A151266	Y	Т	(5, 16)	17	A001006	÷,	А	(2, 3)
6	A151307	₩	Т	(5, 20)	18	A129400	敎	А	(2, 3)
7	A151291	Y	Т	(5, 15)	19	A005558		Т	(3, 5)
8	A151326	₩	Т	(5, 18)					
9	A151302	X	Т	(5, 24)	20	A151265	\checkmark	А	(4, 9)
10	A151329	翜	Т	(5, 24)	21	A151278	\rightarrow	А	(4, 12)
11	A151261	Â	Т	(4, 15)	22	A151323	∯	А	(2, 3)
12	A151297	鏉	Т	(5, 18)	23	A060900	Æ	А	(3, 5)

> Computer-driven discovery and proof; no human proof yet

▷ Proof uses creative telescoping, ODE factorization, Singer's algorithm

▷ For models 5–10, asymptotics do not conclude. E.g. $\bigvee_{n}^{n} a_n \sim \frac{4}{3\sqrt{\pi}} \frac{4^n}{n^{1/2}}$

Ex. (B): D-Finite quadrant models [B., Chyzak, van Hoeij, Kauers & Pech, 2016]

	OEIS	S	nature	asympt		OEIS	S	nature	asympt
1	A005566	\Leftrightarrow	Т	$\frac{4}{\pi} \frac{4^n}{n}$	13	A151275	\mathbb{X}	Т	$\frac{12\sqrt{30}}{\pi} \frac{(2\sqrt{6})^n}{n^2}$
2	A018224	Χ	Т	$\frac{2}{\pi} \frac{4^n}{n}$	14	A151314	\mathbf{X}	Т	$\frac{\sqrt{6}\lambda\mu C^{5/2}}{5\pi}\frac{(2C)^n}{n^2}$
3	A151312	X	Т	$\frac{\sqrt{6}}{\pi} \frac{6^n}{n}$	15	A151255	ک	Т	$\frac{24\sqrt{2}}{\pi} \frac{(2\sqrt{2})^n}{n^2}$
4	A151331	畿	Т	$\frac{8}{3\pi}\frac{8^n}{n}$	16	A151287	捡	Т	$\frac{2\sqrt{2}A^{7/2}}{\pi} \frac{(2A)^n}{n^2}$
5	A151266	Y	Т	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{1/2}}$	17	A001006	÷,	А	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{3^n}{n^{3/2}}$
6	A151307	₩	Т	$\frac{1}{2}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	18	A129400	\	А	$\frac{3}{2}\sqrt{\frac{3}{\pi}}\frac{6^n}{n^{3/2}}$
7	A151291		Т	$\frac{4}{3\sqrt{\pi}}\frac{4^n}{n^{1/2}}$	19	A005558	X	Т	$\frac{8}{\pi} \frac{4^n}{n^2}$
8	A151326	₩.	Т	$\frac{2}{\sqrt{3\pi}} \frac{6^n}{n^{1/2}}$					
9	A151302	X	Т	$\frac{1}{3}\sqrt{\frac{5}{2\pi}}\frac{5^n}{n^{1/2}}$	20	A151265	¥	А	$rac{2\sqrt{2}}{\Gamma(1/4)}rac{3^n}{n^{3/4}}$
10	A151329	翜	Т	$\frac{1}{3}\sqrt{\frac{7}{3\pi}}\frac{7^n}{n^{1/2}}$	21	A151278	♪	А	$\frac{3\sqrt{3}}{\sqrt{2}\Gamma(1/4)}\frac{3^n}{n^{3/4}}$
11	A151261	↓	Т	$\frac{12\sqrt{3}}{\pi}\frac{(2\sqrt{3})^n}{n^2}$	22	A151323	₩	А	$\frac{\sqrt{23}^{3/4}}{\Gamma(1/4)} \frac{6^n}{n^{3/4}}$
12	A151297	鏉	Т	$\frac{\sqrt{3}B^{7/2}}{2\pi} \frac{(2B)^n}{n^2}$	23	A060900	¥.	А	$\frac{4\sqrt{3}}{3\Gamma(1/3)}\frac{4^n}{n^{2/3}}$
$A = 1 + \sqrt{2}, B = 1 + \sqrt{3}, C = 1 + \sqrt{6}, \lambda = 7 + 3\sqrt{6}, \mu = \sqrt{\frac{4\sqrt{6}-1}{19}}$									

▷ Asymptotics guessed by [B., Kauers '09], proved by [Melczer, Wilson '15]

Ex. (C): two difficult quadrant models with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

- GF is D-finite and transcendental in Case A.
- GF is algebraic in Case B.

▷ Computer-driven discovery and proof; no human proof yet.

- ▷ Proof uses Guess'n'Prove and new algorithm for transcendence.
- ▷ All other criteria and algorithms fail or do not terminate.

Input: $f(t) \in \mathbb{Q}[[t]]$, given as the generating function of a binomial sum **Output**: T if f(t) is transcendental, A if f(t) is algebraic

① Compute an ODE *L* for f(t)

Creative telescoping

- 3 Decide if L_f^{\min} has only algebraic solutions; if so return A, else return T. [Singer, 1979]

Drawback: Step 3 can be very costly in practice.

Input: $f(t) \in \mathbb{Q}[[t]]$, given as the generating function of a binomial sum **Output**: T if f(t) is transcendental, A if f(t) is algebraic

- (1) Compute an ODE *L* for f(t)
- 3 If L_f^{\min} has a logarithmic singularity, return T; otherwise return A

▷ This algorithm is always correct when it returns T; *conjecturally*, it is also always correct when it returns A

▷ Using *p*-curvatures and the Grothendieck-Katz conjecture (proved by [Katz, 1972] for *Picard-Fuchs systems*) yields an *unconditional* algorithm.

Creative telescoping

Problem: Given a D-finite power series $f \in \mathbb{Q}[[t]]$ by a differential equation L(f) = 0 and sufficiently many initial terms, compute its resolvent L_f^{\min} .

▷ Why isn't this easy? After all, it is just a differential analogue of:

Given an algebraic power series $f \in \mathbb{Q}[[t]]$ by an algebraic equation P(t, f) = 0 and sufficiently many initial terms, compute its minimal polynomial P_f^{min} .

- $\triangleright L_f^{\min}$ is a factor of L, but contrary to the commutative case:
 - factorization of diff. operators is not unique $\partial_t^2 = (\partial_t + \frac{1}{t-c})(\partial_t \frac{1}{t-c})$ • ...and it is difficult to compute

• $\deg_t L_t^{\min} \gg \deg_t L$, due to apparent singularities $t\partial_t - N \mid \partial_t^{N+1}$

▷ Strategy (inspired by the approach in [van Hoeij, 1997], itself based on ideas from [Chudnovsky, 1980], [Bertrand & Beukers, 1982], [Ohtsuki, 1982])

(1) L_f^{\min} is Fuchsian, so it can be written

$$L_f^{\min} = \partial_t^n + \frac{a_{n-1}(t)}{A(t)} \partial_t^{n-1} + \dots + \frac{a_0(t)}{A(t)^n}, \qquad n \le \operatorname{ord}(L)$$

with A(t) squarefree and $\deg(a_{n-i}) \leq \deg(A^i) - i$.

- Q deg(A) can be bounded in terms of n and (local) data of L (via apparent singularities and Fuchs' relation)
- 3 Guess and Prove: For n = 1, 2, ...,
 - Guess differential equation of order n for f (use bounds and linear algebra)
 - ② Once found a nontrivial candidate, certify it, or go to previous step.

Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let $a_n = \# \left\{ \underbrace{\flat}_n - \text{walks of length } n \text{ in } \mathbb{N}^2 \text{ from } (0,0) \text{ to } (\star,0) \right\}$. Then $f(t) = \sum_n a_n t^n = 1 + t + 4t^2 + 8t^3 + 39t^4 + 98t^5 + \cdots$ is transcendental.

19 / 22

Alin Bostan (Inria, France) How to prove algorithmically the transcendence of D-finite power series

Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let
$$a_n = \# \left\{ \underbrace{\flat}_n - \text{walks of length } n \text{ in } \mathbb{N}^2 \text{ from } (0,0) \text{ to } (\star,0) \right\}$$
. Then $f(t) = \sum_n a_n t^n = 1 + t + 4t^2 + 8t^3 + 39t^4 + 98t^5 + \cdots$ is transcendental.

Proof:

- Discover and certify a differential equation *L* for *f*(*t*) of order 11 and degree 73
 high-tech Guess'n'Prove
- ② If ord(L_f^{\min}) ≤ 10, then deg_t(L_f^{\min}) ≤ 580 apparent singularities
- 3 Rule out this possibility differential Hermite-Padé approximants
- (4) Thus, $L_f^{\min} = L$
- **(5)** *L* has a log singularity at t = 0, and so *f* is transcendental

Ex. (C): a difficult quadrant model with repeated steps

Theorem [B., Bousquet-Mélou, Kauers, Melczer, 2016]

Let
$$a_n = \# \left\{ \underbrace{\flat}_n - \text{walks of length } n \text{ in } \mathbb{N}^2 \text{ from } (0,0) \text{ to } (\star,0) \right\}$$
. Then $f(t) = \sum_n a_n t^n = 1 + t + 4t^2 + 8t^3 + 39t^4 + 98t^5 + \cdots$ is transcendental.

Proof:

- Discover and certify a differential equation *L* for *f*(*t*) of order 11 and degree 73
 high-tech Guess'n'Prove
- ② If ord(L_f^{\min}) ≤ 10, then deg_t(L_f^{\min}) ≤ 580 apparent singularities
- 3 Rule out this possibility [Beckermann, Labahn, 1994]
- (4) Thus, $L_f^{\min} = L$
- **(5)** *L* has a log singularity at t = 0, and so *f* is transcendental

- Simple, efficient and robust algorithmic method for transcendence
- Central sub-task: computation of $L_f^{\min} \longrightarrow$ useful in other contexts!
- Basic theoretical tool: Fuchs' relation
- Basic algorithmic tool: Guess'n'Prove via Hermite-Padé approximants + efficient computer algebra
- Brute-force / naive algorithms = hopeless on combinatorial examples

Find a human proof for the following statement

21 / 22

Thanks for your attention!