t-stack sortable permutations and log-concavity

Miklós Bóna

Department of Mathematics
University of Florida
Gainesville FL 32611-8105
bona@ufl.edu
September 21, 2017

Stack sorting

Let $p=2413$. Let us stack sort p.

413

Stack sorting

Let $p=2413$. Let us stack sort p.

21
21

21
$3 \quad 21$

213

2134

Equivalent definitions

Let $p=L n R$, where L and R denote the strings on the left and on the right of the maximal entry n.

Equivalent definitions

Let $p=L n R$, where L and R denote the strings on the left and on the right of the maximal entry n.

Then

$$
s(p)=s(L) s(R) n
$$

and this recursively defines the stack sorting operation.

Decreasing binary trees

In the tree $T(p)$ of the permutation $p=L n R$, the root has label n, the entries of L are in the left subtree, and the entries of R are in the right subtree. These subtrees are defined recursively by the same rule.

Decreasing binary trees

In the tree $T(p)$ of the permutation $p=L n R$, the root has label n, the entries of L are in the left subtree, and the entries of R are in the right subtree. These subtrees are defined recursively by the same rule.

Figure: The tree $T(p)$ for $p=328794615$.

Postorder

Given $T(p)$, we easily recover p reading the vertices in order, that is, from left to right.

Postorder

Given $T(p)$, we easily recover p reading the vertices in order, that is, from left to right. However, we recover $s(p)$ if we read the vertices of $T(p)$ in postorder, that is, left-right-root, for every vertex.

Postorder

Given $T(p)$, we easily recover p reading the vertices in order, that is, from left to right. However, we recover $s(p)$ if we read the vertices of $T(p)$ in postorder, that is, left-right-root, for every vertex.

Figure: Here $s(p)=237841569$.

Stack sortable permutations

A permutation p is called stack sortable if $s(p)=$ id.

Stack sortable permutations

A permutation p is called stack sortable if $s(p)=$ id.

It is easy to prove that p is stack sortable if and only if it avoids the pattern 231.

Stack sortable permutations

A permutation p is called stack sortable if $s(p)=$ id.

It is easy to prove that p is stack sortable if and only if it avoids the pattern 231.

So, the number of stack sortable permutations of length n is the nth Catalan number, $\binom{2 n}{n} /(n+1)$.

Descents

The number of stack sortable permutations of length n with $k-1$ descents is the Narayana number

$$
\frac{1}{n}\binom{n}{k}\binom{n}{k-1} .
$$

Descents

The number of stack sortable permutations of length n with $k-1$ descents is the Narayana number

$$
\frac{1}{n}\binom{n}{k}\binom{n}{k-1} .
$$

In particular, for fixed n, the sequence of stack sortable permutations of length n with k descents is symmetric and unimodal.

t-stack sortable permutations

A permutation p is t-stack sortable if $s^{t}(p)=12 \cdots n$.

If $t>1$, then t-stack sortability is not a monotone property.

t-stack sortable permutations

A permutation p is t-stack sortable if $s^{t}(p)=12 \cdots n$.

If $t>1$, then t-stack sortability is not a monotone property.

Let $W_{t}(n)$ be the number of t-stack sortable permutations of length n, and let $W_{t}(n, k)$ be the number of such permutations with k descents.

When $t=2$

The largest value of t for which we have explicit enumeration formulae is $t=2$. There we know that

When $t=2$

The largest value of t for which we have explicit enumeration formulae is $t=2$. There we know that

$$
W_{2}(n)=\frac{2\binom{3 n}{n}}{(n+1)(2 n+1)},
$$

and

When $t=2$

The largest value of t for which we have explicit enumeration formulae is $t=2$. There we know that

$$
W_{2}(n)=\frac{2\binom{3 n}{n}}{(n+1)(2 n+1)},
$$

and

$$
W_{2}(n, k)=\frac{(n+k)!(2 n-k-1)!}{(k+1)!(n-k)!(2 k+1)!(2 n-2 k-1)!}
$$

Lattice paths

The number of lattice paths with steps $(0,1),(1,0)$ and $(-1,-1)$ that start and end at $(0,0)$, use $3 n$ steps, and never leave the first quadrant is equal to $2^{2 n-1} W_{2}(n)$.

Lattice paths

The number of lattice paths with steps $(0,1),(1,0)$ and $(-1,-1)$ that start and end at $(0,0)$, use $3 n$ steps, and never leave the first quadrant is equal to $2^{2 n-1} W_{2}(n)$.

A direct proof (one that does not resort to planar maps) is not known.

The exact formula for $W_{2}(n)$ has numerous complicated proofs.

The exact formula for $W_{2}(n)$ has numerous complicated proofs.

For the purposes of generalizing to higher values of t, a simple argument showing that

$$
W_{2}(n)<\binom{3 n}{n}
$$

would be more useful.

What is known for $t>2$

For $t>2$, the exact value, or even exponential growth rate, of $W_{t}(n)$ is not known.

What is known for $t>2$

For $t>2$, the exact value, or even exponential growth rate, of $W_{t}(n)$ is not known.

A trivial upper bound is

$$
W_{t}(n)<(t+1)^{2 n}
$$

based on the fact that a t-stack sortable permutation must avoid the pattern $23 \cdots(t+2) 1$.

What is known for $t>2$

For $t>2$, the exact value, or even exponential growth rate, of $W_{t}(n)$ is not known.

A trivial upper bound is

$$
W_{t}(n)<(t+1)^{2 n}
$$

based on the fact that a t-stack sortable permutation must avoid the pattern $23 \cdots(t+2) 1$.

My conjecture is that

$$
W_{t}(n)<\binom{(t+1) n}{n}
$$

$t=3$ and $t=4$

> By a rather complicated argument, Colin Defant has recently proved that

$t=3$ and $t=4$

By a rather complicated argument, Colin Defant has recently proved that

$$
\sqrt[n]{W_{3}(n)} \leq 12.5396
$$

and

$t=3$ and $t=4$

By a rather complicated argument, Colin Defant has recently proved that

$$
\sqrt[n]{W_{3}(n)} \leq 12.5396
$$

and

$$
\sqrt[n]{W_{4}(n)} \leq 21.97225
$$

Descents again

Theorem
$(B, 2004)$ Let $W_{t}(n, k)$ be the number of t-stack sortable permutations of length n. Then for all fixed n and t, the sequence

$$
W_{t}(n, 0), W_{t}(n, 1), \cdots, W_{t}(n, n-1)
$$

is symmetric and unimodal.
A different proof was given by Petter Brändén in 2008.

Idea of proof of symmetry

In $T(p)$, find the vertices that have exactly one child, and change the direction of the edge connecting that vertex to that child.

Figure: Turning $p=328794615$ into $d(p)=238794651$.

Clearly, the map d turns a permutation with k ascents into one with k descents.

Clearly, the map d turns a permutation with k ascents into one with k descents.

Crucially, $s(p)=s(d(p))$, that is, d preserves the stack sorted image, and therefore, it preserves the t-stack sortable property.

Clearly, the map d turns a permutation with k ascents into one with k descents.

Crucially, $s(p)=s(d(p))$, that is, d preserves the stack sorted image, and therefore, it preserves the t-stack sortable property.

Hence d turns a t-stack sortable permutation with k ascents into a t-stack sortable permutation with k descents.

Idea of proof of unimodality

We use the reflection principle. Let us say that $T(p)$ has $k<(n-1) / 2$ right edges.

Idea of proof of unimodality

We use the reflection principle. Let us say that $T(p)$ has $k<(n-1) / 2$ right edges.

Consider $T(p)$ as a poset, then find its lexicographically first ideal that contains one less right edges than left edges.

Idea of proof of unimodality

We use the reflection principle. Let us say that $T(p)$ has $k<(n-1) / 2$ right edges.

Consider $T(p)$ as a poset, then find its lexicographically first ideal that contains one less right edges than left edges.

Now apply d to that ideal. The result is a tree with one more right edges. This injectively proves that $W_{t}(n, k) \leq W_{t}(n, k+1)$.

Real roots

Conjecture

Then for all fixed n and t, the polynomial

$$
\sum_{k=0}^{n-1} W_{t}(n, k) x^{k}
$$

has real roots only.
In particular, the sequence

$$
W_{t}(n, 0), W_{t}(n, 1), \cdots, W_{t}(n, n-1)
$$

is log-concave.

Special cases

For $t=1$ and $t=2$, log-concavity is routine to prove because of the explicit formulae known for the numbers $W_{t}(n, k)$.

Special cases

For $t=1$ and $t=2$, log-concavity is routine to prove because of the explicit formulae known for the numbers $W_{t}(n, k)$.

The real root property is not obvious, but is known to be true, by the work of Brenti and Brändén.

If $t=n-1$, then all permutations of length n are t-stack sortable, so the numbers $W_{t}(n, k)$ are the well-known Eulerian numbers. So their generating polynomial is an Eulerian polynomial, and hence, it has real roots only.

If $t=n-1$, then all permutations of length n are t-stack sortable, so the numbers $W_{t}(n, k)$ are the well-known Eulerian numbers. So their generating polynomial is an Eulerian polynomial, and hence, it has real roots only.

If $t=n-2$, then the t-stack sortable permutations are all permutations of length n that do not end in $\cdots n 1$. Real-rootedness is not obvious, but is known to be true, by a result of Brändén.

If $t=n-1$, then all permutations of length n are t-stack sortable, so the numbers $W_{t}(n, k)$ are the well-known Eulerian numbers. So their generating polynomial is an Eulerian polynomial, and hence, it has real roots only.

If $t=n-2$, then the t-stack sortable permutations are all permutations of length n that do not end in $\cdots n 1$. Real-rootedness is not obvious, but is known to be true, by a result of Brändén.

The conjecture is open for all values of $t \in[3, n-3]$.

Another log-concavity conjecture

Conjecture
For all n, the sequence $W_{1}(n), W_{2}(n), W_{3}(n), \cdots$ is log-concave.

