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Stack sorting

Let p = 2413. Let us stack sort p.
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Equivalent definitions

Let p = LnR, where L and R denote the strings on the left and on
the right of the maximal entry n.

Then
s(p) = s(L)s(R)n,

and this recursively defines the stack sorting operation.
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Decreasing binary trees
In the tree T (p) of the permutation p = LnR, the root has label n,
the entries of L are in the left subtree, and the entries of R are in
the right subtree. These subtrees are defined recursively by the
same rule.
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Figure: The tree T (p) for p = 328794615.
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Postorder
Given T (p), we easily recover p reading the vertices in order, that
is, from left to right.

However, we recover s(p) if we read the
vertices of T (p) in postorder, that is, left-right-root, for every
vertex.
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Figure: Here s(p) = 237841569.
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Stack sortable permutations

A permutation p is called stack sortable if s(p) = id.

It is easy to prove that p is stack sortable if and only if it avoids
the pattern 231.

So, the number of stack sortable permutations of length n is the
nth Catalan number,

(2n
n

)
/(n + 1).
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Descents

The number of stack sortable permutations of length n with k − 1
descents is the Narayana number
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In particular, for fixed n, the sequence of stack sortable
permutations of length n with k descents is symmetric and
unimodal.
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t-stack sortable permutations

A permutation p is t-stack sortable if st(p) = 12 · · · n.

If t > 1, then t-stack sortability is not a monotone property.

Let Wt(n) be the number of t-stack sortable permutations of
length n, and let Wt(n, k) be the number of such permutations
with k descents.
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When t = 2

The largest value of t for which we have explicit enumeration
formulae is t = 2. There we know that

W2(n) =
2
(3n
n

)
(n + 1)(2n + 1)

,

and

W2(n, k) =
(n + k)!(2n − k − 1)!

(k + 1)!(n − k)!(2k + 1)!(2n − 2k − 1)!
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Lattice paths

The number of lattice paths with steps (0, 1), (1, 0) and (−1,−1)
that start and end at (0, 0), use 3n steps, and never leave the first
quadrant is equal to 22n−1W2(n).

A direct proof (one that does not resort to planar maps) is not
known.
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The exact formula for W2(n) has numerous complicated proofs.

For the purposes of generalizing to higher values of t, a simple
argument showing that

W2(n) <

(
3n
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)
would be more useful.
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What is known for t > 2
For t > 2, the exact value, or even exponential growth rate, of
Wt(n) is not known.

A trivial upper bound is

Wt(n) < (t + 1)2n,

based on the fact that a t-stack sortable permutation must avoid
the pattern 23 · · · (t + 2)1.

My conjecture is that

Wt(n) <

(
(t + 1)n

n

)
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t = 3 and t = 4

By a rather complicated argument, Colin Defant has recently
proved that

n
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W4(n) ≤ 21.97225.
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Descents again

Theorem
(B, 2004) Let Wt(n, k) be the number of t-stack sortable
permutations of length n. Then for all fixed n and t, the sequence

Wt(n, 0),Wt(n, 1), · · · ,Wt(n, n − 1)

is symmetric and unimodal.

A different proof was given by Petter Brändén in 2008.



Idea of proof of symmetry

In T (p), find the vertices that have exactly one child, and change
the direction of the edge connecting that vertex to that child.
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Figure: Turning p = 328794615 into d(p) = 238794651.



Clearly, the map d turns a permutation with k ascents into one
with k descents.

Crucially, s(p) = s(d(p)), that is, d preserves the stack sorted
image, and therefore, it preserves the t-stack sortable property.

Hence d turns a t-stack sortable permutation with k ascents into a
t-stack sortable permutation with k descents.
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Idea of proof of unimodality

We use the reflection principle. Let us say that T (p) has
k < (n − 1)/2 right edges.

Consider T (p) as a poset, then find its lexicographically first ideal
that contains one less right edges than left edges.

Now apply d to that ideal. The result is a tree with one more right
edges. This injectively proves that Wt(n, k) ≤Wt(n, k + 1).
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Real roots

Conjecture

Then for all fixed n and t, the polynomial

n−1∑
k=0

Wt(n, k)xk

has real roots only.
In particular, the sequence

Wt(n, 0),Wt(n, 1), · · · ,Wt(n, n − 1)

is log-concave.



Special cases

For t = 1 and t = 2, log-concavity is routine to prove because of
the explicit formulae known for the numbers Wt(n, k).

The real root property is not obvious, but is known to be true, by
the work of Brenti and Brändén.
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If t = n − 1, then all permutations of length n are t-stack sortable,
so the numbers Wt(n, k) are the well-known Eulerian numbers. So
their generating polynomial is an Eulerian polynomial, and hence,
it has real roots only.

If t = n − 2, then the t-stack sortable permutations are all
permutations of length n that do not end in · · · n1. Real-rootedness
is not obvious, but is known to be true, by a result of Brändén.

The conjecture is open for all values of t ∈ [3, n − 3].
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The conjecture is open for all values of t ∈ [3, n − 3].



Another log-concavity conjecture

Conjecture

For all n, the sequence W1(n),W2(n),W3(n), · · · is log-concave.


