Simple Walks in the Three Quarter Plane

Amélie Trotignon
－Joint work with Marni Mishna and Kilian Raschel－
Simon Fraser University－Université François－Rabelais de Tours

September， $21^{\text {st }} 2017$

(1) Introduction
(2) Method
(3) Functional Equation

- Starting on the diagonal
- Starting off of the diagonal
(4) Resolution when we start on the diagonal
- Change of variable
- Roots and Branches of the Kernel
- Boundary Value Problem
- Result
(5) Set-up
(6) Future works and possible applications

Introduction

Simple Walks

We consider the simple walks (i.e. walks with a set of steps $\mathcal{S}=\{\mathrm{W}, \mathrm{N}, \mathrm{E}, \mathrm{S}\}$) in the lattice plane. We constrain the walks to avoid the negative quadrant.

Figure: Simple walk in the three quarter plane.

Introduction

Objective

The goal is to compute the number of paths $c(i, j ; n)$ of length n, starting at $(0,0)$ and ending at (i, j), with ($i \geq 0$ or $j \geq 0$) and $n \geq 0$.

Introduction

Objective

The goal is to compute the number of paths $c(i, j ; n)$ of length n, starting at $(0,0)$ and ending at (i, j), with ($i \geq 0$ or $j \geq 0$) and $n \geq 0$.

Example

For example, $c(0,0 ; 0)=1$ (the empty walk); $c(0,0 ; 2)=4(\rightarrow \leftarrow, \leftarrow \rightarrow, \downarrow \uparrow, \uparrow \downarrow)$; $c(0,0 ; n)=0$ for an odd n.

Introduction

Objective

The goal is to compute the number of paths $c(i, j ; n)$ of length n, starting at $(0,0)$ and ending at (i, j), with ($i \geq 0$ or $j \geq 0$) and $n \geq 0$.

Example

For example, $c(0,0 ; 0)=1$ (the empty walk);
$c(0,0 ; 2)=4(\rightarrow \leftarrow, \leftarrow \rightarrow, \downarrow \uparrow, \uparrow \downarrow)$;
$c(0,0 ; n)=0$ for an odd n.
Mireille Bousquet-Mélou (Square lattice walks avoiding a quadrant, [1]) has already studied this problem.

The objective here is to:

- Develop analytic approach in the three quarter plane;
- Generalize to sets of steps which have infinite group.

(2) Method

(3) Functional Equation

- Starting on the diagonal
- Starting off of the diagonal

4 Resolution when we start on the diagonal

- Change of variable
- Roots and Branches of the Kernel
- Boundary Value Problem
- Result
(5) Set-up
(D) Future works and possible applications

Method

Usual way to compute $c(i, j ; n)$
A usual way to compute $c(i, j ; n)$ is the following:
(1) Consider the generating function of $c(i, j ; n)$:

$$
C(x, y)=\sum_{\substack{i \geq 0 \text { or } j \geq 0 \\ n \geq 0}} c(i, j ; n) x^{i} y^{j} t^{n} ;
$$

(2) Find a functional equation that $C(x, y)$ satisfies.
(3) Solve the functional equation. Here, we use an analytic approach by transforming the functional equation into a boundary value problem.
(3) Functional Equation

- Starting on the diagonal
- Starting off of the diagonal

4 Resolution when we start on the diagonal

- Change of variable
- Roots and Branches of the Kernel
- Boundary Value Problem
- Result
(5) Set-up
(6) Future works and possible applications

Functional Equation

Cut the domain into three parts

We decompose the domain of possible ends of the walks into three parts:

$$
C(x, y)=L(x, y)+D(x, y)+S(x, y) .
$$

Figure: Three possible endpoints of the walks.

$$
\left\{\begin{aligned}
L(x, y) & =\sum_{\substack{i \geq 0 \\
j \leq i-1}} c(i, j ; n) x^{i} y^{j} t^{n} \\
D(x, y) & =\sum_{\substack{i \geq 0 \\
n \geq 0}} c(i, i ; n) x^{i} y^{i} t^{n} \\
S(x, y) & =\sum_{\substack{i \leq 0 \\
j \geq i+1}} c(i, j ; n) x^{i} y^{j} t^{n}
\end{aligned}\right.
$$

Starting on the diagonal $\left(i_{0}, i_{0}\right), i_{0} \geq 0$. (1)

Figure: Different ways to end in the lower part starting on the diagonal.

$$
\begin{aligned}
L(x, y)= & t\left(x+x^{-1}+y+y^{-1}\right) L(x, y)+t\left(x+y^{-1}\right) D(x, y) \\
& -t\left(x^{-1}+y\right) L D(x, y)-t x^{-1} L(0, y)+t x^{-1} \sum_{n \geq 0} c(0,-1 ; n) y^{-1} t^{n} .
\end{aligned}
$$

Starting on the diagonal $\left(i_{0}, i_{0}\right), i_{0} \geq 0$. (2)

Figure: Different ways to end on the diagonal starting on the diagonal.

$$
D(x, y)=x^{i_{0}} y^{i_{0}}+2 t\left(x^{-1}+y\right) L D(x, y)-2 t x^{-1} \sum_{n \geq 0} c(0,-1 ; n) y^{-1} t^{n} .
$$

Starting on the diagonal $\left(i_{0}, i_{0}\right), i_{0} \geq 0$. (3)

Functional Equation - Starting on the diagonal

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0}+1} y^{i_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y)
$$

with

$$
K(x, y)=1-t\left(x+x^{-1}+y+y^{-1}\right)
$$

Starting on the diagonal $\left(i_{0}, i_{0}\right), i_{0} \geq 0$. (3)

Functional Equation - Starting on the diagonal

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0}+1} y^{i_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y)
$$

with

$$
K(x, y)=1-t\left(x+x^{-1}+y+y^{-1}\right)
$$

Functional equation - Simple walks in the quarter plane

$$
Q(x, y) K(x, y) x y=x^{i_{0}+1} y^{j_{0}+1}-t x Q(x, 0)-t y Q(0, y)
$$

with

$$
Q(x, y)=\sum_{i, j, n \geq 0} q(i, j ; n) x^{i} y^{j} t^{n}
$$

Starting off of the diagonal $\left(i_{0}, j_{0}\right), i_{0} \geq 0$ and $j_{0} \leq i_{0}-1$. (1)

Figure: Different ways to ends in the lower part starting in the lower part.

$$
\begin{aligned}
L(x, y)= & x^{i_{0}} y^{j_{0}}+t\left(x+x^{-1}+y+y^{-1}\right) L(x, y)+t\left(x+y^{-1}\right) D(x, y) \\
& -t\left(x^{-1}+y\right) L D(x, y)-t x^{-1} L(0, y)+t x^{-1} \sum_{n \geq 0} c(0,-1 ; n) y^{-1} t^{n}
\end{aligned}
$$

Starting off of the diagonal $\left(i_{0}, j_{0}\right), i_{0} \geq 0$ and $j_{0} \leq i_{0}-1$. (2)

Figure: Different ways to end on the diagonal starting in the lower part.

$$
\begin{aligned}
D(x, y)= & t\left(x+y^{-1}\right) U D(x, y)-t y^{-1} \sum_{n \geq 0} c(-1,0 ; n) x^{-1} t^{n} \\
& +t\left(x^{-1}+y\right) L D(x, y)-t x^{-1} \sum_{n \geq 0} c(0,-1 ; n) y^{-1} t^{n} .
\end{aligned}
$$

Starting off of the diagonal $\left(i_{0}, j_{0}\right), i_{0} \geq 0$ and $j_{0} \leq i_{0}-1$. (3)

With $K(x, y)=1-t\left(x+x^{-1}+y+y^{-1}\right)$;
Functional Equation - Starting in the lower part

$$
\begin{aligned}
& L(x, y) K(x, y) x y=x^{i 0+1} y^{j 0+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-x y\right) D(x, y) \\
& \quad+t\left(x^{2} y+x\right) \sum_{\substack{i \geq 0 \\
n \geq 0}} c(i-1, i ; n) x^{i-1} y^{\prime} t^{n}-t \sum_{n \geq 0} c(-1,0 ; n) t^{n}
\end{aligned}
$$

Starting off of the diagonal $\left(i_{0}, j_{0}\right), i_{0} \geq 0$ and $j_{0} \leq i_{0}-1$. (3)

With $K(x, y)=1-t\left(x+x^{-1}+y+y^{-1}\right)$;
Functional Equation - Starting in the lower part

$$
\begin{aligned}
& L(x, y) K(x, y) x y=x^{i 0+1} y^{j+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-x y\right) D(x, y) \\
& +t\left(x^{2} y+x\right) \sum_{\substack{i \geq 0 \\
n \geq 0}} c(i-1, i ; n) x^{i-1} y^{i} t^{n}-t \sum_{n \geq 0} c(-1,0 ; n) t^{n}
\end{aligned}
$$

Functional Equation - Starting in the upper part

$$
\begin{aligned}
& L(x, y) K(x, y) x y=-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-x y\right) D(x, y) \\
& \quad+t\left(x^{2} y+x\right) \sum_{\substack{i \geq 0 \\
n \geq 0}} c(i-1, i ; n) x^{i-1} y^{i} t^{n}-t \sum_{n \geq 0} c(-1,0 ; n) t^{n}
\end{aligned}
$$

- Starting on the diagonal
- Starting off of the diagonal

4 Resolution when we start on the diagonal

- Change of variable
- Roots and Branches of the Kernel
- Boundary Value Problem
- Result
(5) Set-up
(6) Future works and possible applications

Resolution when we start on the diagonal

Functional Equation - Starting on the diagonal

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0}+1} y^{y_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y) .
$$

Resolution when we start on the diagonal

Functional Equation - Starting on the diagonal

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0}+1} y^{i_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y) .
$$

Change of variable

$$
\varphi:\left\{\begin{array}{lll}
x & \rightarrow & x y, \\
y & \rightarrow & x^{-1} .
\end{array}\right.
$$

Resolution when we start on the diagonal

Functional Equation - Starting on the diagonal

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0}+1} y^{i_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y) .
$$

Change of variable

$$
\varphi:\left\{\begin{array}{lll}
x & \rightarrow & x y, \\
y & \rightarrow & x^{-1} .
\end{array}\right.
$$

Figure: Simple walk and Gessel's walk.

Resolution when we start on the diagonal

New Functional Equation

$$
\widetilde{L}(x, y) \widetilde{K}(x, y) x y=\frac{1}{2} x y-t \widetilde{L}(x, 0)+x\left(t y(x y+x)-\frac{1}{2} y\right) \widetilde{D}(y),
$$

with

$$
\left\{\begin{aligned}
\widetilde{L}(x, y) & =\sum_{\substack{i \geq 1 \\
j \geq 0 \\
n \geq 0}} c(j, j-i ; n) x^{i} y^{j} t^{n}, \\
\widetilde{D}(y) & =\sum_{\substack{i \geq 0 \\
n \geq 0}} c(i, i ; n) y^{i} t^{n}, \\
\widetilde{K}(x, y) & =1-t\left(x^{-1}+x y+x+x^{-1} y^{-1}\right) .
\end{aligned}\right.
$$

Roots and Branches of the Kernel

Cancel the Kernel

$$
-x y \widetilde{K}(x, y)=\widehat{a}(y) x^{2}+\widehat{b}(y) x+\widehat{c}(y)=a(x) y^{2}+b(x) y+c(x)
$$

Discriminant: $\widehat{d}(y)=\widehat{b}(y)^{2}-4 \widehat{a}(y) \widehat{c}(y)$ and $d(x)=b(x)^{2}-4 a(x) c(x)$.

Roots and Branches of the Kernel

Cancel the Kernel

$$
-x y \widetilde{K}(x, y)=\widehat{a}(y) x^{2}+\widehat{b}(y) x+\widehat{c}(y)=a(x) y^{2}+b(x) y+c(x)
$$

Discriminant: $\widehat{d}(y)=\widehat{b}(y)^{2}-4 \widehat{a}(y) \widehat{c}(y)$ and $d(x)=b(x)^{2}-4 a(x) c(x)$.

Branches of the Kernel
$i=0,1$

$$
\begin{aligned}
& \tilde{x}_{i}(y)=\frac{-\widehat{b}(y) \pm \sqrt{\hat{d}(y)}}{2 \hat{a}(y)} ; \\
& \tilde{Y}_{i}(x)=\frac{-b(x) \pm \sqrt{d(x)}}{2 a(x)} .
\end{aligned}
$$

Boundary Value Problem

History

- These problem appeared and were studied in the XVIII ${ }^{\text {th }}$ century and the XIX ${ }^{\text {th }}$ century;
- Riemann first mentioned the problem;
- Hilbert then H. Poincaré studied the problem;
- The Sokhotski-Plemelj formulae are elementary tools to solve the problem.
- Reference authors on BVP : Muskhelischvili, Gakhov and Litvintchuk.

Boundary Value Problem

History

- These problem appeared and were studied in the Xviri ${ }^{\text {th }}$ century and the XIX ${ }^{\text {th }}$ century;
- Riemann first mentioned the problem;
- Hilbert then H. Poincaré studied the problem;
- The Sokhotski-Plemelj formulae are elementary tools to solve the problem.
- Reference authors on BVP : Muskhelischvili, Gakhov and Litvintchuk.

Link with the walks in the plane

In the 70's Malyshev in Russia then Fayolle and lasnogorodski in France first used an analytic method via BVP to solve a functional equation satisfies by generating functions of walks.

Boundary Value Problem

BVP - Definition

A function Φ satisfies a BVP on a simple smooth oriented contour \mathcal{L} if:

- Φ is sectionally holomorphic: holomorphic in $\mathbb{C} \backslash \mathcal{L}$ where it has left limit Φ^{+}and right limit Φ^{-}. Furthermore, Φ is of finite degree at infinity.
- Φ satisfies the following boundary condition on \mathcal{L} :

$$
\Phi^{+}(t)=G(t) \Phi^{-}(t)+g(t), \quad t \in \mathcal{L}
$$

with G and g are Hölder functions on \mathcal{L}, and G does not vanish on \mathcal{L}.

Boundary Value Problem

BVP - Definition

A function Φ satisfies a BVP on a simple smooth oriented contour \mathcal{L} if:

- Φ is sectionally holomorphic: holomorphic in $\mathbb{C} \backslash \mathcal{L}$ where it has left limit Φ^{+}and right limit Φ^{-}. Furthermore, Φ is of finite degree at infinity.
- Φ satisfies the following boundary condition on \mathcal{L} :

$$
\Phi^{+}(t)=G(t) \Phi^{-}(t)+g(t), \quad t \in \mathcal{L},
$$

with G and g are Hölder functions on \mathcal{L}, and G does not vanish on \mathcal{L}.

We know some techniques and methods to find a function Φ which satisfies a BVP.

Generating function $D(y)$ stated as a BVP

Functional Equation - Starting on the diagonal

$$
\widetilde{L}(x, y) \widetilde{K}(x, y) x y=\frac{1}{2} x y-t \widetilde{L}(x, 0)+x\left(t y(x y+x)-\frac{1}{2} y\right) \widetilde{D}(y),
$$

Generating function $\widetilde{D}(y)$ stated as a BVP

Functional Equation - Starting on the diagonal

$$
\tilde{L}(x, y) \widetilde{K}(x, y) x y=\frac{1}{2} x y-t \widetilde{L}(x, 0)+x\left(t y(x y+x)-\frac{1}{2} y\right) \widetilde{D}(y),
$$

Riemann-Carleman with shift BVP

By evaluating the functional equation in $\widetilde{Y_{0}}$ and \widetilde{Y}_{1}, we have the following boundary value problem: For $y \in \widetilde{Y}\left(\left[x_{1}, x_{2}\right]\right)$,

$$
R(y) \widetilde{D}(y)-R(\bar{y}) \widetilde{D}(\bar{y})=y-\bar{y}
$$

with

$$
R(y)=y-2 t \widetilde{X_{0}}(y) y(y+1) .
$$

Generating function $\widetilde{D}(y)$ stated as a BVP

Functional Equation - Starting on the diagonal

$$
\widetilde{L}(x, y) \widetilde{K}(x, y) x y=\frac{1}{2} x y-t \widetilde{L}(x, 0)+x\left(t y(x y+x)-\frac{1}{2} y\right) \widetilde{D}(y),
$$

Riemann-Carleman with shift BVP

By evaluating the functional equation in $\widetilde{Y_{0}}$ and \widetilde{Y}_{1}, we have the following boundary value problem: For $y \in \widetilde{Y}\left(\left[x_{1}, x_{2}\right]\right)$,

$$
R(y) \widetilde{D}(y)-R(\bar{y}) \widetilde{D}(\bar{y})=y-\bar{y},
$$

with

$$
R(y)=y-2 t \widetilde{X}_{0}(y) y(y+1) .
$$

It does not look like the BVP we have introduced!

Boundary Value Problem - Riemann-Hilbert on a segment

Riemann-Hilbert BVP

$$
\widetilde{D}\left(v^{+}(u)\right)=\frac{R\left(v^{-}(u)\right)}{R\left(v^{+}(u)\right)} \tilde{D}\left(v^{-}(u)\right)+\frac{v^{+}(u)-v^{-}(u)}{R\left(v^{+}(u)\right)} .
$$

Figure: Conformal gluing function.

Result - Contour integral expression of $\widetilde{D}(y)$

Theorem [Raschel, T., 2017]

For y inside the curve $\widetilde{Y}\left(\left[x_{1}, x_{2}\right]\right)$,

$$
\begin{aligned}
\widetilde{D}(y) & =\frac{\Psi(w(y))}{2 i \pi} \\
& \times \int_{\tilde{Y}\left(\left[x_{1}, x_{2}\right]\right)} \frac{t w^{\prime}(t) d t}{R(t) \Psi^{+}(w(t))(w(t)-w(y))},
\end{aligned}
$$

with: for z inside $\widetilde{Y}\left(\left[x_{1}, x_{2}\right]\right)$ and $s \in \widetilde{Y}\left(\left[x_{1}, x_{2}\right]\right)$,

$$
\begin{cases}\Psi(z) & =e^{\Gamma(z)}, \\ \Psi^{+}(s) & =e^{\Gamma^{+}(s)}, \\ \Gamma(z) & =\frac{1}{2 i \pi} \int_{Y\left(\left[x_{1}, x_{2}\right]\right)} \frac{\log (t R(\bar{t}) / R(t)) d t}{t-z}\end{cases}
$$

Γ^{+}can be computed with the Sokhotski-Plemelj formulae.
(2) Method
(3) Functional Equation

- Starting on the diagonal
- Starting off of the diagonal

4 Resolution when we start on the diagonal

- Change of variable
- Roots and Branches of the Kernel
- Boundary Value Problem
- Result

(5) Set-up

(6) Future works and possible applications

Set-up

Remember - Functional Equation

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0}+1} y^{i_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y) .
$$

Set-up

Remember - Functional Equation

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0}+1} y^{i_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y) .
$$

Remember - Domain in three parts

$$
C(x, y)=L(x, y)+D(x, y)+S(x, y) .
$$

Symmetry of the cut and the walk

$$
\Rightarrow S(x, y)=L(y, x)
$$

Set-up

Remember - Functional Equation

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0}+1} y^{i_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y) .
$$

Remember - Domain in three parts

$$
C(x, y)=L(x, y)+D(x, y)+L(y, x) .
$$

- We have an expression of $\widetilde{D}(y)$;

Set-up

Remember - Functional Equation

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0+1}} y^{i_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y) .
$$

Remember - Domain in three parts

$$
C(x, y)=L(x, y)+D(x, y)+L(y, x) .
$$

- We have an expression of $\widetilde{D}(y)$;
- With a change of variable we get an expression of $D(x, y)$;

Set-up

Remember - Functional Equation

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0+1}} y^{i_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y) .
$$

Remember - Domain in three parts

$$
C(x, y)=L(x, y)+D(x, y)+L(y, x) .
$$

- We have an expression of $\widetilde{D}(y)$;
- With a change of variable we get an expression of $D(x, y)$;
- With the functional equation we get an expression of $L(x, y)$;

Set-up

Remember - Functional Equation

$$
L(x, y) K(x, y) x y=\frac{1}{2} x^{i_{0}+1} y^{i_{0}+1}-\operatorname{ty} L(0, y)+\left(t\left(x^{2} y+x\right)-\frac{1}{2} x y\right) D(x, y) .
$$

Remember - Domain in three parts

$$
C(x, y)=L(x, y)+D(x, y)+L(y, x) .
$$

- We have an expression of $\widetilde{D}(y)$;
- With a change of variable we get an expression of $D(x, y)$;
- With the functional equation we get an expression of $L(x, y)$;
- Then we have an expression of $C(x, y)$.

Future works and possible applications

(1) Expand in series contour integral expressions;

Future works and possible applications

(1) Expand in series contour integral expressions;
(2) Find an efficient way to extract the coefficients from the generating function

$$
C(x, y)=\sum_{\substack{i \geq 0 \text { or } j \leq i \\ n \geq 0}} c(i, j ; n) x^{i} y^{j} t^{n} ;
$$

Future works and possible applications

(1) Expand in series contour integral expressions;
(2) Find an efficient way to extract the coefficients from the generating function

$$
C(x, y)=\sum_{\substack{i \geq 0 \text { or } \\ n \geq 0 \\ n \leq i}} c(i, j ; n) x^{i} y^{j} t^{n} ;
$$

(3) Study the asymptotic of $c(i, j, n)$;

Future works and possible applications

(1) Expand in series contour integral expressions;
(2) Find an efficient way to extract the coefficients from the generating function

$$
C(x, y)=\sum_{\substack{i \geq 0 \text { or } \\ n \geq 0 \\ n \leq i}} c(i, j ; n) x^{i} y^{j} t^{n} ;
$$

(3) Study the asymptotic of $c(i, j, n)$;
(1) Study the class (algebraic, D-finite) of the generating functions $C(x, y)$, $L(x, y), D(x, y)$;

Future works and possible applications

(1) Expand in series contour integral expressions;
(2) Find an efficient way to extract the coefficients from the generating function

$$
C(x, y)=\sum_{\substack{i \geq 0 \text { or } j \leq i \\ n \geq 0}} c(i, j ; n) x^{i} y^{j} t^{n} ;
$$

(3) Study the asymptotic of $c(i, j, n)$;
(9) Study the class (algebraic, D-finite) of the generating functions $C(x, y)$, $L(x, y), D(x, y)$;

- Solve the starting off of the diagonal functional equation;

Future works and possible applications

(1) Expand in series contour integral expressions;
(2) Find an efficient way to extract the coefficients from the generating function

$$
C(x, y)=\sum_{\substack{i \geq 0 \text { or } \\ n \geq 0}} c i c
$$

(3) Study the asymptotic of $c(i, j, n)$;
(9) Study the class (algebraic, D-finite) of the generating functions $C(x, y)$, $L(x, y), D(x, y)$;

- Solve the starting off of the diagonal functional equation;
- Apply the same method to other symmetric models;

Future works and possible applications

(1) Expand in series contour integral expressions;
(2) Find an efficient way to extract the coefficients from the generating function

$$
C(x, y)=\sum_{\substack{i \geq 0 \text { or } \\ n \geq 0}} c i c
$$

(3) Study the asymptotic of $c(i, j, n)$;
(9) Study the class (algebraic, D-finite) of the generating functions $C(x, y)$, $L(x, y), D(x, y)$;

- Solve the starting off of the diagonal functional equation;
- Apply the same method to other symmetric models;
- Solve problems in other cones.

Reference

Reference

Rireille Bousquet-Mélou.
Square lattice walks avoiding a quadrant.
J. Combin. Theory Ser. A, 144:37-79, 2016.

國 Guy Fayolle, Roudolf lasnogorodski, and Vadim Malyshev.
Random walks in the quarter plane, volume 40 of Probability Theory and Stochastic Modelling.
Springer, Cham, second edition, 2017.
Algebraic methods, boundary value problems, applications to queueing systems and analytic combinatorics.
Kilian Raschel.
Counting walks in a quadrant: a unified approach via boundary value problems. J. Eur. Math. Soc. (JEMS), 14(3):749-777, 2012.

The Sokhotski-Plemelj Formulae.

Theorem

Let \mathcal{L} be a simple smooth line or curve in the complex plane, and φ be a Hölder function on \mathcal{L}. The function

$$
\Phi(z)=\frac{1}{2 i \pi} \int_{\mathcal{L}} \frac{\varphi(t) d t}{t-z}, z \notin \mathcal{L}
$$

is continuous on \mathcal{L} from the left and from the right, with the exception of the ends. Moreover the corresponding limiting values, denoted respectively by ϕ^{+}and ϕ^{-}, are Hölder functions on \mathcal{L}, and they satisfy the so-called Sokhotski-Plemelj formulae, for $t \in \mathcal{L}$,

$$
\left\{\begin{array}{l}
\phi^{+}(t)=\frac{1}{2} \varphi(t)+\frac{1}{2 i \pi} \int_{\mathcal{L}} \frac{\varphi(s) d s}{s-t}, \\
\phi^{-}(t)=-\frac{1}{2} \varphi(t)+\frac{1}{2 i \pi} \int_{\mathcal{L}} \frac{\varphi(s) d s}{s-t},
\end{array}\right.
$$

where the integrals are understood in the sense of Cauchy-principal value.

Cauchy's formulae

Theorem

Let $C(x, y)$ be holomorphic in $\mathcal{D}(0,1)$. Then for any $i_{0} \geq 1$ or $j_{0} \geq 1$:

$$
c\left(i_{0}, j_{0}\right)=\frac{1}{(2 i \pi)^{2}} \iint \frac{C(x, y)}{x^{i_{0}} y^{j_{0}}} d x d y,
$$

where the domain of integration is $\{x \in \mathbb{C}:|x|=\varepsilon\} \times\{y \in \mathbb{C}:|y|=\varepsilon\}$, for any $\varepsilon \in[0,1)$.

