Walks, Difference Equations and Elliptic Curves

Michael F. Singer
(joint work with Charlotte Hardouin, Thomas Dreyfus, and
Julien Roques)

Lattice Walks at the Interface of Algebra, Analysis and Combinatorics
BIRS, Banff
September 17-22, 2017

Walks

Consider the walks in the quarter plane starting from $(0,0)$ with steps in a fixed set

$$
\mathcal{D} \subset\{\leftarrow, \nwarrow, \uparrow, \nearrow, \rightarrow, \searrow, \downarrow, \swarrow\} .
$$

Example with possible directions

$$
\mathcal{D}=\{\leftarrow, \uparrow, \rightarrow, \searrow, \downarrow, \swarrow\} .
$$

256 possible choices for \mathcal{D}. Triviality, Symmetries $\Rightarrow 79$ interesting ones.

Walks

$q_{\mathcal{D}, i, j, k}=$ the number of walks in \mathbb{N}^{2} starting from $(0,0)$ ending at (i, j) using k steps from \mathcal{D}.

Generating series: $Q_{\mathcal{D}}(x, y, t):=\sum_{i, j, k} q_{\mathcal{D}, i, j, k} x^{i} y^{j} t^{k}$.

Classification problem: when is $Q_{\mathcal{D}}(x, y, t)$

- Algebraic over $\mathbb{C}(x, y, t)$?
- Holonomic over $\mathbb{C}(x, y, t) ?(x-, y-$, and t-holonomic $)$

D Differentially Algebraic over $\mathbb{C}(x, y, t) ?(x-, y-$, and t-diff. algebraic $)$

Walks

$q_{\mathcal{D}, i, j, k}=$ the number of walks in \mathbb{N}^{2} starting from $(0,0)$ ending at (i, j) using k steps from \mathcal{D}.

Generating series: $Q_{\mathcal{D}}(x, y, t):=\sum_{i, j, k} q_{\mathcal{D}, i, j, k} x^{i} y^{j} t^{k}$.

Classification problem: when is $Q_{\mathcal{D}}(x, y, t)$

- Algebraic over $\mathbb{C}(x, y, t)$?
- Holonomic over $\mathbb{C}(x, y, t) ?(x-, y-$, and t-holonomic $)$

Differentially Algebraic over $\mathbb{C}(x, y, t)$? $(x-, y-$, and t-diff. algebraic $)$

$$
f(x, y, t) \text { is } \underline{x \text {-holonomic }} \text { if for some } n \text { and } a_{i} \in \mathbb{C}(x, y, t)
$$

$$
a_{n} \frac{\partial^{n} f}{\partial x^{n}}+\ldots+a_{0} f=0
$$

Walks

$q_{\mathcal{D}, i, j, k}=$ the number of walks in \mathbb{N}^{2} starting from $(0,0)$ ending at (i, j) using k steps from \mathcal{D}.

Generating series: $Q_{\mathcal{D}}(x, y, t):=\sum_{i, j, k} q_{\mathcal{D}, i, j, k} x^{i} y^{j} t^{k}$.
Classification problem: when is $Q_{\mathcal{D}}(x, y, t)$

- Algebraic over $\mathbb{C}(x, y, t)$?
- Holonomic over $\mathbb{C}(x, y, t)$? (x-, y-, and t-holonomic $)$
- Differentially Algebraic over $\mathbb{C}(x, y, t)$? ($x-, y$-, and t-diff. algebraic)
$f(x, y, t)$ is x-differentially algebraic if for some n and polynomial $P \neq 0$,

$$
P\left(x, y, t, f, \frac{\partial f}{\partial x}, \ldots, \frac{\partial^{n} f}{\partial x^{n}}\right)=0
$$

Walks

Fayolle, lasnorodski, Malyshev (1999), Bousquet-Mélou, Mishna (2010) associate to a set of steps \mathcal{D},

- an algebraic curve $E_{\mathcal{D}}$ of genus 0 or 1 , and
- a group $G_{\mathcal{D}}$, finite or infinite.

Walks

Fayolle, lasnorodski, Malyshev (1999), Bousquet-Mélou, Mishna (2010) associate to a set of steps \mathcal{D},

- an algebraic curve $E_{\mathcal{D}}$ of genus 0 or 1, and
- a group $G_{\mathcal{D}}$, finite or infinite.

Results: For the $\mathbf{7 9}$ walks

- $\left|G_{\mathcal{D}}\right|<\infty$ for 23 walks $\Rightarrow Q_{\mathcal{D}}(x, y, t)$ algebraic or holonomic. \rightarrow A. Bostan, M. Bousquet-Mélou, M. van Hoeij, M. Kauers, M. Mishna, \ldots
- $\left|G_{\mathcal{D}}\right|=\infty$ for 56 walks $\Rightarrow Q_{\mathcal{D}}(x, y, t)$ not holonomic.
- 5 walks with genus $\left(E_{\mathcal{D}}\right)=0 \rightarrow$ S. Melzcer, M. Mishna, A. Rechnitzer, \ldots
- 51 walks with genus $\left(E_{\mathcal{D}}\right)=1 \rightarrow$ A. Bostan, I. Kurkova, K. Raschel, B. Salvy, ...
- Differentially Algebraic???

Walks： 51 walks with $\left|G_{\mathcal{D}}\right|=\infty$ ，genus $\left(E_{\mathcal{D}}\right)=1$

$$
\begin{aligned}
& \text { 䛼必密 } \\
& \text { 我式戋咸両我越 } \\
& \text { 正 }
\end{aligned}
$$

Theorem（D－H－R－S，2017a）：For $t \in \mathbb{C} \backslash \overline{\mathbb{Q}}$
1．In 42 cases，$x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is not x－DA，$y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y－DA．
2．In 9 cases，$x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is x－DA，$y \mapsto Q_{\mathcal{D}}(0, y, t)$ is y－DA but neither is holon．

Walks： 51 walks with $\left|G_{\mathcal{D}}\right|=\infty$ ，genus $\left(E_{\mathcal{D}}\right)=1$

$$
\begin{aligned}
& \text { 龇密密 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 元 }
\end{aligned}
$$

Theorem（D－H－R－S，2017a）：For $t \in \mathbb{C} \backslash \overline{\mathbb{Q}}$
1．In 42 cases，$x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is not x－DA，$y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y－DA．
2．In 9 cases，$x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is x－DA，$y \mapsto Q_{\mathcal{D}}(0, y, t)$ is y－DA but neither is holon．
－1．implies $Q_{\mathcal{D}}(x, y, t)$ is not DA（and so not holon．）in these cases．

Walks： 51 walks with $\left|G_{\mathcal{D}}\right|=\infty$ ，genus $\left(E_{\mathcal{D}}\right)=1$

$$
\begin{aligned}
& \text { 㥕思然然密密 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 迪线找我速速找 } \\
& \text { 龇密密 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 正 }
\end{aligned}
$$

Theorem（D－H－R－S，2017a）：For $t \in \mathbb{C} \backslash \overline{\mathbb{Q}}$
1．In 42 cases，$x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is not x－DA，$y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y－DA．
2．In 9 cases，$x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is x－DA，$y \mapsto Q_{\mathcal{D}}(0, y, t)$ is y－DA but neither is holon．
－1．implies $Q_{\mathcal{D}}(x, y, t)$ is not DA（and so not holon．）in these cases．
－2＋．first shown by O．Bernardi，M．Bousquet－Mélou，K．Raschel

Walks： 51 walks with $\left|G_{\mathcal{D}}\right|=\infty$ ，genus $\left(E_{\mathcal{D}}\right)=1$

$$
\begin{aligned}
& \text { 迪线找我速速找 } \\
& \text { 䛼必密 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 正 }
\end{aligned}
$$

Theorem（D－H－R－S，2017a）：For $t \in \mathbb{C} \backslash \overline{\mathbb{Q}}$
1．In 42 cases，$x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is not x－DA，$y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y－DA．
2．In 9 cases，$x \mapsto Q_{\mathcal{D}}(x, 0, t)$ is x－DA，$y \mapsto Q_{\mathcal{D}}(0, y, t)$ is y－DA but neither is holon．
－1．implies $Q_{\mathcal{D}}(x, y, t)$ is not DA（and so not holon．）in these cases．
－2＋．first shown by O．Bernardi，M．Bousquet－Mélou，K．Raschel
－1．true for weighted cases as well．See recent paper of Dreyfus／Raschel．

Walks: 5 walks with $\left|G_{\mathcal{D}}\right|=\infty$, genus $\left(E_{\mathcal{D}}\right)=0$

Theorem (D-H-R-S, 2017b): For $t \in \mathbb{R} \backslash \overline{\mathbb{Q}}$
In all cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$, is not x-DA and $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y-DA.

Walks: 5 walks with $\left|G_{\mathcal{D}}\right|=\infty$, genus $\left(E_{\mathcal{D}}\right)=0$

Theorem (D-H-R-S, 2017b): For $t \in \mathbb{R} \backslash \overline{\mathbb{Q}}$
In all cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$, is not x-DA and $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y-DA.

- This implies $Q_{\mathcal{D}}(x, y, t)$ is not DA (and so not holon.) in these cases.

Walks: 5 walks with $\left|G_{\mathcal{D}}\right|=\infty$, genus $\left(E_{\mathcal{D}}\right)=0$

Theorem (D-H-R-S, 2017b): For $t \in \mathbb{R} \backslash \overline{\mathbb{Q}}$
In all cases, $x \mapsto Q_{\mathcal{D}}(x, 0, t)$, is not x-DA and $y \mapsto Q_{\mathcal{D}}(0, y, t)$ is not y-DA.

- This implies $Q_{\mathcal{D}}(x, y, t)$ is not DA (and so not holon.) in these cases.
- True for weighted cases as well.
- Generalities about Walks

D Differential Transcendence of the 42 walks, $\left|G_{\mathcal{D}}\right|=\infty, \operatorname{genus}\left(E_{\mathcal{D}}\right)=1$.

Differential Algebraicity of the 9 walks, $\left|G_{\mathcal{D}}\right|=\infty, \operatorname{genus}\left(E_{\mathcal{D}}\right)=1$.

Differential Transcendence of the 5 walks, $\left|G_{\mathcal{D}}\right|=\infty, \operatorname{genus}\left(E_{\mathcal{D}}\right)=0$.

Generalities about Walks

Functional Equation of the Walk

$q_{\mathcal{D}, i, j, k}=$ the number of walks in \mathbb{N}^{2} starting from $(0,0)$ ending at (i, j) using k steps from \mathcal{D}.

Generating series: $Q_{\mathcal{D}}(x, y, t):=\sum_{i, j, k} q_{\mathcal{D}, i, j, k} x^{i} y^{j} t^{k}$.
Step Inventory: $\mathcal{S}_{\mathcal{D}}(x, y)=\sum_{(i, j) \in \mathcal{D}} x^{i} y^{j}$
Kernel of the Walk: $K_{\mathcal{D}}(x, y, t)=x y\left(1-t \mathcal{S}_{\mathcal{D}}(x, y)\right)$
Functional Equation:

$$
\begin{aligned}
& K_{\mathcal{D}}(x, y, t) Q_{\mathcal{D}}(x, y, t)= \\
& \qquad \begin{array}{l}
x y-K_{\mathcal{D}}(x, 0, t) Q_{\mathcal{D}}(x, 0, t)-K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t) \\
\\
\quad+K_{\mathcal{D}}(0,0, t) Q_{\mathcal{D}}(0,0, t)
\end{array}
\end{aligned}
$$

Curve of the Walk

Step Inventory: $\mathcal{S}_{\mathcal{D}}(x, y)=\sum_{(i, j) \in \mathcal{D}} x^{i} y^{j}$ Kernel of the Walk: $K_{\mathcal{D}}(x, y, t)=x y\left(1-t \mathcal{S}_{\mathcal{D}}(x, y)\right)$ Functional Equation:

$$
\begin{aligned}
& K_{\mathcal{D}}(x, y, t) Q_{\mathcal{D}}(x, y, t)= \\
& \quad x y-K_{\mathcal{D}}(x, 0, t) Q_{\mathcal{D}}(x, 0, t)-K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t) \\
& \\
& \quad+K_{\mathcal{D}}(0,0, t) Q_{\mathcal{D}}(0,0, t) .
\end{aligned}
$$

Curve of the Walk

Step Inventory: $\mathcal{S}_{\mathcal{D}}(x, y)=\sum_{(i, j) \in \mathcal{D}} x^{i} y^{j}$
Kernel of the Walk: $K_{\mathcal{D}}(x, y, t)=x y\left(1-t \mathcal{S}_{\mathcal{D}}(x, y)\right)$
Functional Equation:

$$
\begin{aligned}
& K_{\mathcal{D}}(x, y, t) Q_{\mathcal{D}}(x, y, t)= \\
& \qquad \begin{array}{l}
x y-K_{\mathcal{D}}(x, 0, t) Q_{\mathcal{D}}(x, 0, t)-K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t) \\
\end{array} \quad+K_{\mathcal{D}}(0,0, t) Q_{\mathcal{D}}(0,0, t)
\end{aligned}
$$

The Curve of the Walk is the curve

$$
E_{\mathcal{D}}={\overline{\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}}}^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})
$$

Curve of the Walk

Step Inventory: $\mathcal{S}_{\mathcal{D}}(x, y)=\sum_{(i, j) \in \mathcal{D}} x^{i} y^{j}$
Kernel of the Walk: $K_{\mathcal{D}}(x, y, t)=x y\left(1-t \mathcal{S}_{\mathcal{D}}(x, y)\right)$
Functional Equation:

$$
\begin{aligned}
& K_{\mathcal{D}}(x, y, t) Q_{\mathcal{D}}(x, y, t)= \\
& \qquad \begin{array}{l}
x y-K_{\mathcal{D}}(x, 0, t) Q_{\mathcal{D}}(x, 0, t)-K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t) \\
\end{array} \quad+K_{\mathcal{D}}(0,0, t) Q_{\mathcal{D}}(0,0, t)
\end{aligned}
$$

The Curve of the Walk is the curve

$$
E_{\mathcal{D}}={\overline{\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}}}^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})
$$

Fact: $E_{\mathcal{D}}$ is biquadratic and has genus 0 or 1 .

Curve of the Walk

Step Inventory: $\mathcal{S}_{\mathcal{D}}(x, y)=\sum_{(i, j) \in \mathcal{D}} x^{i} y^{j}$
Kernel of the Walk: $K_{\mathcal{D}}(x, y, t)=x y\left(1-t \mathcal{S}_{\mathcal{D}}(x, y)\right)$
Functional Equation:

$$
\begin{aligned}
& K_{\mathcal{D}}(x, y, t) Q_{\mathcal{D}}(x, y, t)= \\
& \qquad \begin{array}{l}
x y-K_{\mathcal{D}}(x, 0, t) Q_{\mathcal{D}}(x, 0, t)-K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t) \\
\end{array} \quad+K_{\mathcal{D}}(0,0, t) Q_{\mathcal{D}}(0,0, t)
\end{aligned}
$$

The Curve of the Walk is the curve

$$
E_{\mathcal{D}}=\overline{\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C}) .}
$$

Fact: $E_{\mathcal{D}}$ is biquadratic and has genus 0 or 1 .
Ex: 1) $\mathcal{D}=$

$$
\begin{aligned}
& E_{\mathcal{D}}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0 \Rightarrow g\left(E_{\mathcal{D}}\right)=1 \\
& E_{\mathcal{D}}: x y-t\left(y^{2}+x y^{2}+x^{2}\right)=0 \Rightarrow g\left(E_{\mathcal{D}}\right)=0
\end{aligned}
$$

for $t \in \mathbb{C} \backslash \overline{\mathbb{Q}}$

Group of the Walk

$$
E_{\mathcal{D}}=\overline{\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})}
$$

Group of the Walk

$$
E_{\mathcal{D}}={\overline{\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}}}^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})
$$

We define two involutions of $E_{\mathcal{D}}$ and an automorphism:

$$
\begin{aligned}
& \iota_{1}(x, y)=\left(x, \frac{1}{y} \frac{\sum_{(i,-1) \in \mathcal{D}} x^{i}}{\sum_{(i,+1) \in \mathcal{D}}^{x^{i}}}\right) \\
& \iota_{2}(x, y)=\left(\frac{1}{x} \frac{\sum_{(-1, j) \in \mathcal{D}} y^{j}}{\sum_{(+1, j) \in \mathcal{D}} y^{j}}, y\right) \\
& \sigma_{\mathcal{D}}=\iota_{2} \circ \iota_{1}
\end{aligned}
$$

Group of the Walk

$$
E_{\mathcal{D}}={\overline{\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}}}^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})
$$

We define two involutions of $E_{\mathcal{D}}$ and an automorphism:

$$
\begin{aligned}
& \iota_{1}(x, y)=\left(x, \frac{1}{y} \frac{\sum_{(i,-1) \in \mathcal{D}} x^{i}}{\sum_{(i, 1) \in \mathcal{D}} x^{i}}\right) \\
& \iota_{2}(x, y)=\left(\frac{1}{x} \frac{\sum_{(-1, j) \in \mathcal{D}} y^{j}}{\sum_{(+1, j) \in \mathcal{D}} y^{j}}, y\right) \\
& \sigma_{\mathcal{D}}=\iota_{2} \circ \iota_{1}
\end{aligned}
$$

The Group of the Walk $G_{\mathcal{D}}$ is the group generated by ι_{1}, ι_{2}.

Group of the Walk

$$
E_{\mathcal{D}}={\overline{\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}}}^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})
$$

We define two involutions of $E_{\mathcal{D}}$ and an automorphism:

$$
\begin{aligned}
& \iota_{1}(x, y)=\left(x, \frac{1}{y} \frac{\sum_{(i,-1) \in \mathcal{D}} x^{i}}{\sum_{(i,+1) \in \mathcal{D}} x^{i}}\right) \\
& \iota_{2}(x, y)=\left(\frac{1}{x} \frac{\sum_{(-1, j) \in \mathcal{D}} y^{j}}{\sum_{(+1, j) \in \mathcal{D}} y^{j}}, y\right) \\
& \sigma_{\mathcal{D}}=\iota_{2} \circ \iota_{1}
\end{aligned}
$$

The Group of the Walk $G_{\mathcal{D}}$ is the group generated by ι_{1}, ι_{2}.
Facts: 1) $G_{\mathcal{D}}$ is infinite iff $\sigma_{\mathcal{D}}$ is infinite.
2) $g\left(E_{\mathcal{D}}\right)=1 \Rightarrow \exists P \in E_{\mathcal{D}}$, s.t. $\sigma_{\mathcal{D}}(Q)=Q \oplus P$. $\sigma_{\mathcal{D}}$ is infinite iff P nontorsion.
3) Of the 79 interesting walks, $\left|G_{\mathcal{D}}\right|=\infty$ for 56 walks, 5 with $g=0$ and 51 with $g=1$ when $t \in \mathbb{C} \backslash \overline{\mathbb{Q}}$ (Bousquet-Mélou/Mishna).

Differential Transcendence of the 42 walks,

$$
\left|G_{\mathcal{D}}\right|=\infty, \operatorname{genus}\left(E_{\mathcal{D}}\right)=1
$$

Proving Differential Transcendence: The Gamma Function

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

Proving Differential Transcendence: The Gamma Function

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

- Analysis: $\Gamma(x)$ extends merom. to the plane and $\Gamma(x+1)=x \Gamma(x)$ so $f(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$ satisfies

$$
f(x+1)-f(x)=\frac{1}{x} .
$$

Proving Differential Transcendence: The Gamma Function

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

- Analysis: $\Gamma(x)$ extends merom. to the plane and $\Gamma(x+1)=x \Gamma(x)$ so $f(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$ satisfies

$$
f(x+1)-f(x)=\frac{1}{x} .
$$

- Galois Theory: If $f(x)$ is DA then for some n and complex numbers a_{i}

$$
\frac{d^{n}}{d x^{n}}\left(\frac{1}{x}\right)+a_{n-1} \frac{d^{n-1}}{d x^{n-1}}\left(\frac{1}{x}\right)+\ldots+a_{0}\left(\frac{1}{x}\right)=h(x+1)-h(x)
$$

for some rational function $h(x)$

Proving Differential Transcendence: The Gamma Function

$$
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

- Analysis: $\Gamma(x)$ extends merom. to the plane and $\Gamma(x+1)=x \Gamma(x)$ so $f(x)=\frac{\Gamma^{\prime}(x)}{\Gamma(x)}$ satisfies

$$
f(x+1)-f(x)=\frac{1}{x} .
$$

- Galois Theory: If $f(x)$ is DA then for some n and complex numbers a_{i}

$$
\frac{d^{n}}{d x^{n}}\left(\frac{1}{x}\right)+a_{n-1} \frac{d^{n-1}}{d x^{n-1}}\left(\frac{1}{x}\right)+\ldots+a_{0}\left(\frac{1}{x}\right)=h(x+1)-h(x)
$$

for some rational function $h(x)$

- Computation: LHS has only one pole and RHS has at least two poles \Rightarrow CONTRADICTION.

Proving Differential Transcendence of Function $F(x)$

Proving Differential Transcendence of Function $F(x)$

- Analysis is used to find that a related function $f(x)$ s.t.
- $F(x) \mathrm{DA} \Rightarrow f(x) \mathrm{DA}$, and
- $f(x)$ satisfies a functional equation

$$
f(\sigma(x))-f(x)=g(x)
$$

$\sigma(x)=x+1$ or $q x$ or \ldots and $g(x)$ a rational function.

Proving Differential Transcendence of Function $F(x)$

- Analysis is used to find that a related function $f(x)$ s.t.
- $F(x) \mathrm{DA} \Rightarrow f(x) \mathrm{DA}$, and
- $f(x)$ satisfies a functional equation

$$
f(\sigma(x))-f(x)=g(x)
$$

$\sigma(x)=x+1$ or $q x$ or \ldots and $g(x)$ a rational function.

- Galois Theory implies that if f is DA then for some n and complex numbers a_{i}

$$
\frac{d^{n} g}{d x^{n}}+a_{n-1} \frac{d^{n-1} g}{d x^{n-1}}+\ldots+a_{0} g=h(\sigma(x))-h(x)
$$

for some rational function $h(x)$

Proving Differential Transcendence of Function $F(x)$

- Analysis is used to find that a related function $f(x)$ s.t.
- $F(x) \mathrm{DA} \Rightarrow f(x) \mathrm{DA}$, and
- $f(x)$ satisfies a functional equation

$$
f(\sigma(x))-f(x)=g(x)
$$

$\sigma(x)=x+1$ or $q x$ or \ldots and $g(x)$ a rational function.
Galois Theory implies that if f is DA then for some n and complex numbers a_{i}

$$
\frac{d^{n} g}{d x^{n}}+a_{n-1} \frac{d^{n-1} g}{d x^{n-1}}+\ldots+a_{0} g=h(\sigma(x))-h(x)
$$

for some rational function $h(x)$

- Computation of poles shows that this Telescoper Equation cannot happen.

Differential Transcendence: $\left|G_{\mathcal{D}}\right|=\infty, g\left(E_{\mathcal{D}}\right)=1$,

Generating Series: $Q_{\mathcal{D}}(x, y, t):=\sum_{i, j, k} q_{\mathcal{D}, i, j, k} x^{i} y^{j} t^{k}$ satisfies
$K_{\mathcal{D}}(x, y, t) Q_{\mathcal{D}}(x, y, t)=x y-K_{\mathcal{D}}(x, 0, t) Q_{\mathcal{D}}(x, 0, t)-K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)+K_{\mathcal{D}}(0,0, t) Q_{\mathcal{D}}(0,0, t)$
Curve: $E_{\mathcal{D}}:=\overline{\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})}$
Group: $G_{\mathcal{D}}:=\left\langle\iota_{1}, \iota_{2}\right\rangle, \sigma_{\mathcal{D}}=\iota_{2} \circ \iota_{1} \sigma_{\mathcal{D}}(Q)=Q \oplus P$.
Analysis is used to find a related function $f(x)$ satisfying a functional equation $f(\sigma(x))-f(x)=g(x)$.

Differential Transcendence: $\left|G_{\mathcal{D}}\right|=\infty, g\left(E_{\mathcal{D}}\right)=1$,

Generating Series: $Q_{\mathcal{D}}(x, y, t):=\sum_{i, j, k} q_{\mathcal{D}, i, j, k} x^{i} y^{j} t^{k}$ satisfies
$K_{\mathcal{D}}(x, y, t) Q_{\mathcal{D}}(x, y, t)=x y-K_{\mathcal{D}}(x, 0, t) Q_{\mathcal{D}}(x, 0, t)-K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)+K_{\mathcal{D}}(0,0, t) Q_{\mathcal{D}}(0,0, t)$
Curve: $E_{\mathcal{D}}:=\overline{\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})}$
Group: $G_{\mathcal{D}}:=\left\langle\iota_{1}, \iota_{2}\right\rangle, \sigma_{\mathcal{D}}=\iota_{2} \circ \iota_{1} \sigma_{\mathcal{D}}(Q)=Q \oplus P$.

> Analysis is used to find a related function $f(x)$ satisfying a functional equation $f(\sigma(x))-f(x)=g(x)$.

Kurkova/Raschel: 1) $Q_{\mathcal{D}}(x, y, t)$ converges for $|x|,|y|<1$.

Differential Transcendence: $\left|G_{\mathcal{D}}\right|=\infty, g\left(E_{\mathcal{D}}\right)=1$,

Generating Series: $Q_{\mathcal{D}}(x, y, t):=\sum_{i, j, k} q_{\mathcal{D}, i, j, k} x^{i} y^{j} t^{k}$ satisfies
$K_{\mathcal{D}}(x, y, t) Q_{\mathcal{D}}(x, y, t)=x y-K_{\mathcal{D}}(x, 0, t) Q_{\mathcal{D}}(x, 0, t)-K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)+K_{\mathcal{D}}(0,0, t) Q_{\mathcal{D}}(0,0, t)$
Curve: $E_{\mathcal{D}}:=\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$
Group: $G_{\mathcal{D}}:=\left\langle\iota_{1}, \iota_{2}\right\rangle, \sigma_{\mathcal{D}}=\iota_{2} \circ \iota_{1} \sigma_{\mathcal{D}}(Q)=Q \oplus P$.

> | Analysis is used to find a related function $f(x)$ satisfying |
| :--- |
| a functional equation $\quad f(\sigma(x))-f(x)=g(x)$. |

Kurkova/Raschel: 1) $Q_{\mathcal{D}}(x, y, t)$ converges for $|x|,|y|<1$.
2) $K(x, 0, t) Q_{\mathcal{D}}(x, 0, t)$ and $K(0, y, t) Q_{\mathcal{D}}(0, y, t)$ - analytically continued to multivalued fnc. $F_{\mathcal{D}}^{1}(X)$ and $F_{\mathcal{D}}^{2}(X)$ on $E_{\mathcal{D}}$.

Differential Transcendence: $\left|G_{\mathcal{D}}\right|=\infty, g\left(E_{\mathcal{D}}\right)=1$,

Generating Series: $Q_{\mathcal{D}}(x, y, t):=\sum_{i, j, k} q_{\mathcal{D}, i, j, k} x^{i} y^{j} t^{k}$ satisfies
$K_{\mathcal{D}}(x, y, t) Q_{\mathcal{D}}(x, y, t)=x y-K_{\mathcal{D}}(x, 0, t) Q_{\mathcal{D}}(x, 0, t)-K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)+K_{\mathcal{D}}(0,0, t) Q_{\mathcal{D}}(0,0, t)$
Curve: $E_{\mathcal{D}}:=\overline{\left\{(x, y) \mid K_{\mathcal{D}}(x, y, t)=0\right\}}{ }^{\text {Zariski }} \subset \mathbb{P}^{1}(\mathbb{C}) \times \mathbb{P}^{1}(\mathbb{C})$
Group: $G_{\mathcal{D}}:=\left\langle\iota_{1}, \iota_{2}\right\rangle, \sigma_{\mathcal{D}}=\iota_{2} \circ \iota_{1} \quad \sigma_{\mathcal{D}}(Q)=Q \oplus P$.

> | Analysis is used to find a related function $f(x)$ satisfying |
| :--- |
| a functional equation $\quad f(\sigma(x))-f(x)=g(x)$. |

Kurkova/Raschel: 1) $Q_{\mathcal{D}}(x, y, t)$ converges for $|x|,|y|<1$.
2) $K(x, 0, t) Q_{\mathcal{D}}(x, 0, t)$ and $K(0, y, t) Q_{\mathcal{D}}(0, y, t)$ - analytically continued to multivalued fnc. $F_{\mathcal{D}}^{1}(X)$ and $F_{\mathcal{D}}^{2}(X)$ on $E_{\mathcal{D}}$.
3) Each $F_{\mathcal{D}}^{i}(X)$ satisfies

$$
F_{\mathcal{D}}^{i}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{i}(X)=g_{\mathcal{D}}^{i}(X)
$$

on $E_{\mathcal{D}}$ for some $g_{\mathcal{D}}^{i}(X) \in \mathbb{C}\left(E_{\mathcal{D}}\right)=\mathbb{C}(x, y)$.

Galois Theory

Ex. $\mathcal{D}=\stackrel{J^{\cdot}}{\bullet}$

$$
E_{\mathcal{D}}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0 \Rightarrow g\left(E_{\mathcal{D}}\right)=1
$$

$F_{\mathcal{D}}^{2}(X)$ satisfies $F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g_{\mathcal{D}}^{2}(X):=x\left(\frac{x^{2}+x}{y\left(x^{2}+1\right)}-y\right)$

Galois Theory

Ex. $\mathcal{D}=\stackrel{J^{\cdot}}{.}$

$$
E_{\mathcal{D}}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0 \Rightarrow g\left(E_{\mathcal{D}}\right)=1
$$

$F_{\mathcal{D}}^{2}(X)$ satisfies $F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g_{\mathcal{D}}^{2}(X):=x\left(\frac{x^{2}+x}{y\left(x^{2}+1\right)}-y\right)$

- $\sigma_{\mathcal{D}}$ gives and automorphism $f(X) \mapsto f(X \oplus P)$ on $\mathbb{C}\left(E_{\mathcal{D}}\right)$

Galois Theory

Ex. $\mathcal{D}=\stackrel{J^{\cdot}}{.}$

$$
E_{\mathcal{D}}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0 \Rightarrow g\left(E_{\mathcal{D}}\right)=1
$$

$$
F_{\mathcal{D}}^{2}(X) \text { satisfies } F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g_{\mathcal{D}}^{2}(X):=x\left(\frac{x^{2}+x}{y\left(x^{2}+1\right)}-y\right)
$$

- $\sigma_{\mathcal{D}}$ gives and automorphism $f(X) \mapsto f(X \oplus P)$ on $\mathbb{C}\left(E_{\mathcal{D}}\right)$
- There is a derivation $\delta_{\mathcal{D}}$ on $\mathbb{C}\left(E_{\mathcal{D}}\right)$ such that $\delta_{\mathcal{D}} \circ \sigma_{\mathcal{D}}=\sigma_{\mathcal{D}} \circ \delta_{\mathcal{D}}$.

Galois Theory

Ex. $\mathcal{D}=$

$$
E_{\mathcal{D}}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0 \Rightarrow g\left(E_{\mathcal{D}}\right)=1
$$

$F_{\mathcal{D}}^{2}(X)$ satisfies $F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g_{\mathcal{D}}^{2}(X):=x\left(\frac{x^{2}+x}{y\left(x^{2}+1\right)}-y\right)$

- $\sigma_{\mathcal{D}}$ gives and automorphism $f(X) \mapsto f(X \oplus P)$ on $\mathbb{C}\left(E_{\mathcal{D}}\right)$
- There is a derivation $\delta_{\mathcal{D}}$ on $\mathbb{C}\left(E_{\mathcal{D}}\right)$ such that $\delta_{\mathcal{D}} \circ \sigma_{\mathcal{D}}=\sigma_{\mathcal{D}} \circ \delta_{\mathcal{D}}$.
- $F_{\mathcal{D}}^{2}$ is DA wrt $\delta_{\mathcal{D}}$ iff $Q_{\mathcal{D}}(0, y, t)$ is y-DA over $\mathbb{C}(x, y, t)$.

Galois Theory

Ex. $\mathcal{D}=$.

$$
E_{\mathcal{D}}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0 \Rightarrow g\left(E_{\mathcal{D}}\right)=1
$$

$$
F_{\mathcal{D}}^{2}(X) \text { satisfies } F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g_{\mathcal{D}}^{2}(X):=x\left(\frac{x^{2}+x}{y\left(x^{2}+1\right)}-y\right)
$$

- $\sigma_{\mathcal{D}}$ gives and automorphism $f(X) \mapsto f(X \oplus P)$ on $\mathbb{C}\left(E_{\mathcal{D}}\right)$
- There is a derivation $\delta_{\mathcal{D}}$ on $\mathbb{C}\left(E_{\mathcal{D}}\right)$ such that $\delta_{\mathcal{D}} \circ \sigma_{\mathcal{D}}=\sigma_{\mathcal{D}} \circ \delta_{\mathcal{D}}$.
- $F_{\mathcal{D}}^{2}$ is DA wrt $\delta_{\mathcal{D}}$ iff $Q_{\mathcal{D}}(0, y, t)$ is y-DA over $\mathbb{C}(x, y, t)$.

$$
\begin{aligned}
& \text { Galois Theory implies that if } F_{\mathcal{D}}^{2} \text { is } D A \text { then for some } n \\
& \text { and complex numbers } a_{i} \\
& \delta^{n}\left(g_{\mathcal{D}}\right)+a_{n-1} \delta^{n-1}\left(g_{\mathcal{D}}\right)+\ldots+a_{0} g_{\mathcal{D}}=h_{\mathcal{D}}(\sigma(x))-h_{\mathcal{D}}(x) \\
& \text { for some } h_{\mathcal{D}} \in \mathbb{C}\left(E_{\mathcal{D}}\right) \text {. }
\end{aligned}
$$

How does one decide if such a telescoper equation exists?

Galois Theory

Ex. $\mathcal{D}=$

$$
E_{\mathcal{D}}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0 \Rightarrow g\left(E_{\mathcal{D}}\right)=1
$$

$$
F_{\mathcal{D}}^{2}(X) \text { satisfies } F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g_{\mathcal{D}}^{2}(X):=x\left(\frac{x^{2}+x}{y\left(x^{2}+1\right)}-y\right)
$$

- $\sigma_{\mathcal{D}}$ gives and automorphism $f(X) \mapsto f(X \oplus P)$ on $\mathbb{C}\left(E_{\mathcal{D}}\right)$
- There is a derivation $\delta_{\mathcal{D}}$ on $\mathbb{C}\left(E_{\mathcal{D}}\right)$ such that $\delta_{\mathcal{D}} \circ \sigma_{\mathcal{D}}=\sigma_{\mathcal{D}} \circ \delta_{\mathcal{D}}$.
- $F_{\mathcal{D}}^{2}$ is DA wrt $\delta_{\mathcal{D}}$ iff $Q_{\mathcal{D}}(0, y, t)$ is y-DA over $\mathbb{C}(x, y, t)$.

> Galois Theory implies that if $F_{\mathcal{D}}^{2}$ is $D A$ then for some n and complex numbers a_{i}
> $\delta^{n}\left(g_{\mathcal{D}}\right)+a_{n-1} \delta^{n-1}\left(g_{\mathcal{D}}\right)+\ldots+a_{0} g_{\mathcal{D}}=h_{\mathcal{D}}(\sigma(x))-h_{\mathcal{D}}(x)$ for some $h_{\mathcal{D}} \in \mathbb{C}\left(E_{\mathcal{D}}\right)$.

How does one decide if such a telescoper equation exists?
Computation of poles shows when this happens.

Telescoper Equations

$$
k=\mathbb{C}(x), \sigma(x)=x+1, \delta=\frac{d}{d x} \quad y(x+1)-y(x)=g(x) \quad g(x) \in k
$$

When does g satisfy a telescoper equation

$$
\frac{d^{n} g}{d x^{n}}+a_{n-1} \frac{d^{n-1} g}{d x^{n-1}}+\ldots+a_{0} g=h(x+1)-h(x) ?
$$

Telescoper Equations

$$
k=\mathbb{C}(x), \sigma(x)=x+1, \delta=\frac{d}{d x} \quad y(x+1)-y(x)=g(x) \quad g(x) \in k
$$

When does g satisfy a telescoper equation

$$
\frac{d^{n} g}{d x^{n}}+a_{n-1} \frac{d^{n-1} g}{d x^{n-1}}+\ldots+a_{0} g=h(x+1)-h(x) ?
$$

Definition Let $g \in \mathbb{C}(x), \alpha \in \mathbb{C}$ and c_{α}^{i} be the coefficient of $(x-\alpha)^{-i}$ in the partial fraction expansion of g. The $\mathrm{i}^{\text {th }}$ orbit residue of g at α is

$$
\operatorname{ores}_{\alpha}^{i}(g)=\sum_{n \in \mathbb{Z}} c_{\alpha+n}^{i}
$$

Telescoper Equations

$$
k=\mathbb{C}(x), \sigma(x)=x+1, \delta=\frac{d}{d x} \quad y(x+1)-y(x)=g(x) \quad g(x) \in k
$$

When does g satisfy a telescoper equation

$$
\frac{d^{n} g}{d x^{n}}+a_{n-1} \frac{d^{n-1} g}{d x^{n-1}}+\ldots+a_{0} g=h(x+1)-h(x) ?
$$

Definition Let $g \in \mathbb{C}(x), \alpha \in \mathbb{C}$ and c_{α}^{i} be the coefficient of $(x-\alpha)^{-i}$ in the partial fraction expansion of g. The $\mathrm{i}^{\text {th }}$ orbit residue of g at α is

$$
\operatorname{ores}_{\alpha}^{i}(g)=\sum_{n \in \mathbb{Z}} c_{\alpha+n}^{i}
$$

Existence of Telescopers. $k=\mathbb{C}(x), \sigma(x)=x+1, \delta=\frac{d}{d x}$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}, \alpha \in \mathbb{C}$, ores ${ }_{\alpha}^{i}(g)=0$.

Telescoper Equations

$$
k=\mathbb{C}(x), \sigma(x)=x+1, \delta=\frac{d}{d x} \quad y(x+1)-y(x)=g(x) \quad g(x) \in k
$$

When does g satisfy a telescoper equation

$$
\frac{d^{n} g}{d x^{n}}+a_{n-1} \frac{d^{n-1} g}{d x^{n-1}}+\ldots+a_{0} g=h(x+1)-h(x) ?
$$

Definition Let $g \in \mathbb{C}(x), \alpha \in \mathbb{C}$ and c_{α}^{i} be the coefficient of $(x-\alpha)^{-i}$ in the partial fraction expansion of g. The $\mathbf{i}^{\text {th }}$ orbit residue of g at α is

$$
\operatorname{ores}_{\alpha}^{i}(g)=\sum_{n \in \mathbb{Z}} c_{\alpha+n}^{i}
$$

Existence of Telescopers. $k=\mathbb{C}(x), \sigma(x)=x+1, \delta=\frac{d}{d x}$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}, \alpha \in \mathbb{C}$, ores ${ }_{\alpha}^{i}(g)=0$.
- $g=h(x+1)-h(x)$ for some $h \in k$.

Telescoper Equations

$$
k=\mathbb{C}(x), \sigma(x)=x+1, \delta=\frac{d}{d x} \quad y(x+1)-y(x)=g(x) \quad g(x) \in k
$$

$$
\begin{aligned}
& \text { When does } g \text { satisfy a telescoper equation } \\
& \frac{d^{n} g}{d x^{n}}+a_{n-1} \frac{d^{n-1} g}{d x^{n-1}}+\ldots+a_{0} g=h(x+1)-h(x) ?
\end{aligned}
$$

Definition Let $g \in \mathbb{C}(x), \alpha \in \mathbb{C}$ and c_{α}^{i} be the coefficient of $(x-\alpha)^{-i}$ in the partial fraction expansion of g. The $\mathrm{i}^{\text {th }}$ orbit residue of g at α is

$$
\operatorname{ores}_{\alpha}^{i}(g)=\sum_{n \in \mathbb{Z}} c_{\alpha+n}^{i}
$$

Existence of Telescopers. $k=\mathbb{C}(x), \sigma(x)=x+1, \delta=\frac{d}{d x}$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}, \alpha \in \mathbb{C}$, ores ${ }_{\alpha}^{i}(g)=0$.
- $g=h(x+1)-h(x)$ for some $h \in k$.

Corollary. If for some $\alpha \in \mathbb{C}, g$ has a unique pole in $\{\alpha+n\}_{n \in \mathbb{Z}}$, then g satisfies no telescoper eqn.

Telescopers in $\mathbb{C}(E), E$ an Elliptic Curve

E elliptic curve, P nontorsion point, $k=\mathbb{C}(E), \sigma(f(Y))=f(Y \oplus P), \delta$ deriv $\delta \sigma=\sigma \delta$ When does an $g \in \mathbb{C}(E)$ satisfy a telescoper equation $L(g)=\sigma h-h$?

Telescopers in $\mathbb{C}(E), E$ an Elliptic Curve

E elliptic curve, P nontorsion point, $k=\mathbb{C}(E), \sigma(f(Y))=f(Y \oplus P), \delta$ deriv $\delta \sigma=\sigma \delta$
When does an $g \in \mathbb{C}(E)$ satisfy a telescoper equation $L(g)=\sigma h-h$?

Def. 1) $\left\{u_{Q} \mid Q \in E\right\}$ local param. are coherent if $u_{Q \ominus P}=\sigma\left(u_{Q}\right)$.
2) $f \in \mathbb{C}(E), Q \in E$, and $c_{Q}^{i}=$ coeff. of $\frac{1}{u_{Q}^{i}}$ in u-adic expansion of g. The $\mathrm{i}^{\text {th }}$ orbit residue of g at Q is

$$
\operatorname{ores}_{Q}^{i}(g)=\sum_{n \in \mathbb{Z}} c_{Q \oplus n P}^{i}
$$

Telescopers in $\mathbb{C}(E), E$ an Elliptic Curve

E elliptic curve, P nontorsion point, $k=\mathbb{C}(E), \sigma(f(Y))=f(Y \oplus P), \delta$ deriv $\delta \sigma=\sigma \delta$
When does an $g \in \mathbb{C}(E)$ satisfy a telescoper equation $L(g)=\sigma h-h$?

Def. 1) $\left\{u_{Q} \mid Q \in E\right\}$ local param. are coherent if $u_{Q \ominus P}=\sigma\left(u_{Q}\right)$.
2) $f \in \mathbb{C}(E), Q \in E$, and $c_{Q}^{i}=$ coeff. of $\frac{1}{u_{Q}^{i}}$ in u-adic expansion of g. The $\mathrm{i}^{\text {th }}$ orbit residue of g at Q is

$$
\operatorname{ores}_{Q}^{i}(g)=\sum_{n \in \mathbb{Z}} c_{Q \oplus n P}^{i}
$$

Existence of Telescopers. $k=\mathbb{C}(E), \sigma(Y)=Y \oplus P, \delta \sigma=\sigma \delta$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}, Q \in E$, ores $_{Q}^{i}(g)=0$.

Telescopers in $\mathbb{C}(E), E$ an Elliptic Curve

E elliptic curve, P nontorsion point, $k=\mathbb{C}(E), \sigma(f(Y))=f(Y \oplus P), \delta$ deriv $\delta \sigma=\sigma \delta$
When does an $g \in \mathbb{C}(E)$ satisfy a telescoper equation $L(g)=\sigma h-h$?

Def. 1) $\left\{u_{Q} \mid Q \in E\right\}$ local param. are coherent if $u_{Q \ominus P}=\sigma\left(u_{Q}\right)$.
2) $f \in \mathbb{C}(E), Q \in E$, and $c_{Q}^{i}=$ coeff. of $\frac{1}{u_{Q}^{i}}$ in u-adic expansion of g. The $\mathrm{i}^{\text {th }}$ orbit residue of g at Q is

$$
\operatorname{ores}_{Q}^{i}(g)=\sum_{n \in \mathbb{Z}} c_{Q \oplus n P}^{i}
$$

Existence of Telescopers. $k=\mathbb{C}(E), \sigma(Y)=Y \oplus P, \delta \sigma=\sigma \delta$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}, Q \in E$, ores $_{Q}^{i}(g)=0$.
- There exists $Q \in E, h \in k$ and $e \in \mathcal{L}(Q+(Q \oplus P))$ s.t. $g=\sigma h-h+e$.

Telescopers in $\mathbb{C}(E), E$ an Elliptic Curve

E elliptic curve, P nontorsion point, $k=\mathbb{C}(E), \sigma(f(Y))=f(Y \oplus P), \delta$ deriv $\delta \sigma=\sigma \delta$
When does an $g \in \mathbb{C}(E)$ satisfy a telescoper equation $L(g)=\sigma h-h$?

Def. 1) $\left\{u_{Q} \mid Q \in E\right\}$ local param. are coherent if $u_{Q \ominus P}=\sigma\left(u_{Q}\right)$.
2) $f \in \mathbb{C}(E), Q \in E$, and $c_{Q}^{i}=$ coeff. of $\frac{1}{u_{Q}^{i}}$ in u-adic expansion of g. The $\mathrm{i}^{\text {th }}$ orbit residue of g at Q is

$$
\operatorname{ores}_{Q}^{i}(g)=\sum_{n \in \mathbb{Z}} c_{Q \oplus n P}^{i}
$$

Existence of Telescopers. $k=\mathbb{C}(E), \sigma(Y)=Y \oplus P, \delta \sigma=\sigma \delta$ and $g \in k$. The following are equivalent:

- g satisfies a telescoper equation.
- For each $i \in \mathbb{N}_{>0}, Q \in E$, ores ${ }_{Q}^{i}(g)=0$.
- There exists $Q \in E, h \in k$ and $e \in \mathcal{L}(Q+(Q \oplus P))$ s.t. $g=\sigma h-h+e$.

Corollary. If for some $Q \in E, g$ has a unique pole in $\{Q \oplus n P\}_{n \in \mathbb{Z}}$, then no telescoper for g.

An Example

$$
E_{\mathcal{D}} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0
$$

An Example

$$
\mathcal{D}=.
$$

$K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)$ is $y-\mathrm{DA} \Rightarrow F_{\mathcal{D}}^{2}(x)$ is $\mathrm{DA} \Rightarrow$

$$
g_{\mathcal{D}}=x\left(\frac{x^{2}+x}{y\left(x^{2}+1\right)}-y\right)
$$

would satisfy a telescoper equation. This cannot happen because g has a pole unique in its orbit.

An Example

$$
\mathcal{D}=E_{\mathcal{D}} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0
$$

$K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)$ is $y-\mathrm{DA} \Rightarrow F_{\mathcal{D}}^{2}(x)$ is $\mathrm{DA} \Rightarrow$

$$
g_{\mathcal{D}}=x\left(\frac{x^{2}+x}{y\left(x^{2}+1\right)}-y\right)
$$

would satisfy a telescoper equation. This cannot happen because g has a pole unique in its orbit.

Poles: $\mathcal{P}=\{(\infty, \pm \mathrm{i}),(\pm \mathrm{i}, \infty),(\pm \mathrm{i}, \pm \mathrm{i} t+t)\}$
Fact: The autom. $\tau: \mathrm{i} \mapsto-\mathrm{i}$ of $\mathbb{Q}(\mathrm{i})$ commutes with $\sigma_{\mathcal{D}}:(\infty, i) \mapsto(\infty, i) \oplus P$.

An Example

$$
\mathcal{D}=E_{\mathcal{D}} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0
$$

$K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)$ is $y-\mathrm{DA} \Rightarrow F_{\mathcal{D}}^{2}(x)$ is $\mathrm{DA} \Rightarrow$

$$
g_{\mathcal{D}}=x\left(\frac{x^{2}+x}{y\left(x^{2}+1\right)}-y\right)
$$

would satisfy a telescoper equation. This cannot happen because g has a pole unique in its orbit.

Poles: $\mathcal{P}=\{(\infty, \pm \mathrm{i}),(\pm \mathrm{i}, \infty),(\pm \mathrm{i}, \pm \mathrm{it}+t)\}$
Fact: The autom. $\tau: \mathrm{i} \mapsto-\mathrm{i}$ of $\mathbb{Q}(\mathrm{i})$ commutes with $\sigma_{\mathcal{D}}:(\infty, i) \mapsto(\infty, i) \oplus P$.
Claim: $\left\{\sigma_{\mathcal{D}}^{n}(\infty, \mathrm{i}) \mid n \in \mathbb{Z}\right\} \cap \mathcal{P}=(\infty, \mathrm{i})$ where $\sigma_{\mathcal{D}}(Q)=Q \oplus P$.

An Example

$$
E_{\mathcal{D}} \subset \mathbb{P}^{1} \times \mathbb{P}^{1}: x y-t\left(y^{2}+x^{2} y^{2}+x^{2}+x\right)=0
$$

$K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)$ is $y-\mathrm{DA} \Rightarrow F_{\mathcal{D}}^{2}(x)$ is $\mathrm{DA} \Rightarrow$

$$
g_{\mathcal{D}}=x\left(\frac{x^{2}+x}{y\left(x^{2}+1\right)}-y\right)
$$

would satisfy a telescoper equation. This cannot happen because g has a pole unique in its orbit.

Poles: $\mathcal{P}=\{(\infty, \pm \mathrm{i}),(\pm \mathrm{i}, \infty),(\pm \mathrm{i}, \pm \mathrm{it}+t)\}$
Fact: The autom. $\tau: \mathrm{i} \mapsto-\mathrm{i}$ of $\mathbb{Q}(\mathrm{i})$ commutes with $\sigma_{\mathcal{D}}:(\infty, i) \mapsto(\infty, i) \oplus P$.
Claim: $\left\{\sigma_{\mathcal{D}}^{n}(\infty, \mathrm{i}) \mid n \in \mathbb{Z}\right\} \cap \mathcal{P}=(\infty, \mathrm{i})$ where $\sigma_{\mathcal{D}}(Q)=Q \oplus P$.
Proof: If $(\infty,-\mathrm{i})=\sigma_{\mathcal{D}}^{n}(\infty, \mathrm{i})$, then

$$
(\infty, \mathrm{i})=\tau(\infty,-\mathrm{i})=\tau\left(\sigma_{\mathcal{D}}^{n}(\infty, \mathrm{i})\right)=\sigma_{\mathcal{D}}^{n}(\tau(\infty, \mathrm{i}))=\sigma_{\mathcal{D}}^{n}(\infty,-\mathrm{i})=\sigma_{\mathcal{D}}^{2 n}(\infty, \mathrm{i})
$$

So $(\infty, \mathrm{i})=(\infty, \mathrm{i}) \oplus 2 n P \Rightarrow 0=2 n P$, contradicting the fact that P is nontorsion. $\sigma^{n}(\infty$, i $) \neq$ other poles similarly.

Differential Algebraicity of the 9 walks, $\left|G_{\mathcal{D}}\right|=\infty, \operatorname{genus}\left(E_{\mathcal{D}}\right)=1$.

Showing Differential Transcendence

- $F_{\mathcal{D}}^{2}=$ continuation of $K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)$ satisfies

$$
F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g(X)
$$

on $E_{\mathcal{D}}$.

Showing Differential Transcendence

- $F_{\mathcal{D}}^{2}=$ continuation of $K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)$ satisfies

$$
F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g(X)
$$

on $E_{\mathcal{D}}$.

- $Q_{\mathcal{D}}(0, y, t) \mathrm{DA} \Rightarrow g(X)$ satisfies telescoper equation

$$
L(g(X))=h(\sigma(X))-h(X)
$$

on $E_{\mathcal{D}}$

Showing Differential Transcendence

- $F_{\mathcal{D}}^{2}=$ continuation of $K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)$ satisfies

$$
F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g(X)
$$

on $E_{\mathcal{D}}$.

- $Q_{\mathcal{D}}(0, y, t) \mathrm{DA} \Rightarrow g(X)$ satisfies telescoper equation

$$
L(g(X))=h(\sigma(X))-h(X)
$$

on $E_{\mathcal{D}}$

- Conditions on the poles of $g(X) \Leftrightarrow g(X)$ satisfies telescoper equation.

Showing Differential Transcendence

- $F_{\mathcal{D}}^{2}=$ continuation of $K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)$ satisfies

$$
F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g(X)
$$

on $E_{\mathcal{D}}$.

- $Q_{\mathcal{D}}(0, y, t) \mathrm{DA} \Rightarrow g(X)$ satisfies telescoper equation

$$
L(g(X))=h(\sigma(X))-h(X)
$$

on $E_{\mathcal{D}}$

- Conditions on the poles of $g(X) \Leftrightarrow g(X)$ satisfies telescoper equation.
- for 42 cases $g(X)$ does not satisfy conditions $\Rightarrow \mathbf{Q}_{\mathcal{D}}(\mathbf{0}, \mathbf{y}, \mathbf{t})$ not DA.

Showing Differential Transcendence

- $F_{\mathcal{D}}^{2}=$ continuation of $K_{\mathcal{D}}(0, y, t) Q_{\mathcal{D}}(0, y, t)$ satisfies

$$
F_{\mathcal{D}}^{2}\left(\sigma_{\mathcal{D}}(X)\right)-F_{\mathcal{D}}^{2}(X)=g(X)
$$

on $E_{\mathcal{D}}$.

- $Q_{\mathcal{D}}(0, y, t) \mathrm{DA} \Rightarrow g(X)$ satisfies telescoper equation

$$
L(g(X))=h(\sigma(X))-h(X)
$$

on $E_{\mathcal{D}}$

- Conditions on the poles of $g(X) \Leftrightarrow g(X)$ satisfies telescoper equation.
- for 42 cases $g(X)$ does not satisfy conditions $\Rightarrow \mathbf{Q}_{\mathcal{D}}(\mathbf{0}, \mathbf{y}, \mathbf{t})$ not DA.

For 9 cases $g(x)$ does satisfy these conditions.

DA for 9 cases

- For these walks, $g(x)$ satisfies a telescoper equation on $E_{\mathcal{D}}$

$$
L(g(x))=h(\sigma(x))-h(x)=h(x \oplus P)-h(x)
$$

DA for 9 cases

- For these walks, $g(x)$ satisfies a telescoper equation on $E_{\mathcal{D}}$

$$
L(g(x))=h(\sigma(x))-h(x)=h(x \oplus P)-h(x)
$$

- Recall $F_{\mathcal{D}}^{2}(x)=$ continuation of $K_{\mathcal{D}}(0, y(x), t) Q_{\mathcal{D}}(0, y(x), t)$ satisfies

$$
F_{\mathcal{D}}^{2}(x \oplus P)-F_{\mathcal{D}}^{2}(x)=g(x)
$$

DA for 9 cases

- For these walks, $g(x)$ satisfies a telescoper equation on $E_{\mathcal{D}}$

$$
L(g(x))=h(\sigma(x))-h(x)=h(x \oplus P)-h(x)
$$

- Recall $F_{\mathcal{D}}^{2}(x)=$ continuation of $K_{\mathcal{D}}(0, y(x), t) Q_{\mathcal{D}}(0, y(x), t)$ satisfies

$$
F_{\mathcal{D}}^{2}(x \oplus P)-F_{\mathcal{D}}^{2}(x)=g(x)
$$

- These imply that $\mathcal{F}(x) \stackrel{\text { def }}{=} L\left(F_{\mathcal{D}}^{2}(x)\right)-h(x)$ satisfies

$$
\mathcal{F}(x \oplus P)=\mathcal{F}(x)
$$

DA for 9 cases

- For these walks, $g(x)$ satisfies a telescoper equation on $E_{\mathcal{D}}$

$$
L(g(x))=h(\sigma(x))-h(x)=h(x \oplus P)-h(x)
$$

- Recall $F_{\mathcal{D}}^{2}(x)=$ continuation of $K_{\mathcal{D}}(0, y(x), t) Q_{\mathcal{D}}(0, y(x), t)$ satisfies

$$
F_{\mathcal{D}}^{2}(x \oplus P)-F_{\mathcal{D}}^{2}(x)=g(x)
$$

- These imply that $\mathcal{F}(x) \stackrel{\text { def }}{=} L\left(F_{\mathcal{D}}^{2}(x)\right)-h(x)$ satisfies

$$
\mathcal{F}(x \oplus P)=\mathcal{F}(x)
$$

- Lifting to \mathbb{C}, the univ. cover of $E_{\mathcal{D}}, \exists \omega_{P} \in \mathbb{C}$ s.t.

$$
\tilde{\mathcal{F}}\left(x+\omega_{P}\right)=\tilde{\mathcal{F}}(x)
$$

DA for 9 cases

- For these walks, $g(x)$ satisfies a telescoper equation on $E_{\mathcal{D}}$

$$
L(g(x))=h(\sigma(x))-h(x)=h(x \oplus P)-h(x)
$$

- Recall $F_{\mathcal{D}}^{2}(x)=$ continuation of $K_{\mathcal{D}}(0, y(x), t) Q_{\mathcal{D}}(0, y(x), t)$ satisfies

$$
F_{\mathcal{D}}^{2}(x \oplus P)-F_{\mathcal{D}}^{2}(x)=g(x)
$$

- These imply that $\mathcal{F}(x) \stackrel{\text { def }}{=} L\left(F_{\mathcal{D}}^{2}(x)\right)-h(x)$ satisfies

$$
\mathcal{F}(x \oplus P)=\mathcal{F}(x)
$$

- Lifting to \mathbb{C}, the univ. cover of $E_{\mathcal{D}}, \exists \omega_{P} \in \mathbb{C}$ s.t.

$$
\tilde{\mathcal{F}}\left(x+\omega_{P}\right)=\tilde{\mathcal{F}}(x)
$$

- Kurkova/Raschel $\Rightarrow \exists \mathbb{R}$-independent $\omega_{1} \in \mathbb{C}$ s.t.

$$
\tilde{\mathcal{F}}\left(x+\omega_{1}\right)=\tilde{\mathcal{F}}(x)
$$

DA for 9 cases

- For these walks, $g(x)$ satisfies a telescoper equation on $E_{\mathcal{D}}$

$$
L(g(x))=h(\sigma(x))-h(x)=h(x \oplus P)-h(x)
$$

- Recall $F_{\mathcal{D}}^{2}(x)=$ continuation of $K_{\mathcal{D}}(0, y(x), t) Q_{\mathcal{D}}(0, y(x), t)$ satisfies

$$
F_{\mathcal{D}}^{2}(x \oplus P)-F_{\mathcal{D}}^{2}(x)=g(x)
$$

- These imply that $\mathcal{F}(x) \stackrel{\text { def }}{\equiv} L\left(F_{\mathcal{D}}^{2}(x)\right)-h(x)$ satisfies

$$
\mathcal{F}(x \oplus P)=\mathcal{F}(x)
$$

L Lifting to \mathbb{C}, the univ. cover of $E_{\mathcal{D}}, \exists \omega_{P} \in \mathbb{C}$ s.t.

$$
\tilde{\mathcal{F}}\left(x+\omega_{P}\right)=\tilde{\mathcal{F}}(x)
$$

- Kurkova/Raschel $\Rightarrow \exists \mathbb{R}$-independent $\omega_{1} \in \mathbb{C}$ s.t.

$$
\tilde{\mathcal{F}}\left(x+\omega_{1}\right)=\tilde{\mathcal{F}}(x)
$$

- $\tilde{\mathcal{F}}(x)$ doubly periodic $\Rightarrow \tilde{\mathcal{F}}(x) \mathrm{DA} \Rightarrow Q_{\mathcal{D}}(0, y, t) y$-DA.

Differential Transcendence of the 5 walks,

$$
\left|G_{\mathcal{D}}\right|=\infty, \operatorname{genus}\left(E_{\mathcal{D}}\right)=0
$$

5 walks with $\left|G_{\mathcal{D}}\right|=\infty, \operatorname{genus}\left(E_{\mathcal{D}}\right)=0$.

Fact: Curves of genus 0 can be parameterized

$$
\phi: \mathbb{P}^{1} \rightarrow E_{\mathcal{D}}
$$

where ϕ is a rational map.

Fact: Curves of genus 0 can be parameterized

$$
\phi: \mathbb{P}^{1} \rightarrow E_{\mathcal{D}}
$$

where ϕ is a rational map.
Can select ϕ so that

$$
x \mapsto \sigma_{\mathcal{D}}(x) \text { on } E_{\mathcal{D}} \Longleftrightarrow x \mapsto q x,|q| \neq 1 \text { on } \mathbb{P}^{1}
$$

Fact: Curves of genus 0 can be parameterized

$$
\phi: \mathbb{P}^{1} \rightarrow E_{\mathcal{D}}
$$

where ϕ is a rational map.
Can select ϕ so that

$$
x \mapsto \sigma_{\mathcal{D}}(x) \text { on } E_{\mathcal{D}} \Longleftrightarrow x \mapsto q x,|q| \neq 1 \text { on } \mathbb{P}^{1}
$$

- Restrict $K_{\mathcal{D}}(0, y, t) Q(0, y, t)$ to a small open set in $E_{\mathcal{D}}$ and PULL-BACK to open set in \mathbb{C}.
- Analytically continue to get a function $f(z)$ on \mathbb{C} that satisfies $f(q z)-f(z)=g(z)$ for some $g \in \mathbb{C}(x)$.
- f is $\mathrm{DA} \Leftrightarrow Q(0, y, t)$ is y-DA.
- f is $\mathrm{DA} \Rightarrow g(z)=h(q z)-h(z)$ for some $h \in \mathbb{C}(z)$. Conditions on poles give contradiction.

On the nature of the generating series of walks in the quarter plane

arXiv:1702.04696

Walks in the quarter plane, genus zero case
Preprint.

On the nature of the generating series of walks in the quarter plane

arXiv:1702.04696

Walks in the quarter plane, genus zero case

Preprint.

For general in information on the Galois Theory of Difference equations:
Galois Theories of Linear Difference Equations: An Introduction
Mathematical Surveys and Monographs, Vol. 211, AMS, 2016, 171 pages

- Algebraic and Algorithmic Aspects of Linear Difference Equations - S.
- Galoisian Approach to Differential Transcendence- Hardouin
- Analytic Study of q-Difference Equations - Sauloy

