Higher-order multicritical points in two-dimensional lattice polygon models

Nils Haug¹, Adri Olde Daalhuis² and **Thomas Prellberg**¹

¹School of Mathematical Sciences Queen Mary University of London, UK

> ²School of Mathematics University of Edinburgh, UK

Lattice walks at the Interface of Algebra, Analysis and Combinatorics BIRS September 2017

Thomas Prellberg(QMUL) Multicritical points in 2d lattice polygon models

- **2** Dyck paths
- **③** Deformed Dyck paths
- **4** Higher-order multicritical points

- 4 回 ト - 4 三 ト - 4 三 ト

Э

Contents

- 2 Dyck paths
- **3** Deformed Dyck paths
- 4 Higher-order multicritical points

イロト イヨト イヨト

Ξ

Vesicles are closed membranes formed of lipid bilayers

Figure: Schematic picture of a vesicle (texample.net).

Thomas Prellberg(QMUL) Multicritical points in 2d lattice polygon models

Vesicles

Figure: Vesicles (http://www.nanion.de).

Thomas Prellberg(QMUL) Multicritical points in 2d lattice polygon models

《口》 《國》 《注》 《注》

Introduction

The Fisher-Guttmann-Whittington (FGW) vesicle

We model vesicles as two-dimensional self-avoiding polygons (SAP).

Figure: A self-avoiding polygon of perimeter 52 and area 37.

Introduction

The generating function of the FGW vesicle

The area-perimeter generating function of SAP is defined as

$$G(x,q) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{m,n} x^m q^n,$$

where $c_{m,n}$ is the number of SAP with perimeter *m* and area *n*.

→ □ → → □ → → □ → □ □

The generating function of the FGW vesicle

The area-perimeter generating function of SAP is defined as

$$G(x,q) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} c_{m,n} x^m q^n,$$

where $c_{m,n}$ is the number of SAP with perimeter *m* and area *n*.

Conjecture (Richard, Guttmann, Jensen, 2001)

There exists a $x_c > 0$ such that for $q = e^{-\epsilon} \rightarrow 1^-$,

$$G^{\text{sing}}(x_c - s\epsilon^{\phi_c}, 1 - \epsilon) \sim \epsilon^{\theta_c} F(s),$$

where ϕ_c and θ_c are critical exponents, and F(s) is called the scaling function, expressible via Airy functions.

イロト イポト イヨト イヨト

Introduction

The phase diagram of the FGW vesicle

Figure: Phase diagram of the Fisher-Guttmann-Whittington vesicle.

E + 4 E +

Contents

- **3** Deformed Dyck paths
- 4 Higher-order multicritical points

→ □ > → □ > → □ >

Ξ

The model of Dyck paths

Figure: A Dyck path of half-width 9 and area 10.

We consider the generating function

$$D(x,q) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} d_{m,n} x^m q^n,$$

where $d_{m,n}$ is the number of DP of half-width m and area n.

Thomas Prellberg(QMUL) Multicritical points in 2d lattice polygon models

Functional equation for D(x, q)

We have the functional equation

$$D(x,q) = 1 + xD(qx,q)D(x,q).$$

For q = 1, we get the solution

$$D(x,1)=\frac{1}{2x}\left(1-\sqrt{1-4x}\right).$$

- 4 回 ト - 4 回 ト - 4 回 ト

E

Exact solution of D(x,q) = 1 + xD(qx,q)D(x,q)

Using the ansatz

$$D(x,q) = rac{\phi(qx,q)}{\phi(x,q)},$$

we get the linearised functional equation

$$x\phi(q^2x,q)-\phi(qx,q)+\phi(x,q)=0.$$

This equation is solved by the q-hypergeometric series

$$\phi(x,q) = {}_0\phi_1\left(\begin{array}{c} - \\ 0 \end{array}; q, -x \right) = \sum_{n=0}^{\infty} \frac{q^{n(n-1)}}{(q;q)_n} (-x)^n,$$

where $(z; q)_n = \prod_{k=0}^{n-1} (1 - zq^k)$ for $z, q \in \mathbb{C}$.

同下 イヨト イヨト

Integral representation of $\phi(x, q)$

In the limit $q=e^{-\epsilon}
ightarrow 1^-$, we get

$$\phi(x,q) = A\left(\int_C \exp\left(\frac{1}{\epsilon}f(z)\right)g(z)dz\right)(1+\mathcal{O}(\epsilon)),$$

where $\epsilon = -\ln(q)$, C is a contour in the complex plane,

$$\begin{array}{lll} f(z) &=& \log(z)\log(x) + {\rm Li}_2(z) - \frac{1}{2}\log(z)^2, \\ g(z) &=& \sqrt{\frac{z}{1-z}}, \end{array}$$

and A is some function of x.

na a

Integral representation of $\phi(x, q)$

Figure: The contour *C* used in the integral representation of $\phi(x, q)$.

(▲□) ▲ □ > ▲ □ > □ □

Saddle point analysis

The function f(z) has the two saddle points

$$\begin{cases} z_1 = \frac{1}{2}(1+\sqrt{1-4x}) \\ z_2 = \frac{1}{2}(1-\sqrt{1-4x}) \end{cases}$$

which coalesce in $z_c = \frac{1}{2}$ for $x = x_c = \frac{1}{4}$.

イロト イヨト イヨト イヨト

Saddle point analysis

The function f(z) has the two saddle points

$$\begin{cases} z_1 = \frac{1}{2}(1 + \sqrt{1 - 4x}) \\ z_2 = \frac{1}{2}(1 - \sqrt{1 - 4x}) \end{cases}$$

which coalesce in $z_c = \frac{1}{2}$ for $x = x_c = \frac{1}{4}$.

Theorem (Chester, Friedman, Ursell, 1957)

There exists a transformation $T : u \mapsto z(u)$ such that

$$f(z)=\frac{1}{3}u^3-\alpha u+\beta,$$

which is regular and bijective in a region containing (z_c, x_c) .

A B > A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Paths of steepest descent and ascent of Re(f(z))

Figure: Paths of steepest descent/ascent originating from $z_{1,2}$.

Uniform asymptotics of $\phi(x, q)$ and D(x, q)

Using the transformation T : $u\mapsto z(u)$, we obtain for $q=e^{-\epsilon}
ightarrow 1^-$,

$$\phi(x,q) \sim A \int_{e^{-i\pi/3}\infty}^{e^{i\pi/3}\infty} \exp\left(\frac{1}{\epsilon}\left[\frac{u^3}{3} - \alpha \, u + \beta\right]\right) g(z(u)) \frac{dz}{du} \, du,$$

uniformly for x > 0.

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● のへで

Uniform asymptotics of $\phi(x,q)$ and D(x,q)

Using the transformation T : $u\mapsto z(u)$, we obtain for $q=e^{-\epsilon}
ightarrow 1^-$,

$$\phi(x,q) \sim A \int_{e^{-i\pi/3\infty}}^{e^{i\pi/3\infty}} \exp\left(\frac{1}{\epsilon}\left[\frac{u^3}{3} - \alpha \, u + \beta\right]\right) g(z(u)) \frac{dz}{du} \, du,$$

uniformly for x > 0.

Result

For $q = e^{-\epsilon}
ightarrow 1^-$

$$D(x,q) = \frac{p^{(1)} \operatorname{Ai}(\alpha \, \epsilon^{-\frac{2}{3}}) - q^{(1)} \epsilon^{\frac{1}{3}} \operatorname{Ai}'(\alpha \, \epsilon^{-\frac{2}{3}})}{p^{(0)} \operatorname{Ai}(\alpha \, \epsilon^{-\frac{2}{3}}) - q^{(0)} \epsilon^{\frac{1}{3}} \operatorname{Ai}'(\alpha \, \epsilon^{-\frac{2}{3}})} + \mathcal{O}\left(\epsilon^{\frac{2}{3}}\right)$$

uniformly for $0 < x \le x_c = \frac{1}{4}$, where $\alpha \sim 1 - 4x$ for $x \to x_c = \frac{1}{4}$, and the $p^{(0,1)}$ and $q^{(0,1)}$ are analytic functions of x.

Scaling behaviour of D(x, q)

In particular, we obtain for $q=e^{-\epsilon}
ightarrow 1^-$,

$$D\left(\frac{1}{4}(1-s\epsilon^{\frac{2}{3}}),1-\epsilon\right)=2\left(1+\epsilon^{\frac{1}{3}}F(s)+\mathcal{O}(\epsilon)\right),$$

where

$$F(s) = \frac{d}{ds} \ln(\operatorname{Ai}(s)).$$

Scaling behaviour of D(x, q)

In particular, we obtain for $q=e^{-\epsilon}
ightarrow 1^-$,

$$D\left(\frac{1}{4}(1-s\epsilon^{\frac{2}{3}}),1-\epsilon\right)=2\left(1+\epsilon^{\frac{1}{3}}F(s)+\mathcal{O}(\epsilon)\right),$$

where

$$F(s) = \frac{d}{ds} \ln(\operatorname{Ai}(s)).$$

NH and T Prellberg.
 Uniform asymptotics of area-weighted Dyck paths.
 J. Math. Phys., 56:043301, 2015.

- 4 同下 - 4 戸下 - 4 戸下

Contents

- **③** Deformed Dyck paths
 - 4 Higher-order multicritical points

イロト イヨト イヨト

Question

Airy function scaling is found for many models, including staircase polygons and directed column-convex polygons.

Question

Airy function scaling is found for many models, including staircase polygons and directed column-convex polygons.

Question (John Cardy, 2001)

How can one, by turning on further interactions, find multicritical points of higher order described by a scaling function expressible via the generalised Airy integral

$$\Theta_k(s_1,\ldots,s_{k-2}) = \frac{1}{2\pi i} \int_{e^{-i\pi/k}\infty}^{e^{i\pi/k}\infty} \exp\left(\frac{u^k}{k} - \sum_{j=1}^{k-2} s_j u^j\right) du ?$$

Question

Airy function scaling is found for many models, including staircase polygons and directed column-convex polygons.

Question (John Cardy, 2001)

How can one, by turning on further interactions, find multicritical points of higher order described by a scaling function expressible via the generalised Airy integral

$$\Theta_k(s_1,\ldots,s_{k-2}) = \frac{1}{2\pi i} \int_{e^{-i\pi/k}\infty}^{e^{i\pi/k}\infty} \exp\left(\frac{u^k}{k} - \sum_{j=1}^{k-2} s_j u^j\right) du ?$$

Answer

For example by enriching the step set of Dyck paths.

イロト イポト イヨト イヨト

Perturbation of the generating function of Dyck paths

We perturb the functional equation for the perimeter generating function $D(x) \equiv D(x, 1)$ for Dyck paths with a cubic term, giving

$$wxD(x)^3 + xD(x)^2 - D(x) + 1 = 0.$$

Perturbation of the generating function of Dyck paths

We perturb the functional equation for the perimeter generating function $D(x) \equiv D(x, 1)$ for Dyck paths with a cubic term, giving

マロト マヨト マヨト 三日

SQ C

q-generalisation of the perturbed equation

We define the q-deformed version of the functional equation by

 $wxD(q^2x)D(qx)D(x) + xD(qx)D(x) - D(x) + 1 = 0,$

where $D(x) \equiv D(w, x, q)$.

q-generalisation of the perturbed equation

We define the q-deformed version of the functional equation by

 $wxD(q^2x)D(qx)D(x) + xD(qx)D(x) - D(x) + 1 = 0,$

where $D(x) \equiv D(w, x, q)$.

Question

Can this functional equation be interpreted combinatorially?

q-generalisation of the perturbed equation

We define the q-deformed version of the functional equation by

$$wxD(q^2x)D(qx)D(x) + xD(qx)D(x) - D(x) + 1 = 0,$$

where $D(x) \equiv D(w, x, q)$.

Question

Can this functional equation be interpreted combinatorially?

Answer

Yes, the solution $D(w, x, q) \equiv D(x)$ can be interpreted combinatorially as the generating function of *deformed Dyck paths*.

イロト イポト イヨト イヨト 二日

The model of deformed Dyck paths

Figure: A deformed Dyck path of half-width 9, 3 jumps and area 12.

We consider the generating function

$$D(w,x,q) = \sum_{k=0}^{\infty} \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} d_{k,m,n} w^k x^m q^n,$$

where $d_{k,m,n}$ is the number of DDP with k jumps, half-width m and area n.

(4月) (1日) (日)

na a

Functional equation and solution

Thomas Prellberg(QMUL) Multicritical points in 2d lattice polygon models

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● のへで

Functional equation and solution

 $D(x) = 1 + xD(qx)D(x) + wxD(q^2x)D(qx)D(x)$

Analogous to Dyck paths, we obtain the solution

$$D(w,x,q) = rac{\phi(w,qx,q)}{\phi(w,x,q)},$$

where $\phi(w, x, q) \equiv \phi(x)$ is the *q*-hypergeometric series

$$_{1}\phi_{2}\left(\begin{array}{c} -w\\ 0,0 \end{array} ; q,-x
ight) = \sum_{n=0}^{\infty} \frac{(-w;q)_{n}q^{n(n-1)}}{(q;q)_{n}} (-x)^{n}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□ ● ● のへで

Contour integral representation of $\phi(w, x, q) = \phi(x)$

For $q=e^{-\epsilon}
ightarrow 1^-$, we get

$$\phi(x) = A \int_{C} \left(\exp\left(\frac{1}{\epsilon}f(z)\right)g(z)dz \right) (1 + \mathcal{O}(\epsilon)),$$

where C, is again a complex contour,

$$f(z) = \log(z)\log(x) - \frac{1}{2}\log(z)^2 + \text{Li}_2(z) + \text{Li}_2\left(\frac{-w}{z}\right),$$

$$g(z) = \frac{z}{\sqrt{(1-z)(z+w)}}$$

and A is some function of x and w.

Contour integral representation of $\phi(w, x, q)$

Figure: The contour *C* used in the integral representation of $\phi(x)$.

イロト イポト イヨト イヨト

E

Saddle point analysis

The kernel f has three saddle points coalescing for given w if $x = x_c^-(w)$ and $x = x_c^+(w)$. For $w = -\frac{1}{9}$, we have $x_c^- = x_c^+ = \frac{1}{3}$.

물 나는 물 나

Paths of steepest descent and ascent of Re(f(z))

Paths of steepest descent and ascent of Re(f(z))

Thomas Prellberg(QMUL) Multicritical points in 2d lattice polygon models

Canonical transformation of f

Theorem (Ursell, 1972)

There exists a transformation $T : u \mapsto z(u)$ such that

$$f(z) = \frac{1}{4}u^4 - \alpha u^2 - \beta u + \gamma,$$

which is regular and bijective in region containing $(z_c, x_c) = (\frac{1}{3}, \frac{1}{3})$.

(ロ) (同) (E) (E) (E)

Canonical transformation of f

Theorem (Ursell, 1972)

There exists a transformation $T : u \mapsto z(u)$ such that

$$f(z) = \frac{1}{4}u^4 - \alpha u^2 - \beta u + \gamma,$$

which is regular and bijective in region containing $(z_c, x_c) = (\frac{1}{3}, \frac{1}{3})$.

Using the transformation $\mathsf{T}: z\mapsto z(u)$, we obtain for $q=e^{-\epsilon} o 1^-$,

$$\phi(x) \sim A \int_{e^{-i\pi/4}\infty}^{e^{i\pi/4}\infty} \exp\left(\frac{1}{\epsilon} \left[\frac{u^4}{4} - \alpha \, u^2 - \beta u + \gamma\right]\right) g(z(u)) \frac{dz}{du} \, du,$$

where A is a constant and α, β and γ are analytic functions of x and w.

Uniform asymptotics of $\phi(x)$

Define the generalised Airy function

$$\Theta(s_1, s_2) = \frac{1}{2\pi i} \int_{e^{-i\pi/4}\infty}^{e^{i\pi/4}\infty} \exp\left(\frac{u^4}{4} - s_2 u^2 - s_1 u\right) du,$$

and $\Phi(s_1, s_2) = \frac{\partial}{\partial s_1} \ln(\Theta(s_1, s_2)).$

- (回) - (三) - (三) - 三 三

Uniform asymptotics of $\phi(x)$

Define the generalised Airy function

$$\Theta(s_1, s_2) = \frac{1}{2\pi i} \int_{e^{-i\pi/4}\infty}^{e^{i\pi/4}\infty} \exp\left(\frac{u^4}{4} - s_2 u^2 - s_1 u\right) du,$$

and $\Phi(s_1, s_2) = \frac{\partial}{\partial s_1} \ln(\Theta(s_1, s_2)).$

Theorem (NH, A Olde Daalhuis, T Prellberg 2016)

Let
$$q = e^{-\epsilon}$$
, $\delta = \mathcal{O}(\epsilon^{1/2})$ and $\xi = \frac{3}{2}\delta + \mathcal{O}(\epsilon^{3/4})$ as $\epsilon \to 0^+$. Then

$$G\left(\delta - \frac{1}{9}, \frac{1}{3} - \xi, q\right) = 3\left(1 + 2^{1/4} \Phi(s_1, s_2) \epsilon^{1/4} + \mathcal{O}(\epsilon^{1/2})\right),$$

as $\epsilon \to 0^+$, for all $s_1, s_2 \in \mathbb{R}$ such that $|\Phi(s_1, s_2)| < \infty$, where $s_1 = 3\sqrt[4]{2} \left(\xi - \frac{3}{2}\delta\right) \epsilon^{-3/4}$ and $s_2 = \frac{27\sqrt{2}}{8} \left(\delta + \frac{1}{40}\xi^2\right) \epsilon^{-1/2}$.

イロト イポト イヨト イヨト

Scaling behaviour of D(w, x, q)

In particular, for fixed $w = -\frac{1}{9}$, we get

$$G\left(-\frac{1}{9},\frac{1}{3}\left(1-s\epsilon^{\frac{3}{4}}\right)\right)=3\left(1+\Phi(s,0)\epsilon^{\frac{1}{4}}+\mathcal{O}(\epsilon^{\frac{1}{2}})\right),$$

Scaling behaviour of D(w, x, q)

In particular, for fixed $w = -\frac{1}{9}$, we get

$$G\left(-\frac{1}{9},\frac{1}{3}\left(1-s\epsilon^{\frac{3}{4}}\right)\right)=3\left(1+\Phi(s,0)\epsilon^{\frac{1}{4}}+\mathcal{O}(\epsilon^{\frac{1}{2}})\right),$$

W	γ_c	θ_{c}	ϕ_{c}
$-\frac{1}{9} > -\frac{1}{9}$	$\frac{\frac{1}{3}}{\frac{1}{2}}$	$\frac{\frac{1}{4}}{\frac{1}{3}}$	3 4 2 3

Table: Critical exponents of DDP.

(ロ) (同) (E) (E) (E)

Scaling behaviour of D(w, x, q)

In particular, for fixed $w = -\frac{1}{9}$, we get

$$G\left(-\frac{1}{9},\frac{1}{3}\left(1-s\epsilon^{\frac{3}{4}}\right)\right)=3\left(1+\Phi(s,0)\epsilon^{\frac{1}{4}}+\mathcal{O}(\epsilon^{\frac{1}{2}})\right),$$

W	γ_c	θ_{c}	ϕ_{c}
$-\frac{1}{9}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{3}{4}$
$>-rac{1}{9}$	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{2}{3}$

Table: Critical exponents of DDP.

N Haug, A Olde Daalhuis, and T Prellberg. Higher-Order Airy Scaling in Deformed Dyck Paths. Journal of Statistical Physics, pp. 1−16, 2017.

Thomas Prellberg(QMUL) Multicritical points in 2d lattice polygon models

Numerical test

Figure: Plot of the scaling function $F(\sqrt[4]{2}s) = \Phi(\sqrt[4]{2}s, 0)$ (black) and the asymptotic approximation obtained from rearranging the scaling relation for $\epsilon = 10^{-4}, 10^{-5}, 10^{-6}$ (gray).

・ 同 ト ・ ヨ ト ・ ヨ ト

Contents

- 2 Dyck paths
- **3** Deformed Dyck paths
- **4** Higher-order multicritical points

イロト イヨト イヨト

Higher-order multi-critical points

Generalising DDP by introducing jumps of height greater than 2, multicritical points of arbitrary order, with a multivariate scaling function expressible via the higher-order Airy function

$$\Theta(s_1,\ldots,s_n)=\frac{1}{2\pi i}\int_{e^{-\frac{i\pi}{n+2}\infty}}^{e^{\frac{i\pi}{n+2}\infty}}\exp\left(\frac{u^{n+2}}{n+2}-s_nu^n-\cdots-s_1u\right)du,$$

can be observed.

Higher-order multi-critical points

Generalising DDP by introducing jumps of height greater than 2, multicritical points of arbitrary order, with a multivariate scaling function expressible via the higher-order Airy function

$$\Theta(s_1,\ldots,s_n)=\frac{1}{2\pi i}\int_{e^{-\frac{i\pi}{n+2}\infty}}^{e^{\frac{i\pi}{n+2}\infty}}\exp\left(\frac{u^{n+2}}{n+2}-s_nu^n-\cdots-s_1u\right)du,$$

can be observed.

N Haug and T Prellberg.
 Multicritical points in a two-dimensional lattice vesicle model.
 In preparation.

The End.

Thomas Prellberg(QMUL) Multicritical points in 2d lattice polygon models