A factorisation theorem for the number of rhombus tilings of a hexagon with triangular holes

Mihai Ciucu and Christian Krattenthaler
Indiana University; Universität Wien

Prelude
Rhombus tilings

Prelude
Rhombus tilings

Prelude

Rhombus tilings \qquad Perfect matchings

Prelude

Rhombus tilings

Perfect matchings

Prelude

Rhombus tilings

Perfect matchings

Prelude

Rhombus tilings \qquad Perfect matchings

Prelude

Rhombus tilings \qquad

Perfect matchings

Science Fiction (Mihai Ciucu)

Science Fiction (Mihai Ciucu)

Science Fiction (Mihai Ciucu)

Science Fiction (Mihai Ciucu)

Let R be that region. Then

$$
\mathrm{M}(R) \stackrel{?}{=} \mathrm{M}^{h s}(R) \cdot \mathrm{M}^{v s}(R),
$$

where $\mathrm{M}(R)$ denotes the number of rhombus tilings of R.

A small problem

A small problem

For this region R, we have $\mathrm{M}(R)=6 \times 6=36, \mathrm{M}^{\text {hs }}(R)=6$, and $\mathrm{M}^{\text {Vs }}(R)=4 \times 4=16$. But,

$$
36 \neq 6 \times 16
$$

Evidence?

Evidence?

It is true for the case without holes!

Evidence?

It is true for the case without holes!
Actually, this is "trivial" and "well-known".

Evidence?

Once and for all, let us fix $H_{n, 2 m}$ to be the hexagon with side lengths $n, n, 2 m, n, n, 2 m$.

Evidence?

MacMahon showed that ("plane partitions" in a given box)

$$
\mathrm{M}\left(H_{n, 2 m}\right)=\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{k=1}^{2 m} \frac{i+j+k-1}{i+j+k-2} .
$$

MacMahon showed that ("plane partitions" in a given box)

$$
\mathrm{M}\left(H_{n, 2 m}\right)=\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{k=1}^{2 m} \frac{i+j+k-1}{i+j+k-2}
$$

Proctor showed that ("transpose-complementary plane partitions" in a given box)

$$
\mathrm{M}^{h s}\left(H_{n, 2 m}\right)=\prod_{1 \leq i<j \leq n} \frac{2 m+2 n+1-i-j}{2 n+1-i-j}
$$

Evidence?

MacMahon showed that ("plane partitions" in a given box)

$$
\mathrm{M}\left(H_{n, 2 m}\right)=\prod_{i=1}^{n} \prod_{j=1}^{n} \prod_{k=1}^{2 m} \frac{i+j+k-1}{i+j+k-2}
$$

Proctor showed that ("transpose-complementary plane partitions" in a given box)

$$
\mathrm{M}^{h s}\left(H_{n, 2 m}\right)=\prod_{1 \leq i<j \leq n} \frac{2 m+2 n+1-i-j}{2 n+1-i-j}
$$

Andrews showed that ("symmetric plane partitions" in a given box)

$$
\mathrm{M}^{v s}\left(H_{n, 2 m}\right)=\prod_{i=1}^{n} \frac{2 m+2 i-1}{2 i-1} \prod_{1 \leq i<j \leq n} \frac{2 m+i+j-1}{i+j-1}
$$

Evidence?

Evidence?

How to prove such a thing?

How to prove such a thing?

- By a bijection?

How to prove such a thing?

- By a bijection ?
- By "factoring" Kasteleyn matrices ?

How to prove such a thing?

- By a bijection?
- By "factoring" Kasteleyn matrices ?
- Maybe introducing weights helps in seeing what one can do ?

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Consider a symmetric bipartite graph G.

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Consider a symmetric bipartite graph G.

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Consider a symmetric bipartite graph G.

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Consider a symmetric bipartite graph G.

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Consider a symmetric bipartite graph G.

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Consider a symmetric bipartite graph G.

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Consider a symmetric bipartite graph G.

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Consider a symmetric bipartite graph G.

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Consider a symmetric bipartite graph G.

Half of Science Fiction is Reality

Ciucu's Matchings Factorisation Theorem

Consider a symmetric bipartite graph G.

Then

$$
M(G)=2^{\# \text { (edges on symm. axis) }} \cdot M\left(G^{+}\right) \cdot M_{\text {weighted }}\left(G^{-}\right) .
$$

Half of Science Fiction is Reality

If we translate this to our situation:

$$
\mathrm{M}(R)=2^{\# \text { (rhombi on symm. axis) }} \cdot \mathrm{M}\left(R^{+}\right) \cdot \mathrm{M}_{\text {weighted }}\left(R^{-}\right) .
$$

Half of Science Fiction is Reality

If we translate this to our situation:

$$
\mathrm{M}(R)=2^{\# \text { (rhombi on symm. axis) }} \cdot \mathrm{M}\left(R^{+}\right) \cdot \mathrm{M}_{\text {weighted }}\left(R^{-}\right) .
$$

We "want"

$$
\mathrm{M}(R) \stackrel{?}{=} \mathrm{M}^{h s}(R) \cdot \mathrm{M}^{v s}(R) .
$$

The "actual" problem

So, it "only" remains to prove

$$
\mathrm{M}^{v s}(R)=2^{\# \text { (rhombi on symm. axis) }} \cdot \mathrm{M}_{\text {weighted }}\left(R^{-}\right) .
$$

The theorem

The hexagon with holes $H_{15,10}(2,5,7)$

Theorem

For all positive integers n, m, I and non-negative integers $k_{1}, k_{2}, \ldots k_{l}$ with $0<k_{1}<k_{2}<\cdots<k_{l} \leq n / 2$, we have

$$
\begin{aligned}
& \mathrm{M}\left(H_{n, 2 m}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right) \\
& \quad=\mathrm{M}^{h s}\left(H_{n, 2 m}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right) \mathrm{M}^{\text {vs }}\left(H_{n, 2 m}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right)
\end{aligned}
$$

Sketch of proof

Sketch of proof

We want to prove

$$
\mathrm{M}^{v s}(R)=2^{\#(\text { rhombi on symm. axis })} \cdot \mathrm{M}_{\text {weighted }}\left(R^{-}\right)
$$

Sketch of proof

Sketch of proof

First step. Use non-intersecting lattice paths to get a determinant for $\mathrm{M}_{\text {weighted }}\left(H_{n, 2 m}^{-}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right)$ and a Pfaffian for $\mathrm{M}^{\text {vs }}\left(H_{n, 2 m}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right)$.

A tiling of $H_{n, 2 m}^{-}\left(k_{1}, k_{2}, \ldots, k_{l}\right)$

A tiling of $H_{n, 2 m}^{-}\left(k_{1}, k_{2}, \ldots, k_{l}\right)$

A tiling of $H_{n, 2 m}^{-}\left(k_{1}, k_{2}, \ldots, k_{l}\right)$

Sketch of proof

Theorem (Karlin-McGregor, Lindström, Gessel-Viennot, Fisher, John-Sachs, Gronau-Just-Schade-Scheffler-Wojciechowski)

Let G be an acyclic, directed graph, and let $A_{1}, A_{2}, \ldots, A_{n}$ and $E_{1}, E_{2}, \ldots, E_{n}$ be vertices in the graph with the property that, for $i<j$ and $k<I$, any (directed) path from A_{i} to E_{I} intersects with any path from A_{j} to E_{k}. Then the number of families
$\left(P_{1}, P_{2}, \ldots, P_{n}\right)$ of non-intersecting (directed) paths, where the i-th path P_{i} runs from A_{i} to $E_{i}, i=1,2, \ldots, n$, is given by

$$
\operatorname{det}_{1 \leq i, j \leq n}\left(\left|\mathcal{P}\left(A_{j} \rightarrow E_{i}\right)\right|\right),
$$

where $\mathcal{P}(A \rightarrow E)$ denotes the set of paths from A to E.

Sketch of proof

By the Karlin-McGregor, Lindström, Gessel-Viennot, Fisher, John-Sachs, Gronau-Just-Schade-Scheffler-Wojciechowski Theorem on non-intersecting lattice paths, we obtain a determinant.

Proposition

$M_{\text {weighted }}\left(H_{n, 2 m}^{-}\left(k_{1}, k_{2}, \ldots, k_{1}\right)\right)$ is given by $\operatorname{det}(N)$, where N is the matrix with rows and columns indexed by
$\left\{1,2, \ldots, m, 1^{+}, 2^{+}, \ldots, I^{+}\right\}$, and entries given by

$$
N_{i, j}= \begin{cases}\binom{2 n}{n+j-i}+\binom{2 n}{n-i-j+1}, & \text { if } 1 \leq i, j \leq m, \\ \binom{2 n-2 k_{t}}{n-k_{t}-i+1}+\binom{2 n-2 k_{t}}{n-k_{t}-i}, & \text { if } 1 \leq i \leq m \text { and } j=t^{+}, \\ \binom{2 n-2 k_{t}}{n-k_{t}-j+1}+\binom{2 n-2 k_{t}}{n-k_{t}-j}, & \text { if } i=t^{+} \text {and } 1 \leq j \leq m, \\ \binom{2 n-2 k_{t}-2 k_{\hat{t}}}{n-k_{t}-k_{\hat{t}}}+\binom{2 n-2 k_{t}-2 k_{\hat{t}}}{n-k_{t}-k_{\hat{t}}-1}, & \text { if } i=t^{+}, j=\hat{t}^{+}, \\ \quad \text { and } 1 \leq t, \hat{t} \leq l .\end{cases}
$$

The left half of a vertically symmetric tiling

The left half of a vertically symmetric tiling

Sketch of proof

The left half of a vertically symmetric tiling

Theorem (Okada, Stembridge)

Let $\left\{u_{1}, u_{2}, \ldots, u_{p}\right\}$ and $I=\left\{I_{1}, I_{2}, \ldots\right\}$ be finite sets of lattice points in the integer lattice \mathbb{Z}^{2}, with p even. Let \mathfrak{S}_{p} be the symmetric group on $\{1,2, \ldots, p\}$, set
$\mathbf{u}_{\pi}=\left(u_{\pi(1)}, u_{\pi(2)}, \ldots, u_{\pi(p)}\right)$, and denote by $\mathcal{P}^{\text {nonint }}\left(\mathbf{u}_{\pi} \rightarrow I\right)$ the number of families $\left(P_{1}, P_{2}, \ldots, P_{p}\right)$ of non-intersecting lattice paths, with P_{k} running from $u_{\pi(k)}$ to $l_{j_{k}}, k=1,2, \ldots, p$, for some indices $j_{1}, j_{2}, \ldots, j_{p}$ satisfying $j_{1}<j_{2}<\cdots<j_{p}$.
Then we have

$$
\sum_{\pi \subset \mathfrak{K}}(\operatorname{sgn} \pi) \cdot \mathcal{P}^{\text {nonint }}\left(\mathbf{u}_{\pi} \rightarrow I\right)=\operatorname{Pf}(Q)
$$

Sketch of proof

with the matrix $Q=\left(Q_{i, j}\right)_{1 \leq i, j \leq p}$ given by
$Q_{i, j}=\sum_{1 \leq u<v}\left(\mathcal{P}\left(u_{i} \rightarrow I_{u}\right) \cdot \mathcal{P}\left(u_{j} \rightarrow I_{v}\right)-\mathcal{P}\left(u_{j} \rightarrow I_{u}\right) \cdot \mathcal{P}\left(u_{i} \rightarrow I_{v}\right)\right)$,
where $\mathcal{P}(A \rightarrow E)$ denotes the number of lattice paths from A to E.

Sketch of proof

Proposition

$\mathrm{M}^{\text {vs }}\left(H_{n, 2 m}\left(k_{1}, k_{2}, \ldots, k_{1}\right)\right)$ is given by

$$
(-1)^{\binom{1}{2}} \operatorname{Pf}(M),
$$

where M is the skew-symmetric matrix with rows and columns indexed by

$$
\left\{-m+1,-m+2, \ldots, m, 1^{-}, 2^{-}, \ldots, I^{-}, 1^{+}, 2^{+}, \ldots, I^{+}\right\}
$$

and entries given by

$$
M_{i, j}= \begin{cases}\sum_{r=i-j+1}^{j-i}\binom{2 n}{n+r}, & \text { if }-m+1 \leq i<j \leq m \\ \sum_{r=i+1}^{-i}\binom{2 n-2 k_{t}}{n-k_{t}+r}, & \text { if }-m+1 \leq i \leq m \text { and } j=t^{-} \\ \sum_{r=i}^{-i+1}\binom{2 n-2 k_{t}}{n-k_{t}+r}, & \text { if }-m+1 \leq i \leq m \text { and } j=t^{+} \\ 0, & \text { if } i=t^{-}, j=\hat{t}^{-}, \text {and } 1 \leq t<\hat{t} \leq I, \\ \binom{2 n-2 k_{t}-2 k_{\hat{t}}}{n-k_{t}-k_{\hat{t}}} & \text { if } i=t^{-}, j=\hat{t}^{+}, \text {and } 1 \leq t, \hat{t} \leq I \\ +\binom{2 n-2 k_{t}-2 k_{\hat{t}}}{n-k_{t}-k_{\hat{t}}+1}, & \text { if } i=t^{+}, j=\hat{t}^{+}, \text {and } 1 \leq t<\hat{t} \leq I \\ 0, & \end{cases}
$$

where sums have to be interpreted according to

$$
\sum_{r=M}^{N-1} \operatorname{Expr}(k)=\left\{\begin{array}{cl}
\sum_{r=M}^{N-1} \operatorname{Expr}(k) & N>M \\
0 & N=M \\
-\sum_{k=N}^{M-1} \operatorname{Expr}(k) & N<M
\end{array}\right.
$$

Sketch of proof

Second step.

Sketch of proof

Second step.

Lemma

For a positive integer m and a non-negative integer I, let A be a matrix of the form

$$
A=\left(\begin{array}{cc}
X & Y \\
-Y^{t} & Z
\end{array}\right)
$$

where $X=\left(x_{j-i}\right)_{-m+1 \leq i, j \leq m}$ and $Z=\left(z_{i, j}\right)_{i, j \in\left\{1^{-}, \ldots, I^{-}, 1^{+}, \ldots, I^{+}\right\}}$are skew-symmetric, and $Y=\left(y_{i, j}\right)_{-m+1 \leq i \leq m, j \in\left\{1^{-}, \ldots, I^{-}, 1^{+}, \ldots, I^{+}\right\}}$is a $2 m \times 2 l$ matrix. Suppose in addition that $y_{i, t^{-}}=-y_{-i, t^{-}}$and $y_{i, t^{+}}=-y_{-i+2, t^{+}}$, for all i with $-m+1 \leq i \leq m$ for which both sides of an equality are defined, and $1 \leq t \leq I$, and that $z_{i, j}=0$ for all $i, j \in\left\{1^{-}, \ldots, I^{-}\right\}$. Then

$$
\operatorname{Pf}(A)=(-1)^{\binom{1}{2}} \operatorname{det}(B),
$$

Sketch of proof

where

$$
B=\left(\begin{array}{cc}
\bar{X} & \bar{Y}_{1} \\
\bar{Y}_{2} & \bar{Z}
\end{array}\right)
$$

with

$$
\begin{aligned}
\bar{X} & =\left(\bar{x}_{i, j}\right)_{1 \leq i, j \leq m}, \\
\bar{Y}_{1} & =(y-i+1, j)_{1 \leq i \leq m, j \in\left\{1^{+}, \ldots, I^{+}\right\}}, \\
\bar{Y}_{2} & =\left(-y_{i, j}\right)_{i \in\left\{1^{-}, \ldots, I^{-}\right\}, 1 \leq j \leq m}, \\
\bar{Z} & =\left(z_{i, j}\right)_{i \in\left\{1^{-}, \ldots, I^{-}\right\}, j \in\left\{1^{+}, \ldots, I^{+}\right\}},
\end{aligned}
$$

and the entries of \bar{X} are defined by

$$
\bar{x}_{i, j}=x_{|j-i|+1}+x_{|j-i|+3}+\cdots+x_{i+j-1} .
$$

Sketch of proof

By the lemma, the Pfaffian for $\mathrm{M}^{v s}\left(H_{n, 2 m}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right)$ can be converted into a determinant, of the same size as the determinant we obtained for $\mathrm{M}_{\text {weighted }}\left(H_{n, 2 m}^{-}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right)$.

Sketch of proof

By the lemma, the Pfaffian for $\mathrm{M}^{v s}\left(H_{n, 2 m}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right)$ can be converted into a determinant, of the same size as the determinant we obtained for $\mathrm{M}_{\text {weighted }}\left(H_{n, 2 m}^{-}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right)$.
Third step. Alas, it is not the same determinant.

Sketch of proof

By the lemma, the Pfaffian for $\mathrm{M}^{v s}\left(H_{n, 2 m}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right)$ can be converted into a determinant, of the same size as the determinant we obtained for $\mathrm{M}_{\text {weighted }}\left(H_{n, 2 m}^{-}\left(k_{1}, k_{2}, \ldots, k_{l}\right)\right)$.
Third step. Alas, it is not the same determinant. However, further row and column operations do indeed convert one determinant into the other.

Postlude

Postlude

- A theorem has been proved.

Postlude

- A theorem has been proved.
- Is the proof illuminating?

Postlude

- A theorem has been proved.
- Is the proof illuminating? No.

Postlude

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation?

Postlude

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.

Postlude

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon?

Postlude

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon? I do not know.

Postlude

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon? I do not know.
- Is this a theorem without applications?

Postlude

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon? I do not know.
- Is this a theorem without applications? No.

Postlude

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon? I do not know.
- Is this a theorem without applications? No.
- Is this the end?

Postlude

- A theorem has been proved.
- Is the proof illuminating? No.
- Do we understand this factorisation? No.
- Can this be the utmost/correct generality for this factorisation phenomenon? I do not know.
- Is this a theorem without applications? No.
- Is this the end? Yes.

