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Generating Functions

Consider a closed-form generating function F for a
multidimensional array {an1,n2,...,nd}:

F(z) =
∑

n1,n2,...,nd

an1,n2,...,ndzn1
1 · · · z

nd
d

Goal: Extract information about {an} as the indices approach
infinity.



Tool: Singularity Analysis

• The location of singularities of F will determine the
exponential decay of [zn]F(z).

• The behavior of F near the singularities determines the
subexponential behavior.



Algebraic Singularities

Generating functions with algebraic singularities common.

• Catalan numbers
• SCFGs, Enumerating RNA secondary structures
• Random colorings in Kn



Previous Results

• Flajolet & Odlyzko (1990) analyzed a large class of
univariate algebraic generating functions.

• Gao and Richmond (1992) and Hwang (1996) extended FO
results to restricted classes of bivariate functions.

• Drmota (1997) and others looked at distributional results.
• Today: asymptotics for a broad class of algebraic

singularities, via the multivariate Cauchy integral formula
and Pemantle and Wilson techniques.



Univariate Generating Functions: Example Theorem

Theorem
(Flajolet & Odlyzko, 1990.) Consider a generating function F
with F(z) = O(|1− z|α) as z→ 1. If F is analytic in the region
below, then [zn]F(z) = O(n−α−1).
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Thus the binomial coefficients (2.1), as well as their main asymptotic equivalents in
(2.2), form an asymptotic scale. There is in fact a general form of (2.2).

PROPOSITION 1. The binomial coefficients expressing [zn]( z) have an asymp-
totic expansion as n -- ,
(2.3) [Znl(1--Z)a’" 1+ a{0,1,2, "’’},Ia(--a kl

where
2k

(2.4) e)= (-1)lXk,t(a+ 1)(a+ 2)-" .(c+l)
l=k

with
k,l_ 0

Proposition 1, although it would probably follow by close inspection of Stirling’s
formula, is most easily proved by techniques introduced in 3, so that we delay the proof
until then. We also observe, incidentally, that in (2.1)-(2.3 a may be complex: If c
+ it, we have

[Znl(1--Z)
I’( -r it)

cos (t log n) sin (t log n) ].

In that case, the main term in (2.2), (2.3) is of order n and it is multiplied by a
periodic function of log n.

We now propose to prove a transfer condition of the O-type. We give the proof in
some detail for two reasons: first, the implied constant in the O’s are "constructive" and
tight, a fact ofindependent interest; second, it serves as a guiding pattern for later deriving
a variety of transfer conditions. We let A 4(, n) denote the closed domain

(2.5) A(,n)--{z/Izl _--< +r/, IArg (z-1)1
where we take r/> 0 and 0 < < (r/2). This domain has the form of an indented disk
depicted on Fig. (a).

THEOREM 1. Assume that, with the sole exception ofthe singularity z 1, f(z) is
analytic in the domain A A(49, r ), where > 0 and 0 < 49 < (r/2 ). Assume further
that as z tends to in A,

(2.6a) f(z)--O(ll--zl),

(a) (b)

FIG. 1. (a) The domain A(49, ). (b The contour , used in the proofofTheorem 1.



Proof

• Cauchy Integral Formula:

[zn]F(z) =
1

2πi

ˆ
C

F(z)z−n−1dz

• Since F(z) = O(|1− z|α), compare:

1
2πi

ˆ
C

F(z)z−n−1dz versus 1
2πi

ˆ
C

(1− z)αz−n−1dz



1
2πi

ˆ
C

F(z)z−n−1dz versus 1
2πi

ˆ
C

(1− z)αz−n−1dz

Expand C to the contour below:

0 1



1
2πi

ˆ
C

F(z)z−n−1dz versus 1
2πi

ˆ
C

(1− z)αz−n−1dz

Both are small away from 1.

0 1



1
2πi

ˆ
C

F(z)z−n−1dz versus 1
2πi

ˆ
C

(1− z)αz−n−1dz

(1− z)α dominates near 1.

0 1



1
2πi

ˆ
C

F(z)z−n−1dz versus 1
2πi

ˆ
C

(1− z)αz−n−1dz

Comparing the integrals shows [zn]F(z) = O(n−α−1).

0 1



Multivariate Generating Functions with Algebraic Singularities

Start with:
H(x)−β =

∑
r≥0

arxr

Can we estimate ar as r approaches infinity, such that r ≈ s · λ
for some λ ∈ Rd

+ as s→∞? As before,

• The location of singularities of H will determine the
exponential behavior of the coefficients.

• The behavior of H near the singularities determines the
subexponential behavior.



Smooth critical points

• Determining relevant singularities of H more complicated
for multivariate generating functions.

• We restrict to “smooth minimal critical points” p where:

1. For coefficients ar as r = sλ with s→∞,

λ2x1Hx1 = λ1x2Hx2

λ3x1Hx1 = λ1x3Hx3

...
λnx1Hx1 = λ1xnHxn

2. Hx1(p) 6= 0
3. No other singularities of H are closer to the origin than p.



Result

Theorem (G.)
Let H(x) have a smooth, minimal critical point, p. Then, as r
approaches infinity with ri

rj
= λi

λj
+ O(1) for a constant vector λ

and all 1 ≤ i ≤ j ≤ d,

[xr] H(x)−β ∼
( 1

2πi

)d−1
p−r−1

[
rβ−1

1 p1
Γ(β)

{
(−Hx1 (p)p1)

−β}
P e−β(2πiω)

]

×


(
λ1
r1
π
) d−1

2√
det

( 1
2H
)


H is the Hessian of a (d− 1)-dimensional phase function
describing the zero set of H near p.



Proof Overview

( 1
2πi

)d ˆ
T

H(x)−βxr−1dx

• Determine how to expand the torus, T, using
Flajolet-Odlyzko as motivation.

• Manipulate H(x) to approximate the integral as a product
of a univariate integral and a (d− 1)-dimensional
Fourier-Laplace integral.

• Estimate the remaining integrals.



Expanding the Torus

|p |

p

Re x

Im x

θ

j

j

j

j

|p | + ε

Re x

Im x

p + G(x)

1

1

1 1
^

G(x̂) is a parameterization of the zero set of H near p.



Approximating H(x)−β

Rewrite H as a power series near p:

H(x) =
∑
r

br(x− p)r

As long as br = 0 for all r with |r| ≤ 2 except for coefficients
corresponding to x1 − p1 and (x1 − p1)(xj − pj), H can be
approximated by a function in x1 alone.



Change of Variables

Choose the change of variables:

u1 = x1 +
d∑

j=2
kj(xj − pj) +

d∑
j=2

qj(xj − pj)
2

+
∑

2≤j<`≤d

mj,`(xj − pj)(x` − p`)

uj = xj for 2 ≤ j ≤ d

kj,qj, and mj,` are constants in terms of the derivatives of H at
p.



The Integral after the Change of Variables

After applying the change of variables, we can show
ˆ

T
H(x)−βxr−1dx

is approximately
ˆ
C`

[Hx1(p)(u1 − p1)]−β
[
1− ψ(û)

p1

]−r1−1
u−r−1 du

Here, ψ(û) is related to a phase function and defined by

ψ(û) =
d−1∑
j=2

kj(uj−pj)+
d−1∑
j=2

qj(uj−pj)
2+

∑
2≤j<`≤d

mj,`(uj−pj)(u`−p`)



The Remaining Integrals

ˆ
U

[Hx1(p) · (u1 − p1)]−βu−r1−1
1 du

is a univariate Cauchy integral representing a binomial
coefficient, approximated by:

2πi
Γ(β)

rβ−1
1 p−r1

1

{
(−Hx(p)p1)−β

}
P

e−β(2πiω)

¨
V

[
1− ψ(û)

p1

]−r1−1
û−r̂−1̂ dû

is a Fourier-Laplace type integral. From Pemantle & Wilson,
we can approximate by:

p̂−r̂−1̂
(λ1π

r1
)

d−1
2√

det
( 1

2H
)



Application: RNA Secondary Structures

RNA secondary structures reveal valuable functional
information about RNA molecules.

....((((((((((((....)))))..(((((.......))))).((((..........))))..)))))))



Stochastic Context Free Grammars for Secondary Structures

Knudsen-Hein 1999 Grammar:
S → LS with probability p1

L with probability q1
F → (F) with probability p2

LS with probability q2
L → . with probability p3

(F) with probability q3



Converting KH99 to Probability Generating Functions

• Find the GF, S(x1, x2, x3) =
∞∑

n=0
p(n1,n2,n3)xn1

1 xn2
2 xn3

3

• p(n1,n2,n3): probability of producing a structure with n1
nucleotides, n2 base pairs, and n3 helices

• Production rules become recursions. For example, the
rules,

F → (F) with probability p2
LS with probability q2,

become
F = p2x2

1x2x3F + q2LS.



KH99 Generating Function

Solving yields

S(x) =
p1p3q2x2x3

1 − p3x2x2
1 − p1q2x1 + 1

2p2q3x2
1x2x3

−
√

H(x)

2p2q3x2
1x2x3

where

H(x) = (p3x2
1 x2 − 1)×

(p2
1p3q2

2x4
1x2+4p2q1q2q3x3

1x2x3−2p1p3q2x3
1x2−p2

1q2
2x2

1 +p3x2
1 x2+2p1q2x1−1).

Heitsch and Poznanović used these methods to find
distributions of single features.



Critical Points

The asymptotics are often controlled by a smooth minimal
critical point, and the results from before apply. For example,
let us choose p1 = p2 = p3 = 1

4 and λ = (6, 2, 1).

• This approximates the probability of structures where
there are six times as many nucleotides as helices, and
twice as many base pairs as helices.

• Using the smooth critical point equations,

H = 0, 2x1Hx1 = x2Hx2 , 6x1Hx1 = x3Hx3

yields the critical point,
(

16
9 ,

81
128 ,

4
27

)
.



Asymptotics

Plugging into the asymptotic formula yields:

[
xr1

1 xr2
2 xr3

3
]√

H ∼ − 64
π3/2r5/2

1

(
16
9

)−r1−1( 81
128

)−r2−1( 4
27

)−r2−1

as r1, r2, and r3 approach infinity in the ratio 6 : 2 : 1. For
(r1, r2, r3) = (60, 20, 10), the ratio of the approximation to the
exact coefficient of H is 1.056.

We can plug this approximation back into the formula for S to
approximate the probabilities we want.



Future Research

Analytic Combinatorics:

• Can the results be rewritten in a coordinate-free way?
• What about more general types of algebraic singularities?
• How about non-smooth points?

RNA:

• How well can this approach handle all directions λ and
all probabilities p1,p2,p3 simultaneously?

• Can we understand what types of rules control which
types of features?


