Multivariate Algebraic Generating Functions: Asymptotics and Examples

Torin Greenwood
Georgia Tech
Banff//September 19, 2017

Generating Functions

Consider a closed-form generating function F for a multidimensional array $\left\{a_{n_{1}, n_{2}, \ldots, n_{d}}\right\}$:

$$
F(\mathbf{z})=\sum_{n_{1}, n_{2}, \ldots, n_{d}} a_{n_{1}, n_{2}, \ldots, n_{d}} z_{1}^{n_{1}} \cdots z_{d}^{n_{d}}
$$

Goal: Extract information about $\left\{a_{n}\right\}$ as the indices approach infinity.

Tool: Singularity Analysis

- The location of singularities of F will determine the exponential decay of $\left[\mathbf{z}^{\mathrm{n}}\right] F(\mathbf{z})$.
- The behavior of F near the singularities determines the subexponential behavior.

Algebraic Singularities

Generating functions with algebraic singularities common.

- Catalan numbers
- SCFGs, Enumerating RNA secondary structures
- Random colorings in K_{n}

Previous Results

- Flajolet \& Odlyzko (1990) analyzed a large class of univariate algebraic generating functions.
- Gao and Richmond (1992) and Hwang (1996) extended FO results to restricted classes of bivariate functions.
- Drmota (1997) and others looked at distributional results.
- Today: asymptotics for a broad class of algebraic singularities, via the multivariate Cauchy integral formula and Pemantle and Wilson techniques.

Univariate Generating Functions: Example Theorem

Theorem

(Flajolet \& Odlyzko, 1990.) Consider a generating function F with $F(z)=O\left(|1-z|^{\alpha}\right)$ as $z \rightarrow 1$. If F is analytic in the region below, then $\left[z^{n}\right] F(z)=O\left(n^{-\alpha-1}\right)$.

Proof

- Cauchy Integral Formula:

$$
\left[z^{n}\right] F(z)=\frac{1}{2 \pi i} \int_{\mathcal{C}} F(z) z^{-n-1} d z
$$

- Since $F(z)=O\left(|1-z|^{\alpha}\right)$, compare:

$$
\frac{1}{2 \pi i} \int_{\mathcal{C}} F(z) z^{-n-1} d z \quad \text { versus } \quad \frac{1}{2 \pi i} \int_{\mathcal{C}}(1-z)^{\alpha} z^{-n-1} d z
$$

$$
\frac{1}{2 \pi i} \int_{\mathcal{C}} F(z) z^{-n-1} d z \text { versus } \frac{1}{2 \pi i} \int_{\mathcal{C}}(1-z)^{\alpha} z^{-n-1} d z
$$

Expand \mathcal{C} to the contour below:

$$
\frac{1}{2 \pi i} \int_{\mathcal{C}} F(z) z^{-n-1} d z \text { versus } \frac{1}{2 \pi i} \int_{\mathcal{C}}(1-z)^{\alpha} z^{-n-1} d z
$$

Both are small away from 1.

$$
\frac{1}{2 \pi i} \int_{\mathcal{C}} F(z) z^{-n-1} d z \text { versus } \frac{1}{2 \pi i} \int_{\mathcal{C}}(1-z)^{\alpha} z^{-n-1} d z
$$

$(1-z)^{\alpha}$ dominates near 1.

$$
\frac{1}{2 \pi i} \int_{\mathcal{C}} F(z) z^{-n-1} d z \text { versus } \frac{1}{2 \pi i} \int_{\mathcal{C}}(1-z)^{\alpha} z^{-n-1} d z
$$

Comparing the integrals shows $\left[z^{n}\right] F(z)=O\left(n^{-\alpha-1}\right)$.

Multivariate Generating Functions with Algebraic Singularities

Start with:

$$
H(\mathbf{x})^{-\beta}=\sum_{r \geq 0} a_{\mathbf{r}} \mathbf{x}^{r}
$$

Can we estimate $a_{\mathbf{r}}$ as \mathbf{r} approaches infinity, such that $\mathbf{r} \approx s \cdot \lambda$ for some $\lambda \in \mathbb{R}_{+}^{d}$ as $s \rightarrow \infty$? As before,

- The location of singularities of H will determine the exponential behavior of the coefficients.
- The behavior of H near the singularities determines the subexponential behavior.

Smooth critical points

- Determining relevant singularities of H more complicated for multivariate generating functions.
- We restrict to "smooth minimal critical points" p where:

1. For coefficients $a_{\mathbf{r}}$ as $\mathbf{r}=s \lambda$ with $s \rightarrow \infty$,

$$
\begin{aligned}
\lambda_{2} x_{1} H_{x_{1}} & =\lambda_{1} x_{2} H_{x_{2}} \\
\lambda_{3} x_{1} H_{x_{1}} & =\lambda_{1} x_{3} H_{x_{3}} \\
& \vdots \\
\lambda_{n} x_{1} H_{x_{1}} & =\lambda_{1} x_{n} H_{x_{n}}
\end{aligned}
$$

2. $H_{x_{1}}(\mathbf{p}) \neq 0$
3. No other singularities of H are closer to the origin than \mathbf{p}.

Result

Theorem (G.)

Let $H(\mathbf{x})$ have a smooth, minimal critical point, \mathbf{p}. Then, as \mathbf{r} approaches infinity with $\frac{r_{i}}{r_{j}}=\frac{\lambda_{i}}{\lambda_{j}}+O(1)$ for a constant vector λ and all $1 \leq i \leq j \leq d$,

$$
\begin{array}{r}
{\left[\mathbf{x}^{\mathbf{r}}\right] H(\mathbf{x})^{-\beta} \sim\left(\frac{1}{2 \pi i}\right)^{d-1} \mathbf{p}^{-\mathbf{r}-\mathbf{1}}\left[\frac{r_{1}^{\beta-1} p_{1}}{\Gamma(\beta)}\left\{\left(-H_{x_{1}}(\mathbf{p}) p_{1}\right)^{-\beta}\right\}_{p} e^{-\beta(2 \pi i \omega)}\right]} \\
\\
\times\left[\frac{\left(\frac{\lambda_{1}}{r_{1}} \pi\right)^{\frac{d-1}{2}}}{\sqrt{\operatorname{det}\left(\frac{1}{2} \mathcal{H}\right)}}\right]
\end{array}
$$

\mathcal{H} is the Hessian of a $(d-1)$-dimensional phase function describing the zero set of H near p.

Proof Overview

$$
\left(\frac{1}{2 \pi i}\right)^{d} \int_{T} H(\mathbf{x})^{-\beta} \mathbf{x}^{r-1} d \mathbf{x}
$$

- Determine how to expand the torus, T, using Flajolet-Odlyzko as motivation.
- Manipulate $H(\mathbf{x})$ to approximate the integral as a product of a univariate integral and a ($d-1$)-dimensional Fourier-Laplace integral.
- Estimate the remaining integrals.

Expanding the Torus

$G(\widehat{\mathbf{x}})$ is a parameterization of the zero set of H near \mathbf{p}.

Approximating $H(\mathbf{x})^{-\beta}$

Rewrite H as a power series near p:

$$
H(\mathbf{x})=\sum_{\mathbf{r}} b_{\mathbf{r}}(\mathbf{x}-\mathbf{p})^{\mathbf{r}}
$$

As long as $b_{\mathbf{r}}=0$ for all \mathbf{r} with $|\mathbf{r}| \leq 2$ except for coefficients corresponding to $x_{1}-p_{1}$ and $\left(x_{1}-p_{1}\right)\left(x_{j}-p_{j}\right)$, H can be approximated by a function in x_{1} alone.

Change of Variables

Choose the change of variables:

$$
\begin{aligned}
u_{1}= & x_{1}+\sum_{j=2}^{d} k_{j}\left(x_{j}-p_{j}\right)+\sum_{j=2}^{d} q_{j}\left(x_{j}-p_{j}\right)^{2} \\
& +\sum_{2 \leq j<\ell \leq d} m_{j, \ell}\left(x_{j}-p_{j}\right)\left(x_{\ell}-p_{\ell}\right) \\
u_{j}= & x_{j} \text { for } 2 \leq j \leq d
\end{aligned}
$$

k_{j}, q_{j}, and $m_{j, \ell}$ are constants in terms of the derivatives of H at
p.

The Integral after the Change of Variables

After applying the change of variables, we can show

$$
\int_{T} H(\mathbf{x})^{-\beta} \mathbf{x}^{\boldsymbol{r}-1} d \mathbf{x}
$$

is approximately

$$
\int_{\mathcal{C}_{\ell}}\left[H_{x_{1}}(\mathbf{p})\left(u_{1}-p_{1}\right)\right]^{-\beta}\left[1-\frac{\psi(\hat{\mathbf{u}})}{p_{1}}\right]^{-r_{1}-1} \mathbf{u}^{-r-1} \mathrm{du}
$$

Here, $\psi(\widehat{\mathbf{u}})$ is related to a phase function and defined by
$\psi(\widehat{\mathbb{W}})=\sum_{j=2}^{d-1} k_{j}\left(u_{j}-p_{j}\right)+\sum_{j=2}^{d-1} q_{j}\left(u_{j}-p_{j}\right)^{2}+\sum_{2 \leq j<\ell \leq d} m_{j, \ell}\left(u_{j}-p_{j}\right)\left(u_{\ell}-p_{\ell}\right)$

The Remaining Integrals

$$
\int_{U}\left[H_{x_{1}}(\mathbf{p}) \cdot\left(u_{1}-p_{1}\right)\right]^{-\beta} u_{1}^{-r_{1}-1} d u
$$

is a univariate Cauchy integral representing a binomial coefficient, approximated by:

$$
\frac{2 \pi i}{\Gamma(\beta)_{1}^{\beta-1}} r_{1}^{\beta-r_{1}}\left\{\left(-H_{x}(\mathbf{p}) p_{1}\right)^{-\beta}\right\}_{P} e^{-\beta(2 \pi i \omega)}
$$

$$
\iint_{V}\left[1-\frac{\psi(\widehat{\mathbf{u}})}{p_{1}}\right]^{-r_{1}-1} \widehat{\mathbf{u}}^{-\hat{\mathbf{r}}-\hat{\mathbf{\imath}}} \mathrm{d} \widehat{\mathbf{u}}
$$

is a Fourier-Laplace type integral. From Pemantle \& Wilson, we can approximate by:

$$
\widehat{\mathbf{p}}^{-\hat{r}-\hat{\mathbf{1}}} \frac{\left(\frac{\lambda_{1} \pi}{r_{1}}\right)^{\frac{d-1}{2}}}{\sqrt{\operatorname{det}\left(\frac{1}{2} \mathcal{H}\right)}}
$$

Application: RNA Secondary Structures

RNA secondary structures reveal valuable functional information about RNA molecules.

....(((((((((((...)))))).(((((......))))).((((........))))..))))))))

Stochastic Context Free Grammars for Secondary Structures

Knudsen-Hein 1999 Grammar:				
$S \rightarrow$	LS	with probability	p_{1}	
	L	with probability	q_{1}	
$F \rightarrow$	(F)	with probability	p_{2}	
		LS	with probability	q_{2}
$L \rightarrow$.	with probability	p_{3}	
		(F)	with probability	q_{3}

Converting KH99 to Probability Generating Functions

- Find the GF, $S\left(x_{1}, x_{2}, x_{3}\right)=\sum_{n=0}^{\infty} p\left(n_{1}, n_{2}, n_{3}\right) x_{1}^{n_{1}} x_{2}^{n_{2}} x_{3}^{n_{3}}$
- $p\left(n_{1}, n_{2}, n_{3}\right)$: probability of producing a structure with n_{1} nucleotides, n_{2} base pairs, and n_{3} helices
- Production rules become recursions. For example, the rules,

$$
\begin{array}{rll}
F \rightarrow & (F) & \text { with probability } \\
& p_{2} \\
& \text { LS } & \text { with probability } \\
q_{2}
\end{array}
$$

become

$$
F=p_{2} x_{1}^{2} x_{2} x_{3} F+q_{2} L S
$$

KH99 Generating Function

Solving yields

$$
S(\mathbf{x})=\frac{p_{1} p_{3} q_{2} x_{2} x_{1}^{3}-p_{3} x_{2} x_{1}^{2}-p_{1} q_{2} x_{1}+1}{2 p_{2} q_{3} x_{1}^{2} x_{2} x_{3}}-\frac{\sqrt{H(\mathbf{x})}}{2 p_{2} q_{3} x_{1}^{2} x_{2} x_{3}}
$$

where

$$
\begin{aligned}
& H(\mathbf{x})=\left(p_{3} x_{1}^{2} x_{2}-1\right) \times \\
& \left(p_{1}^{2} p_{3} q_{2}^{2} x_{1}^{4} x_{2}+4 p_{2} q_{1} q_{2} q_{3} x_{1}^{3} x_{2} x_{3}-2 p_{1} p_{3} q_{2} x_{1}^{3} x_{2}-p_{1}^{2} q_{2}^{2} x_{1}^{2}+p_{3} x_{1}^{2} x_{2}+2 p_{1} q_{2} x_{1}-1\right) .
\end{aligned}
$$

Heitsch and Poznanović used these methods to find distributions of single features.

Critical Points

The asymptotics are often controlled by a smooth minimal critical point, and the results from before apply. For example, let us choose $p_{1}=p_{2}=p_{3}=\frac{1}{4}$ and $\lambda=(6,2,1)$.

- This approximates the probability of structures where there are six times as many nucleotides as helices, and twice as many base pairs as helices.
- Using the smooth critical point equations,

$$
H=0, \quad 2 x_{1} H_{x_{1}}=x_{2} H_{x_{2}}, \quad 6 x_{1} H_{x_{1}}=x_{3} H_{x_{3}}
$$

yields the critical point, $\left(\frac{16}{9}, \frac{81}{128}, \frac{4}{27}\right)$.

Asymptotics

Plugging into the asymptotic formula yields:

$$
\left[x_{1}^{r_{1}} x_{2}^{r_{2}} x_{3}^{r_{3}}\right] \sqrt{H} \sim-\frac{64}{\pi^{3 / 2} r_{1}^{5 / 2}}\left(\frac{16}{9}\right)^{-r_{1}-1}\left(\frac{81}{128}\right)^{-r_{2}-1}\left(\frac{4}{27}\right)^{-r_{2}-1}
$$

as r_{1}, r_{2}, and r_{3} approach infinity in the ratio $6: 2: 1$. For $\left(r_{1}, r_{2}, r_{3}\right)=(60,20,10)$, the ratio of the approximation to the exact coefficient of H is 1.056.

We can plug this approximation back into the formula for S to approximate the probabilities we want.

Future Research

Analytic Combinatorics:

- Can the results be rewritten in a coordinate-free way?
-What about more general types of algebraic singularities?
- How about non-smooth points?

RNA:

- How well can this approach handle all directions λ and all probabilities p_{1}, p_{2}, p_{3} simultaneously?
- Can we understand what types of rules control which types of features?

