POSITIVE CATALYTIC AND NON-CATALYTIC POLYNOMIAL SYSTEMS OF EQUATIONS

```
Michael Drmota*
Institute of Discrete Mathematics and Geometry
TU Wien
A 1040 Wien, Austria
michael.drmota@tuwien.ac.at
http://www.dmg.tuwien.ac.at/drmota/
* supported by the Austrian Science Foundation FWF, grant F5002.
```

Lattice Walks at the Interface of Algebra, Analysis and Combinatorics BIRS, Banff, Sept. 18-22, 2017.

One Functional Equation

Unrestricted paths

$$
\begin{gathered}
B(z)=1+2 z B(z) \\
B(z)=\frac{1}{1-2 z} \quad \text { (polar singularity) } \\
\\
b_{n}=\left[z^{n}\right] B(z)=2^{n}
\end{gathered}
$$

One Functional Equation

Dyck paths

$$
B(z)=1+z^{2} B(z)^{2}
$$

$$
B(z)=\frac{1-\sqrt{1-4 z^{2}}}{2 z^{2}} \quad \text { (squareroot singularity) }
$$

$$
b_{2 n}=\left[z^{2 n}\right] B(z)=\frac{1}{n}\binom{2 n}{n} \sim \sqrt{\frac{8}{\pi}} n^{-3 / 2} 2^{n}
$$

One Functional Equation

Non-negative lattice paths

$f_{n, i} \ldots$ number of non-negative paths from $(0,0) \rightarrow(n, i)$

$$
\begin{gathered}
f_{i}(z)=\sum_{n \geq 0} f_{n, i} z^{i} \quad F(z, u)=\sum_{i \geq 0} f_{i}(z) u^{i}=\sum_{n, i \geq 0} f_{n, i} z^{n} u^{i} \\
f_{0}(z)=1+z f_{1}(z) \\
f_{i}(z)=z f_{i-1}(z)+z f_{i+1}(z) \quad(i \geq 1) \\
F(z, u)=1+z u F(z, u)+z \frac{F(z, u)-F(z, 0)}{u}
\end{gathered}
$$

u... "catalytic variable"

One Functional Equation

Non-negative lattice paths

$$
F(z, 0)=\frac{1-\sqrt{1-4 z^{2}}}{2 z^{2}} \quad \text { (squareroot singularity) }
$$

$$
f_{2 n, 0}=\left[z^{2 n}\right] F(z, 0)=\frac{1}{n}\binom{2 n}{n} \sim \sqrt{\frac{8}{\pi}} n^{-3 / 2} 2^{n}
$$

One Functional Equation

Planar Maps

$M_{n, k} \ldots$ number of planar maps with n edges and outer face valency k

$$
M(z, u)=\sum_{n, k} M_{n, k} z^{n} u^{k}
$$

One Functional Equation

Planar Maps

$$
M(z, u)=1+z u^{2} M(z, u)^{2}+u z \frac{u M(z, u)-M(z, 1)}{u-1}
$$

u... "catalytic variable"

$$
M(z, 1)=-\frac{1}{54 z^{2}}\left(1-18 z-(1-12 z)^{3 / 2}\right) \quad \text { (3/2-singularity) }
$$

$$
M_{n}=\left[z^{n}\right] M(z, 1)=\frac{2(2 n)!}{(n+2)!n!} 3^{n} \sim \frac{2}{\sqrt{\pi}} \cdot n^{-5 / 2} 12^{n}
$$

One Functional Equation

One positive linear equation

Theorem 1. Polar singularity:
$Q_{0}(z), Q_{1}(z) \ldots$ polynomials with non-negative coefficients.

$$
B(z)=Q_{0}(z)+z Q_{1}(z) B(z)
$$

$$
\Longrightarrow \quad b_{n}=\left[z^{n}\right] B(z) \sim c_{j} \cdot z_{0}^{-n}, \quad n \equiv j \bmod m
$$

for $j \in\{0,1, \ldots, m-1\}$ and some $m \geq 1$.
$z_{0}>0$ is given by $z_{0} Q_{1}\left(z_{0}\right)=1$.

Remark. Proof is simple analysis of $B(z)=Q_{0}(z) /\left(1-z Q_{1}(z)\right)$.

One Functional Equation

One positive non-linear equation

Theorem 2. [Bender, Canfield, Meir+Moon, ...] Squareroot sing.:
$Q(z, y) \ldots$ polynomial with non-negative coefficients and $Q(0,0)=0$ and $Q_{y y} \neq 0$.

$$
B(z)=Q(z, B(z))
$$

$$
\Longrightarrow \quad b_{n}=\left[z^{n}\right] B(z) \sim c \cdot n^{-3 / 2} z_{0}^{-n} . \quad n \equiv j_{0} \bmod m
$$

and $b_{n}=0$ for $n \not \equiv j_{0} \bmod m$, where $m \geq 1$.
$z_{0}>0$ satisfies $b_{0}=Q\left(z_{0}, b_{0}\right)$ and $1=Q_{y}\left(z_{0}, b_{0}\right)$ for some $b_{0}>0$.

Remark. Proof based on the squareroot singularty
$B(z)=g(z)-h(z) \sqrt{1-z / z_{0}}$ at $z=z_{0}$.

One Functional Equation

One positive linear catalytic equation

Theorem 3. [D.+Noy+Yu] Squareroot singularity:
$Q_{0}(z, u), Q_{1}(z, u), Q_{2}(z, u) \ldots$ polynomials with non-negative coefficients such that $Q_{1, u} \neq 0$ and $u \nmid Q_{2}$.

$$
F(z, u)=Q_{0}(z, u)+z F(z, u) Q_{1}(z, u)+z \frac{F(z, u)-F(z, 0)}{u} Q_{2}(z, u)
$$

$$
\Longrightarrow \quad f_{n}=\left[z^{n}\right] F(z, 0) \sim c \cdot n^{-3 / 2} z_{0}^{-n} . \quad n \equiv j_{0} \bmod m,
$$

(for some constants $c, z_{0}>0$) and $f_{n}=0$ for $n \not \equiv j_{0} \bmod m$, where $m \geq 1$.

One Functional Equation

One positive non-linear catalytic equation

Theorem 4. [D.+Noy+Yu] 3/2-Singularity:
$Q\left(y_{0}, y_{1}, z, u\right) \ldots$ polynomial with non-negative coefficients that is nonlinear in y_{0}, y_{1} (and depends on y_{0}, y_{1}) and $Q_{0}(u)$ a non-negative polynomial in u.

$$
\begin{aligned}
& M(z, u)=Q_{0}(u)+z Q\left(M(z, u), \frac{M(z, u)-M(z, 0)}{u}, z, u\right) \\
& \Longrightarrow \quad M_{n}=\left[z^{n}\right] M(z, 0) \sim c \cdot n^{-5 / 2} z_{0}^{-n} ., \quad n \equiv j_{0} \bmod m
\end{aligned}
$$

(for some constants $c, z_{0}>0$) and $M_{n}=0$ for $n \not \equiv j_{0}$ mod m, where $m \geq 1$.

System of Functional Equations

$Q_{1}, \ldots Q_{d} \ldots$ polynomials with non-negative coefficients.
$y_{1}=y_{1}(z), \ldots, y_{d}=y_{d}(z) \ldots$ solution of the system:

$$
\begin{aligned}
y_{1} & =Q_{1}\left(z, y_{1}, \ldots, y_{d}\right), \\
\quad & \vdots \\
y_{d} & =Q_{d}\left(z, y_{1}, \ldots, y_{d}\right)
\end{aligned}
$$

Recall that if $d=1$ then the single equation $y=Q(z, y)$ has either a polar singularity (if it is linear) or a squareroot singularity (if it is non-linear).

Question. What happends for $d>1$??

System of Functional Equations

Example.

$$
\begin{gathered}
y_{1}=z\left(y_{2}+y_{1}^{2}\right) \\
y_{2}=z\left(y_{3}+y_{2}^{2}\right) \\
y_{3}=z\left(1+y_{3}^{2}\right) \\
y_{1}(z)=\frac{1-(1-2 z)^{1 / 8} \sqrt{2 z \sqrt{2 z \sqrt{1+2 z}+\sqrt{1-2 z}}+(1-2 z)^{3 / 4}}}{2 z} \\
y_{2}(z)=\frac{1-(1-2 z)^{1 / 4} \sqrt{2 z \sqrt{1+2 z}+\sqrt{1-2 z}}}{2 z} \\
y_{3}(z)=\frac{1-\sqrt{1-4 z^{2}}}{2 z}
\end{gathered}
$$

$y_{1}(x)$ has dominant singularity $(1-2 z)^{1 / 8}$ and $\left[z^{n}\right] y_{1}(z) \sim c n^{-\frac{1}{8}-1} 2^{n}$.

System of Functional Equations

Example.

$$
\begin{aligned}
y_{1} & =z\left(y_{2}^{3}+y_{1}\right) \\
y_{2} & =z\left(1+2 y_{2} y_{3}\right) \\
y_{3} & =z\left(1+y_{3}^{2}\right) \\
y_{1}(z) & =\frac{z}{1-z}\left(\frac{z}{\sqrt{1-4 z^{2}}}\right)^{3} \\
y_{2}(z) & =\frac{z}{\sqrt{1-4 z^{2}}} \\
y_{3}(z) & =\frac{1-\sqrt{1-4 z^{2}}}{2 z}
\end{aligned}
$$

$y_{1}(x)$ has dominant singularity $(1-2 z)^{-3 / 2}$ and $\left[z^{n}\right] y_{1}(z) \sim c n^{\frac{3}{2}-1} 2^{n}$.

Systems of functional equations

Dependency Graph.

$$
\begin{aligned}
& y_{1}=Q_{1}\left(z, y_{1}, y_{2}, y_{5}\right) \\
& y_{2}=Q_{2}\left(z, y_{2}, y_{3}, y_{5}\right) \\
& y_{3}=Q_{3}\left(z, y_{3}, y_{4}\right) \\
& y_{4}=Q_{4}\left(z, y_{3}\right) \\
& y_{5}=Q_{5}\left(z, y_{6}\right) \\
& y_{6}=Q_{6}\left(z, y_{5}, y_{6}\right)
\end{aligned}
$$

Systems of functional equations

Strongly connected dependency graph

Theorem 5 [D., Lalley, Woods]
$\mathbf{y}=\mathrm{Q}(z, \mathbf{y}) \ldots$ non-negative (and well defined) polynomial system of $d \geq 1$ equations such that the dependency graph is strongly connected.

Then the situation is the same as for a single equation.

It the system is linear then we have a common polar singularity and

$$
\left[z^{n}\right] y_{1}(z) \sim c_{j} \cdot z_{0}^{-n}, \quad n \equiv j \bmod m
$$

whereas if it is non-linear then we have a squareroot singularity and

$$
\left[z^{n}\right] y_{1}(z) \sim c \cdot n^{-3 / 2} z_{0}^{-n} ., \quad n \equiv j_{0} \bmod m
$$

Systems of functional equations

General dependency graph

Theorem 6 [Banderier+D.]
$\mathbf{y}=\mathrm{Q}(z, \mathrm{y}) \ldots$ non-negative (and well defined) polynomial system of equations.

$$
\Longrightarrow \quad\left[z^{n}\right] y_{1}(z) \sim c_{j} n^{\alpha_{j}} \rho_{j}^{-n} \quad(n \equiv j \bmod m)
$$

for $j \in\{0,1, \ldots, m-1\}$ for some $m \geq 1$, where

$$
\alpha_{j} \in\left\{-2^{-k}-1: k \geq 1\right\} \cup\left\{m 2^{-k}-1: m \geq 1, k \geq 0\right\}
$$

Theorem 3: Kernel Method

$$
F(z, u)=Q_{0}(z, u)+z F(z, u) Q_{1}(z, u)+z \frac{F(z, u)-F(z, 0)}{u} Q_{2}(z, u)
$$

rewrites to

$$
F(z, u) \sqrt[\left(1-z Q_{1}(z, u)-\frac{z}{u} Q_{2}(z, u)\right)]{ }=Q_{0}(z, u)-\frac{z}{u} F(z, 0) Q_{2}(z, u) .
$$

If $u=u(z)$ satisfies the kernel equation

$$
1-z Q_{1}(z, u(z))-\frac{z}{u(z)} Q_{2}(z, u(z))=0
$$

Then the right hand side is also zero and we obtain

$$
F(z, 0)=\frac{Q_{0}(z, u(z))}{1-z Q_{1}(z, u(z))}
$$

Theorem 3: Kernel Method

The kernel equation

$$
1-z Q_{1}(z, u(z))-\frac{z}{u(z)} Q_{2}(z, u(z))=0
$$

rewrites to

$$
u(z)=z Q_{2}(z, u(z))+z u(z) Q_{1}(z, u(z))
$$

By Theorem 2 we, thus, obtain a squareroot singularity for $u(z)$ which implies a squareroot singularity for

$$
F(z, 0)=\frac{Q_{0}(z, u(z))}{1-z Q_{1}(z, u(z))}
$$

Theorem 4: Bousquet-Melou-Jehanne Method

Let $P\left(x_{0}, x_{1}, z, u\right)$ be an analytic function such that $(y(z)=M(z, 0))$

$$
P(M(z, u), y(z), z, u)=0
$$

By taking the derivative with respect to u we get

$$
P_{x_{0}}(M(z, u), y(z), z, u) M_{u}(z, u)+P_{u}(M(z, u), y(z), z, u)=0
$$

Key obervation:

$$
\exists u(z): P_{x_{u}}(M(z, u(z)), y(z), z, u(z))=0 \Longrightarrow P_{u}(M(z, u(z)), y(z), z, u(z))=0
$$

Thus, with $f(z)=M(z, u(z))$ we get the system for $f(z), y(z), u(z)$

$$
\begin{aligned}
P(f(z), y(z), z, u(z)) & =0 \\
P_{x_{0}}(f(z), y(z), z, u(z)) & =0 \\
P_{u}(f(z), y(z), z, u(z)) & =0 .
\end{aligned}
$$

Theorem 4: Bousquet-Melou-Jehanne Method

Set (as given in our case)

$$
P\left(x_{0}, x_{1}, z, v\right)=F(v)+z Q\left(x_{0},\left(x_{0}-x_{1}\right) / v, z, v\right)-x_{0}
$$

Then the system $P=0, P_{x_{0}}=0, P_{v}=0$ rewrites to

$$
\begin{aligned}
f(z) & =F(v(z))+z Q(f(z), w(z), z, v(z)) \\
v(z) & =z v(z) Q_{y_{0}}(f(z), w(z), z, v(z))+z Q_{y_{1}}(f(z), w(z), z, v(z)) \\
w(z) & =F_{v}(v(z))+z Q_{v}(f(z), w(z), z, v(z))+z w(z) Q_{y_{0}}(f(z), w(z), z, v(z))
\end{aligned}
$$

where

$$
w(z)=\frac{f(z)-y(z)}{v(z)}
$$

This is a positive strongly connected polynomial system.

Theorem 4: Bousquet-Melou-Jehanne Method

Thus, by the Theorem 5 the solution functions $f(z), v(z), w(z)$ have a squareroot singularity at some common singularity z_{0} :

$$
\begin{aligned}
& f(z)=g_{1}(z)-h_{1}(z) \sqrt{1-\frac{z}{z_{0}}} \\
& v(z)=g_{2}(z)-h_{2}(z) \sqrt{1-\frac{z}{z_{0}}} \\
& w(z)=g_{3}(z)-h_{3}(z) \sqrt{1-\frac{z}{z_{0}}}
\end{aligned}
$$

$\Longrightarrow y(z)=f(z)-v(z) w(z)$ has also a squareroot singularity at z_{0}
$y(z)=g_{4}(z)-h_{4}(z) \sqrt{1-\frac{z}{z_{0}}}=a_{0}+a_{1} \sqrt{1-\frac{z}{z_{0}}}+a_{2}\left(1-\frac{z}{z_{0}}\right)+a_{3}\left(1-\frac{z}{z_{0}}\right)^{3 / 2}+$.
but maybe there are cancellations of coefficients a_{j} (and actually this happens!!!): we have $a_{1}=0$ and $a_{3}>0$.

Thank You!

