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Di�erential Galois theory

(k = C(x), ∂ = d
dx )

∂(Y ) = AY , with A ∈ kn×n

∃ a Picard-Vessiot extension K/k

i.e., a di�erential �eld extension (K , ∂)/(k , ∂) s.t.

K∂ = C and ∃U ∈ Gln(K ), with ∂(U) = AU and

K = k(U).

 Gal(A) = Aut∂(K/k) ↪→ GLn(C)

Important properties :

I G := Gal(A) is an algebraic group ⇒ g := Lie(G )
I g ⊂ End(C-vector space of solutions)
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Direct problem

 direct problem the di�erential Galois group

I Compoint-Singer (1999), for reductive systems

I Hrushovski (2004), Feng (2015)

I van der Hoeven (2007)

 characterization of the reduced forms of ∂(Y ) = AY

I Aparicio-Compoint-Weil (2013), for completely reducible

systems

I Dreyfus-Weil (in progress) for reductive systems

 algorithm to calculate the Lie algebra of the di�erential
Galois group of an absolutely irreducible di�erential system
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Reduced forms

∂Y = AY , A = (ai ,j) ∈ C(x)n
2

, group G , g = Lie(G ).

Wei-Normann decomposition of A =
∑r

h=1 αhMh

I α1, . . . , αr is a C-basis of
∑

i ,j=1,...,n Cai ,j
I M1, . . . ,Mr ∈ Cn2

Lie(A) := the smallest alg. Lie algebra/C containing
M1, . . . ,Mr

Proposition (Kolchin-Kovacic)

g ⊂ Lie(A) and

∃P ∈ GLn(C(x)) s.t. B = P ′P−1 + PAP−1 and

g = Lie(B)

∂Z = BZ is a reduced form of ∂Y = AY
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The point of view of di�erential modules

(M,∇) di�erential k-module of dimension n
∂Y = AY associated di�erential system, with G and g = Lie(G )

⇒ g→ End(V ), where V = (K ⊗kM)∇ (=vector space of
solutions)

Hypotheses

1. (M,∇) absolutely irreducible⇒ M⊗kM∗ is a direct sum of

irreducibles

2. g ⊂ sln(C)⇒ g is semi-simple

The algorithm

1. DecomposingM⊗kM∗

2. Find a candidate gguess ⊂M⊗kM∗ for g⊗C C(x)
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The algorithm

Input : ∂Y = AY // 1) Decomposition ofM⊗kM∗

��
2) Candidate gguess

��
3) Find P and M1, . . .Mr

else

��

if fails

ff

partial validation : g⊗C C(x) ⊂ gguess

if fails

kk

else

��

de�nitive validation



Characterization of reduced forms

(M,∇) di�erential k-module of dimension n
∂Y = AY associated di�erential system

x0 ordinary point for the system

Théorème (Aparicio-Compoint-Weil 2013)

I ∂Y = AY is a reduced form ⇔ ∀ Constr(M) and

∀Φ rational solution of ∂Y = Constr(A)Y , Φ is a

constant vector.
I ∃P ∈ GLn(k̄) s.t. ∂Z = P[A]Z is a reduced form

∀ Constr(M) and ∀Φ rational solution of

∂Y = Constr(A)Y , P sends Φ over Φ(x0).
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