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Hadamard’s problem on power series

In 1892, Hadamard in his thesis said that

“Indeed, the Taylor expansion does not reveal the properties
of the function represented, and even seems to mask them
completely. ”

Hadamard then considered the following problem:

What relationships are there between the coefficients of a power
series and the singularities of the function it represents?

Two special cases of the problem have been studied:

Power series with rational or integral coefficients;

Power series with finitely distinct coefficients.
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Hadamard’s problem on power series

In 1892, Hadamard in his thesis said that
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Power series with rational coefficients

f (x) =
∑
n≥0

anxn, where an ∈Q.

Theorem (Eisenstein 1852, Heine 1853). If f (x) represents an
algebraic function over Q(x), then ∃ T ∈ Z, s.t.∑

n≥0

anTnxn ∈ Z[[x]].
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Power series with integral coefficients

f (x) =
∑
n≥0

anxn, where an ∈ Z.

Fatou’s Lemma. If f (x) represents a rational function, then

f (x) =
P(x)
Q(x)

, where P,Q ∈ Z[x] and Q(0) = 1.

Fatou’s Theorem. If f (x) converges inside the unit disk, then it is
either rational or transcendental over Q(x).
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Power series with integral coefficients

f (x) =
∑
n≥0

anxn, where an ∈ Z.

Pólya-Carlson Theorem. If f (x) converges inside the unit disk,
then either it is rational or has the unit circle as natural boundary.

Corollary. If f (x) is algebraic, then it is rational.
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Power series with finitely distinct coefficients

f (x) =
∑
n≥0

anxn, where an ∈ ∆ with |∆ |<+∞.

Szegö’s Theorem (1922)
A power series with finitely distinct coefficients in C is either
rational or has the unit circle as its natural boundary.
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Arithmetical aspects of power series

Problem. Decide whether a given power series is rational,
algebraic, transcendental, or hyper-transcendental?
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D-finite power series

Throughout this talk, K is a field of characteristic zero.

Definition. A power series f (x1, . . . ,xd) ∈K[[x1, . . . ,xd]] is D-finite if
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D-finite power series

Throughout this talk, K is a field of characteristic zero.

Definition. A power series f (x1, . . . ,xd) ∈K[[x1, . . . ,xd]] is D-finite if
all derivatives Di1

x1
· · ·Did

xd
(f ) form a finite-dimensional vector space

over K(x1, . . . ,xd).
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D-finite power series

Throughout this talk, K is a field of characteristic zero.

Definition. A power series f (x1, . . . ,xd) ∈K[[x1, . . . ,xd]] is D-finite if
for each i ∈ {1, . . . ,d}, f satisfies a LPDE:

pi,riD
ri
xi
(f )+pi,ri−1Dri−1

xi
(f )+ · · ·+pi,0f = 0.
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ri
xi
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xi
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Definition. A sequence a : Nd → K is P-recursive if for each i ∈
{1, . . . ,d}, a satisfies a LPRE:

pi,riS
ri
ni
(a)+pi,ri−1Sri−1

ni
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D-finite power series

Throughout this talk, K is a field of characteristic zero.

Definition. A power series f (x1, . . . ,xd) ∈K[[x1, . . . ,xd]] is D-finite if
for each i ∈ {1, . . . ,d}, f satisfies a LPDE:

pi,riD
ri
xi
(f )+pi,ri−1Dri−1

xi
(f )+ · · ·+pi,0f = 0.

Theorem. A sequence a : N → K is P-recursive iff its generating
function f (x) =

∑
a(n)xn is D-finite.

Remark. This is not true in the multivariate case.
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Closure properties of D-finite power series

Let n = n1, . . . ,nd, x = x1, . . . ,xd, and xn = xn1
1 · · ·x

nd
d .

Definition. Let f =
∑

a(n)xn and g =
∑

b(n)xn be in K[[x]]. The
Hadamard product of f and g is

f �g =
∑

a(n)b(n)xn.

The diagonal of f is defined as diag(f ) =
∑

a(n, . . . ,n)xn ∈K[[x]].

Theorem (Lipshitz1989). Let D := {f ∈K[[x]] | f is D-finite}. Then

(i) if f ,g ∈D , then f + f , f ·g, and f�g are in D ;

(ii) if f ∈D , diag(f ) is D-finite in K[[x]];

(iii) if f ∈ cD, and α1, . . . ,αd ∈ K[[y]] are algebraic over K(y) and
the substitution makes sense, then f (α1, . . . ,αd) is D-finite.
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Syndetic sets

Definition. A subset S⊆ N is syndetic if there is some positive
integer C such that if n ∈ S then n+ i ∈ S for some i ∈ {1, . . . ,C}.

Example. The subset of all even numbers in N is syndetic, but the
subset S := {pm1

1 · · ·pmn
n | m1, . . . ,mn ∈ N} with p1, . . . ,pn being prime

numbers is not syndetic.

Lemma. Let f :=
∑

a(n)xn ∈K[[x]] be D-finite. Then the set

{n ∈ N | ∃(n1, . . . ,nd−1) ∈ Nd−1 such that a(n1, . . . ,nd−1,n) 6= 0}

is either finite or syndetic.
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Power series with integral coefficients
(the multivariate case)

Multivariate extensions of the Pólya-Carlson Theorem:

Theorem (BellChen, 2016) If the multivariate power series

F =
∑

f (n1, . . . ,nd)x
n1
1 · · ·x

nd
d ∈ Z[[x1, . . . ,xd]]

is D-finite and converges on the unit polydisc, then it is rational.
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Power series with finitely distinct coefficients
(the multivariate case)

Theorem (van der Poorten & Shparlinsky, 1994).
Let an : N→ ∆ , where |∆ | is a finite subset of Q. If the generating
function f (x) =

∑
n anxn is D-finite, then it is rational.

Remark. This follows from Szegö’s theorem by the fact that a
D-finite power series can only have finitely many singularities.

Theorem (BellChen, 2016). Let an1,...,nd : Nd → ∆ , where |∆ | is a
finite subset of Q. If the generating function

f (x1, . . . ,xd) =
∑

an1,...,nd xn1
1 · · ·x

nd
d

is D-finite, then it is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is zero?

Remark. This is Hilbert Tenth Problem when K is Q. In 1970,
Matiyasevich proved that this problem is undecidable.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a polynomial?

Remark. In 1929, Siegel proved that a smooth algebraic curve C
of genus g≥ 1 has only finitely many integer points over a number
field K.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a rational function?

Remark. If V is defined by linear polynomials over Q, then FV is
rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a D-finite function?

Corollary.
FV is D-finite ⇔ FV is rational.
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Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a D-finite function?

Theorem.

The problem of testing whether FV is rational is undecidable!

, 13/16



Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of
characteristic zero. We define the listing generating function

FV(x1, . . . ,xd) :=
∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

We may ask the following questions:

When FV is a differentially algebraic function?

Definition. F ∈ K[[x1, . . . ,xd]] is differentially algebraic if the
transcendence degree of the filed generated by the derivatives
Di1

x1
· · ·Did

xd
(F) with ij ∈ N over K(x1, . . . ,xd) is finite.
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Nonnegative integer points on algebraic curves

Theorem. Let p(x,y) ∈ C[x,y]. If the generating function

Fp(x,y) :=
∑

(n,m)∈V(p)∩N2

xnym

is rational. Then p = f ·g, where f ,g ∈ C[x,y] s.t.

f =
∏

i

(si · x+ ti · y+ ci) with si, ti ∈ Z and ci ∈ C

and g has only finite zeros in N2.

Example. Let p = x2 − y. Since p is not a product of integer-linear
polynomials, the power series Fp(x,y) is not D-finite.
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Open problems

Conjecture. Let V be an algebraic variety over C. Then the power
series ∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

is differentially algebraic if and only if it is rational.
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Conjecture. Let V be an algebraic variety over C. Then the power
series ∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

is differentially algebraic if and only if it is rational.

Example. Let p = x2 − y. Then the power series

Fp(x,y) :=
∑
m≥0

xmym2

is not differentially algebraic, otherwise, Fp(x,2) =
∑

2m2
xm is dif-

ferentially algebraic. By Mahler’s lemma, we get a contradiction

2m2 � (m!)c for any positive constant c.
, 15/16



Open problems

Conjecture. Let V be an algebraic variety over C. Then the power
series ∑

(n1,...,nd)∈V∩Nd

xn1
1 · · ·x

nd
d

is differentially algebraic if and only if it is rational.

Conjecture (Chowla-Chowla-Lipshitz-Rubel). The power series

f :=
∑
n∈N

xn3 ∈ C[[x]]

is not differentially algebraical, i.e., satisfies no ADE.

Remark. The power series
∑

xn2
is differentially algebraic.
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Summary

Theorem 1. If the power series

F =
∑

f (n1, . . . ,nd)x
n1
1 · · ·x

nd
d ∈ Z[[x1, . . . ,xd]]

is D-finite and converges on the unit polydisc, then it is rational.

Theorem 2. If the power series

f (x1, . . . ,xd) =
∑

an1,...,nd xn1
1 · · ·x

nd
d , an1,...,ad ∈ ∆ with |∆ |<+∞

is D-finite, then it is rational.

J. P. Bell, S. Chen. Power Series with Coefficients from a Finite Set.
Journal of Combinatorial Theory, Series A, 151, pp. 241–253, 2017.

Thank you!
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