Power Series with Coefficients from a Finite Set

Shaoshi Chen

KLMM, AMSS
Chinese Academy of Sciences

Lattice Walks@BIRS
September 17-22, 2017, Banff, Canada

joint work with Jason P. Bell

Hadamard's problem on power series

In 1892, Hadamard in his thesis said that
"Indeed, the Taylor expansion does not reveal the properties of the function represented, and even seems to mask them completely. "

Hadamard's problem on power series

In 1892, Hadamard in his thesis said that
"Indeed, the Taylor expansion does not reveal the properties of the function represented, and even seems to mask them completely. "

Hadamard then considered the following problem:
What relationships are there between the coefficients of a power series and the singularities of the function it represents?

Hadamard's problem on power series

In 1892, Hadamard in his thesis said that
"Indeed, the Taylor expansion does not reveal the properties of the function represented, and even seems to mask them completely. "

Hadamard then considered the following problem:
What relationships are there between the coefficients of a power series and the singularities of the function it represents?

Two special cases of the problem have been studied:

- Power series with rational or integral coefficients;
- Power series with finitely distinct coefficients.

Power series with rational coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \mathbb{Q}
$$

Power series with rational coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \mathbb{Q}
$$

G. Eisenstein, Uber eine allgemeine Eigenschaft der Reihenentwicklungen aller algebraischen Funcktionen, Belin, Sitzbcr, 441-443, 1852

On the general properties of the series expansions of algebraic functions

Gotthold Eisenstein (1823-1852)

Power series with rational coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \mathbb{Q}
$$

G. Eisenstein, Uber eine allgemeine Eigenschaft der Reihenentwicklungen aller algebraischen Funcktionen, Belin, Sitzbcr, 441-443, 1852

On the general properties of the series
expansions of algebraic functions

Theorem (Eisenstein 1852, Heine 1853). If $f(x)$ represents an algebraic function over $\mathbb{Q}(x)$, then $\exists T \in \mathbb{Z}$, s.t.

$$
\sum_{n \geq 0} a_{n} T^{n} x^{n} \in \mathbb{Z}[[x]]
$$

Power series with integral coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \mathbb{Z}
$$

Power series with integral coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \mathbb{Z}
$$

Pierre Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), no. 1, 335-400.

Pierre Fatou (1878-1929)

Fatou's Lemma. If $f(x)$ represents a rational function, then

$$
f(x)=\frac{P(x)}{Q(x)}, \quad \text { where } P, Q \in \mathbb{Z}[x] \text { and } Q(0)=1
$$

Power series with integral coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \mathbb{Z}
$$

Pierre Fatou, Séries trigonométriques et séries de Taylor,
Acta Math. 30 (1906), no. 1, 335-400.

Pierre Fatou (1878-1929)

Fatou's Lemma. If $f(x)$ represents a rational function, then

$$
f(x)=\frac{P(x)}{Q(x)}, \quad \text { where } P, Q \in \mathbb{Z}[x] \text { and } Q(0)=1
$$

Fatou's Theorem. If $f(x)$ converges inside the unit disk, then it is either rational or transcendental over $\mathbb{Q}(x)$.

Power series with integral coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \mathbb{Z}
$$

Power series with integral coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \mathbb{Z}
$$

George Pólya, Uber Potenzreihen mit ganzzahligen Koeffizienten, Math. Ann. 77 (1916), no. 4, 497-513.

Fritz Carlson, Über Potenzreihen mit ganzzahligen Koeffizienten, Math. Z. 9 (1921), no. 1-2, 1-13.

Pólya-Carlson Theorem. If $f(x)$ converges inside the unit disk, then either it is rational or has the unit circle as natural boundary.

Power series with integral coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \mathbb{Z}
$$

George Pólya, Uber Potenzreihen mit ganzzahligen Koeffizienten, Math. Ann. 77 (1916), no. 4, 497-513.

Fritz Carlson, Über Potenzreihen mit ganzzahligen Koeffizienten, Math. Z. 9 (1921), no. 1-2, 1-13.

Pólya-Carlson Theorem. If $f(x)$ converges inside the unit disk, then either it is rational or has the unit circle as natural boundary.

Corollary. If $f(x)$ is algebraic, then it is rational.

Power series with finitely distinct coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \Delta \text { with }|\Delta|<+\infty
$$

Power series with finitely distinct coefficients

$$
f(x)=\sum_{n \geq 0} a_{n} x^{n}, \quad \text { where } a_{n} \in \Delta \text { with }|\Delta|<+\infty .
$$

Gábor Szegô (1895-1985)

From 1917 to 1922, there are four papers with the same title: ther Potenzreihen mit endlich vielen verschiedenen Koeffizienten.

Power Series with Finitely Distinct Coefficients

1. G. Polya in 1917, Math. Ann.
2. R. Jentzsch in 1918, Math. Ann.
3. F. Carlson in 1919, Math. Ann.
4. G. Szego in 1922, Math Ann.

Szegö's Theorem (1922)
A power series with finitely distinct coefficients in \mathbb{C} is either rational or has the unit circle as its natural boundary.

Arithmetical aspects of power series

Problem. Decide whether a given power series is rational, algebraic, transcendental, or hyper-transcendental?

Arithmetical aspects of power series

Problem．Decide whether a given power series is rational， algebraic，transcendental，or hyper－transcendental？

```
classics in mathematics
George polya Gabor Szego
Problems
and Theorems
in Analysis II
Theory of Functions, Zeros,
Polynomials, Determinants,
Number Theory, Geometry
分析中的问题
与定理 茅2㐘
```

Chapter 3．Arithmetical Aspects of Power Series
§ 1 （130－137）Preparatory Problems on Binomial Coefficients 134
§ 2 （138－148）On Eisenstein＇s Theorem 134
§ 3 （149－154）On the Proof of Eisenstein＇s Theorem 136
§ 4 （155－164）Power Series with Integral Coefficients Associated with Rational Functions 137
§ 5 （165－173）Function－Theoretic Aspects of Power Series with Integral Coefficients ． 138
§6（174－187）Power Series with Integral Coefficients in the Sense of Hurwitz 140
§ 7 （188－193）The Values at the Integers of Power Series that Converge about $z=\infty$ 142

Arithmetical aspects of power series

Problem. Decide whether a given power series is rational, algebraic, transcendental, or hyper-transcendental?

11 Boundary Behavior of Power Scries 2413
§1. Convergence on the Boundary 2.14

1. Theorems of Faton. M. Riesz. and Ostrowski 244
2. A lemma of M. Riesz 245
3. Proof of the theorems in 1 2.17
4. A criterion for nonext endibility 248
Bibliography for Section 1 2419
§2. Theory of Overconvergence. Gap Theorem 249

D-finite power series

Throughout this talk, \mathbb{K} is a field of characteristic zero.
Definition. A power series $f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is D-finite if

D-finite power series

Throughout this talk, \mathbb{K} is a field of characteristic zero.

Definition. A power series $f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is D-finite if all derivatives $D_{x_{1}}^{i_{1}} \cdots D_{x_{d}}^{i_{d}}(f)$ form a finite-dimensional vector space over $\mathbb{K}\left(x_{1}, \ldots, x_{d}\right)$.

D-finite power series

Throughout this talk, \mathbb{K} is a field of characteristic zero.

Definition. A power series $f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is D-finite if for each $i \in\{1, \ldots, d\}, f$ satisfies a LPDE:

$$
p_{i, r_{i}} D_{x_{i}}^{r_{i}}(f)+p_{i, r_{i}-1} D_{x_{i}}^{r_{i}-1}(f)+\cdots+p_{i, 0} f=0 .
$$

D-finite power series

Throughout this talk, \mathbb{K} is a field of characteristic zero.

Definition. A power series $f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is D-finite if for each $i \in\{1, \ldots, d\}, f$ satisfies a LPDE:

$$
p_{i, r_{i}} D_{x_{i}}^{r_{i}}(f)+p_{i, r_{i}-1} D_{x_{i}}^{r_{i}-1}(f)+\cdots+p_{i, 0} f=0 .
$$

D-finite power series

Throughout this talk, \mathbb{K} is a field of characteristic zero.

Definition. A power series $f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is D-finite if for each $i \in\{1, \ldots, d\}, f$ satisfies a LPDE:

$$
p_{i, r_{i}} D_{x_{i}}^{r_{i}}(f)+p_{i, r_{i}-1} D_{x_{i}}^{r_{i}-1}(f)+\cdots+p_{i, 0} f=0 .
$$

D-finite power series

Throughout this talk, \mathbb{K} is a field of characteristic zero.

Definition. A power series $f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is D-finite if for each $i \in\{1, \ldots, d\}, f$ satisfies a LPDE:

$$
p_{i, r_{i}} D_{x_{i}}^{r_{i}}(f)+p_{i, r_{i}-1} D_{x_{i}}^{r_{i}-1}(f)+\cdots+p_{i, 0} f=0 .
$$

D-finite power series

Throughout this talk, \mathbb{K} is a field of characteristic zero.

Definition. A power series $f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is D-finite if for each $i \in\{1, \ldots, d\}, f$ satisfies a LPDE:

$$
p_{i, r_{i}} D_{x_{i}}^{r_{i}}(f)+p_{i, r_{i}-1} D_{x_{i}}^{r_{i}-1}(f)+\cdots+p_{i, 0} f=0 .
$$

Definition. A sequence $a: \mathbb{N}^{d} \rightarrow \mathbb{K}$ is P-recursive if for each $i \in$ $\{1, \ldots, d\}, a$ satisfies a LPRE:

$$
p_{i, r_{i}} r_{n_{i}}^{r_{i}}(a)+p_{i, r_{i}-1} S_{n_{i}}^{r_{i}-1}(a)+\cdots+p_{i, 0} a=0
$$

D-finite power series

Throughout this talk, \mathbb{K} is a field of characteristic zero.

Definition. A power series $f\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{K}\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is D-finite if for each $i \in\{1, \ldots, d\}, f$ satisfies a LPDE:

$$
p_{i, r_{i}} D_{x_{i}}^{r_{i}}(f)+p_{i, r_{i}-1} D_{x_{i}}^{r_{i}-1}(f)+\cdots+p_{i, 0} f=0 .
$$

Theorem. A sequence $a: \mathbb{N} \rightarrow \mathbb{K}$ is P-recursive iff its generating function $f(x)=\sum a(n) x^{n}$ is D-finite.
Remark. This is not true in the multivariate case.

Closure properties of D-finite power series

Let $\mathbf{n}=n_{1}, \ldots, n_{d}, \mathbf{x}=x_{1}, \ldots, x_{d}$, and $\mathbf{x}^{\mathbf{n}}=x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}$.
Definition. Let $f=\sum a(\mathbf{n}) \mathbf{x}^{\mathbf{n}}$ and $g=\sum b(\mathbf{n}) \mathbf{x}^{\mathbf{n}}$ be in $\mathbb{K}[[\mathbf{x}]]$. The Hadamard product of f and g is

$$
f \odot g=\sum a(\mathbf{n}) b(\mathbf{n}) \mathbf{x}^{\mathbf{n}} .
$$

The diagonal of f is defined as $\operatorname{diag}(f)=\sum a(n, \ldots, n) x^{n} \in \mathbb{K}[[x]]$.

Closure properties of D-finite power series

Let $\mathbf{n}=n_{1}, \ldots, n_{d}, \mathbf{x}=x_{1}, \ldots, x_{d}$, and $\mathbf{x}^{\mathbf{n}}=x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}$.
Definition. Let $f=\sum a(\mathbf{n}) \mathbf{x}^{\mathbf{n}}$ and $g=\sum b(\mathbf{n}) \mathbf{x}^{\mathbf{n}}$ be in $\mathbb{K}[[\mathbf{x}]]$. The Hadamard product of f and g is

$$
f \odot g=\sum a(\mathbf{n}) b(\mathbf{n}) \mathbf{x}^{\mathbf{n}} .
$$

The diagonal of f is defined as $\operatorname{diag}(f)=\sum a(n, \ldots, n) x^{n} \in \mathbb{K}[[x]]$.
Theorem (Lipshitz1989). Let $\mathscr{D}:=\{f \in \mathbb{K}[[\mathbf{x}]] \mid f$ is D-finite $\}$. Then
(i) if $f, g \in \mathscr{D}$, then $f+f, f \cdot g$, and $f \odot g$ are in \mathscr{D};
(ii) if $f \in \mathscr{D}, \operatorname{diag}(f)$ is D-finite in $\mathbb{K}[[x]]$;
(iii) if $f \in c D$, and $\alpha_{1}, \ldots, \alpha_{d} \in K[[\mathbf{y}]]$ are algebraic over $K(\mathbf{y})$ and the substitution makes sense, then $f\left(\alpha_{1}, \ldots, \alpha_{d}\right)$ is D-finite.

Syndetic sets

Definition. A subset $S \subseteq \mathbb{N}$ is syndetic if there is some positive integer C such that if $n \in S$ then $n+i \in S$ for some $i \in\{1, \ldots, C\}$.

Example. The subset of all even numbers in \mathbb{N} is syndetic, but the subset $S:=\left\{p_{1}^{m_{1}} \cdots p_{n}^{m_{n}} \mid m_{1}, \ldots, m_{n} \in \mathbb{N}\right\}$ with p_{1}, \ldots, p_{n} being prime numbers is not syndetic.

Syndetic sets

Definition. A subset $S \subseteq \mathbb{N}$ is syndetic if there is some positive integer C such that if $n \in S$ then $n+i \in S$ for some $i \in\{1, \ldots, C\}$.

Example. The subset of all even numbers in \mathbb{N} is syndetic, but the subset $S:=\left\{p_{1}^{m_{1}} \cdots p_{n}^{m_{n}} \mid m_{1}, \ldots, m_{n} \in \mathbb{N}\right\}$ with p_{1}, \ldots, p_{n} being prime numbers is not syndetic.

Lemma. Let $f:=\sum a(\mathbf{n}) \mathbf{x}^{\mathbf{n}} \in \mathbb{K}[[\mathbf{x}]]$ be D-finite. Then the set

$$
\left\{n \in \mathbb{N} \mid \exists\left(n_{1}, \ldots, n_{d-1}\right) \in \mathbb{N}^{d-1} \text { such that } a\left(n_{1}, \ldots, n_{d-1}, n\right) \neq 0\right\}
$$

is either finite or syndetic.

Power series with integral coefficients (the multivariate case)

Multivariate extensions of the Pólya-Carlson Theorem:

Power series with integral coefficients (the multivariate case)

Multivariate extensions of the Pólya-Carlson Theorem:

- André Martineau, Extension en n-variables d'un théorème de PólyaCarlson concernant les séries de puissances à coefficients entiers, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A1127-A1129. MR 0291495
- V. P. Šĕnov, Transfinite diameter and certain theorems of Pólya in the case of several complex variables, Sibirsk. Mat. Ž. 12 (1971), 1382-1389.
- Emil J. Straube, Power series with integer coefficients in several variables, Comment. Math. Helv. 62 (1987), no. 4, 602-615. MR 920060

Power series with integral coefficients (the multivariate case)

Multivariate extensions of the Pólya-Carlson Theorem:

- André Martineau, Extension en n-variables d'un théorème de PólyaCarlson concernant les séries de puissances à coefficients entiers, C. R. Acad. Sci. Paris Sér. A-B 273 (1971), A1127-A1129. MR 0291495
- V. P. Šĕnov, Transfinite diameter and certain theorems of Pólya in the case of several complex variables, Sibirsk. Mat. Ž. 12 (1971), 1382-1389.
- Emil J. Straube, Power series with integer coefficients in several variables, Comment. Math. Helv. 62 (1987), no. 4, 602-615. MR 920060

Theorem (BellChen, 2016) If the multivariate power series

$$
F=\sum f\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}} \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{d}\right]\right]
$$

is D-finite and converges on the unit polydisc, then it is rational.

Power series with finitely distinct coefficients (the multivariate case)

Theorem (van der Poorten \& Shparlinsky, 1994).
Let $a_{n}: \mathbb{N} \rightarrow \Delta$, where $|\Delta|$ is a finite subset of \mathbb{Q}. If the generating function $f(x)=\sum_{n} a_{n} x^{n}$ is D-finite, then it is rational.

Remark. This follows from Szegö's theorem by the fact that a D-finite power series can only have finitely many singularities.

Power series with finitely distinct coefficients
 (the multivariate case)

Theorem (van der Poorten \& Shparlinsky, 1994).
Let $a_{n}: \mathbb{N} \rightarrow \Delta$, where $|\Delta|$ is a finite subset of \mathbb{Q}. If the generating function $f(x)=\sum_{n} a_{n} x^{n}$ is D-finite, then it is rational.

Remark. This follows from Szegö's theorem by the fact that a D-finite power series can only have finitely many singularities.

Theorem (BellChen, 2016). Let $a_{n_{1}, \ldots, n_{d}}: \mathbb{N}^{d} \rightarrow \Delta$, where $|\Delta|$ is a finite subset of \mathbb{Q}. If the generating function

$$
f\left(x_{1}, \ldots, x_{d}\right)=\sum a_{n_{1}, \ldots, n_{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

is D-finite, then it is rational.

Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of characteristic zero. We define the listing generating function

$$
F_{V}\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left(n_{1}, \ldots, n_{d}\right) \in V \cap \mathbb{N}^{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of characteristic zero. We define the listing generating function

$$
F_{V}\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left(n_{1}, \ldots, n_{d}\right) \in V \cap \mathbb{N}^{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

We may ask the following questions:

$$
\text { When } F_{V} \text { is zero? }
$$

Remark. This is Hilbert Tenth Problem when K is \mathbb{Q}. In 1970, Matiyasevich proved that this problem is undecidable.

Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of characteristic zero. We define the listing generating function

$$
F_{V}\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left(n_{1}, \ldots, n_{d}\right) \in V \cap \mathbb{N}^{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

We may ask the following questions:

$$
\text { When } F_{V} \text { is a polynomial? }
$$

Remark. In 1929, Siegel proved that a smooth algebraic curve C of genus $g \geq 1$ has only finitely many integer points over a number field K.

Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of characteristic zero. We define the listing generating function

$$
F_{V}\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left(n_{1}, \ldots, n_{d}\right) \in V \cap \mathbb{N}^{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

We may ask the following questions:
When F_{V} is a rational function?
Remark. If V is defined by linear polynomials over \mathbb{Q}, then F_{V} is rational.

Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of characteristic zero. We define the listing generating function

$$
F_{V}\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left(n_{1}, \ldots, n_{d}\right) \in V \cap \mathbb{N}^{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

We may ask the following questions:

$$
\text { When } F_{V} \text { is a } D \text {-finite function? }
$$

Corollary.

$$
F_{V} \text { is } D \text {-finite } \quad \Leftrightarrow \quad F_{V} \text { is rational. }
$$

Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of characteristic zero. We define the listing generating function

$$
F_{V}\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left(n_{1}, \ldots, n_{d}\right) \in V \cap \mathbb{N}^{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

We may ask the following questions:
When F_{V} is a D-finite function?
Theorem.
The problem of testing whether F_{V} is rational is undecidable!

Nonnegative integer points on algebraic varieties

Let V be an algebraic variety over an algebraically closed field K of characteristic zero. We define the listing generating function

$$
F_{V}\left(x_{1}, \ldots, x_{d}\right):=\sum_{\left(n_{1}, \ldots, n_{d}\right) \in V \cap \mathbb{N}^{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

We may ask the following questions:

$$
\text { When } F_{V} \text { is a differentially algebraic function? }
$$

Definition. $F \in K\left[\left[x_{1}, \ldots, x_{d}\right]\right]$ is differentially algebraic if the transcendence degree of the filed generated by the derivatives $D_{x_{1}}^{i_{1}} \cdots D_{x_{d}}^{i_{d}}(F)$ with $i_{j} \in \mathbb{N}$ over $K\left(x_{1}, \ldots, x_{d}\right)$ is finite.

Nonnegative integer points on algebraic curves

Theorem. Let $p(x, y) \in \mathbb{C}[x, y]$. If the generating function

$$
F_{p}(x, y):=\sum_{(n, m) \in V(p) \cap \mathbb{N}^{2}} x^{n} y^{m}
$$

is rational. Then $p=f \cdot g$, where $f, g \in \mathbb{C}[x, y]$ s.t.

$$
f=\prod_{i}\left(s_{i} \cdot x+t_{i} \cdot y+c_{i}\right) \quad \text { with } s_{i}, t_{i} \in \mathbb{Z} \text { and } c_{i} \in \mathbb{C}
$$

and g has only finite zeros in \mathbb{N}^{2}.

Nonnegative integer points on algebraic curves

Theorem. Let $p(x, y) \in \mathbb{C}[x, y]$. If the generating function

$$
F_{p}(x, y):=\sum_{(n, m) \in V(p) \cap \mathbb{N}^{2}} x^{n} y^{m}
$$

is rational. Then $p=f \cdot g$, where $f, g \in \mathbb{C}[x, y]$ s.t.

$$
f=\prod_{i}\left(s_{i} \cdot x+t_{i} \cdot y+c_{i}\right) \quad \text { with } s_{i}, t_{i} \in \mathbb{Z} \text { and } c_{i} \in \mathbb{C}
$$

and g has only finite zeros in \mathbb{N}^{2}.

Example. Let $p=x^{2}-y$. Since p is not a product of integer-linear polynomials, the power series $F_{p}(x, y)$ is not D-finite.

Open problems

Conjecture. Let V be an algebraic variety over \mathbb{C}. Then the power series

$$
\sum_{\left(\ldots, n_{d}\right) \in V \cap \mathbb{N}^{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

is differentially algebraic if and only if it is rational.

Open problems

Conjecture. Let V be an algebraic variety over \mathbb{C}. Then the power series

$$
\sum_{\left(,, n_{d}\right) \in V \cap \mathbb{N}^{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

is differentially algebraic if and only if it is rational.

Example. Let $p=x^{2}-y$. Then the power series

$$
F_{p}(x, y):=\sum_{m \geq 0} x^{m} y^{m^{2}}
$$

is not differentially algebraic, otherwise, $F_{p}(x, 2)=\sum 2^{m^{2}} x^{m}$ is differentially algebraic. By Mahler's lemma, we get a contradiction

$$
2^{m^{2}} \ll(m!)^{c} \quad \text { for any positive constant } c .
$$

Open problems

Conjecture. Let V be an algebraic variety over \mathbb{C}. Then the power series

$$
\sum_{\left(n_{1}, \ldots, n_{d}\right) \in V \cap \mathbb{N}^{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}
$$

is differentially algebraic if and only if it is rational.

Conjecture (Chowla-Chowla-Lipshitz-Rubel). The power series

$$
f:=\sum_{n \in \mathbb{N}} x^{n^{3}} \in \mathbb{C}[[x]]
$$

is not differentially algebraical, i.e., satisfies no ADE. Remark. The power series $\sum x^{n^{2}}$ is differentially algebraic.

Summary

Theorem 1. If the power series

$$
F=\sum f\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}} \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{d}\right]\right]
$$

is D-finite and converges on the unit polydisc, then it is rational.

Theorem 2. If the power series

$$
f\left(x_{1}, \ldots, x_{d}\right)=\sum a_{n_{1}, \ldots, n_{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}, \quad a_{n_{1}, \ldots, a_{d}} \in \Delta \text { with }|\Delta|<+\infty
$$

is D-finite, then it is rational.
图 J. P. Bell, S. Chen. Power Series with Coefficients from a Finite Set. Journal of Combinatorial Theory, Series A, 151, pp. 241-253, 2017.

Summary

Theorem 1. If the power series

$$
F=\sum f\left(n_{1}, \ldots, n_{d}\right) x_{1}^{n_{1}} \cdots x_{d}^{n_{d}} \in \mathbb{Z}\left[\left[x_{1}, \ldots, x_{d}\right]\right]
$$

is D-finite and converges on the unit polydisc, then it is rational.

Theorem 2. If the power series

$$
f\left(x_{1}, \ldots, x_{d}\right)=\sum a_{n_{1}, \ldots, n_{d}} x_{1}^{n_{1}} \cdots x_{d}^{n_{d}}, \quad a_{n_{1}, \ldots, a_{d}} \in \Delta \text { with }|\Delta|<+\infty
$$

is D-finite, then it is rational.
图 J. P. Bell, S. Chen. Power Series with Coefficients from a Finite Set. Journal of Combinatorial Theory, Series A, 151, pp. 241-253, 2017.

Thank you!

