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1 The rolling ball Theorem of Blaschke

• Let M and M ′ be two hypersurfaces in Rd . We say that M and M ′ are internally
tangent at x ∈M if they are tangent at x and have the same outward normal.

• Denote by IIxM the second fundamental form of M at x and let n(x) be the outward
unit normal at x. Then we have

Theorem 1.1:

Suppose M and M ′ are smooth convex surfaces with strictly positive scalar curvature
such that IIxM ≥ IIx′M ′ for all x ∈M , x ′ ∈M ′ such that n(x) = n′(x ′). If M and M ′

are internally tangent at one point then M is contained in the convex region bounded
by M ′.
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• W. Blaschke proved Theorem 1.1 in 1918 for closed curves in R2.

• D. Koutroufiotis generalized Blaschke’s theorem for complete curves in R2 and complete
surfaces in R3 (Arch. Math 1972).

• J. Rauch for compact surfaces in Rd (JDG 1974)

• J.A. Delgado for complete surfaces (JDG 1979)

• J.N. Brooks and J.B. Strantzen generalized Blaschke’s theorem for non-smooth convex
sets showing that the local inclusion implies global inclusion (Mem. AMS 1989)

Aram Karakhanyan | UoE 3/35

UoE


• Observe that if M and M ′ are internally tangent at x, then a necessary condition for
M to be inside M ′ near x is

IIx (v) ≥ II′x′ (v) for all v ∈TxM ∼=Tx′M ′. (1.1)

The tangent planes are parallel because M and M ′ are internally tangent at x.

• Therefore Theorem 1.1 says that if for all x ∈M , x ′ ∈M ′, x 6= x ′ with coinciding normals
n′(x ′) = n(x) such that after translating M by x −x ′ we have that the translated surface
M̃ is locally inside M ′ then M is globally inside M ′. In other words,

the local inclusion implies global inclusion or M rolls freely inside M ′.

Aram Karakhanyan | UoE 4/35

UoE


1.1 Blaschke’s proof in R2

• Support function h(t )

• Support line x cos t + y sin t −h(t ) = 0 and −x sin t + y cos t −h′(t ) = 0 from where

x = h cos t −h′ sin t

y = h sin t −h′ cos t

• Radius of curvature ρ(t ) = h′′(t )+h(t )

• In our case
h(0) = 0, h′(0) = 0

h(0) = 0, h′(0) = 0

• From periodicity we get
∫ π
−πρ(s)cos sd s = 0,

∫ π
−πρ(s)sin sd s = 0

h(t ) =
∫ t

0
ρ(s)sin(t − s)d s.
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1.2 Shape operator

• If M is a surface with positive sectional curvature then by Sacksteder’s theorem (AJM
1960) M is convex.

• For x ∈M , let n(x) be the unit outward normal at x (n(x) points outside of the convex
body bounded by M ). The Gauss map x → n(x) is a diffeomorphism of M onto Sd

(H.Wu, JDG, 1974), where Sd is the unit sphere in Rd . The inverse map n−1 gives a
parametrization of M by Sd .

• If M ′ is another smooth convex surface, and w ∈Sd , then n−1(w) and (n′)−1(w) are the
points on M and M ′ with equal outward normals.
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• Let F :Ω→Rm be a smooth map on a set Ω⊂Rd and v = (v1, . . . , vd ) ∈Rd then

∂v F (y) =
d∑

i=1
vi
∂F (y)

∂yi
, y ∈Ω

is the directional derivative operator.

• We view the tangent space as a linear subspace of Rd consisting of tangential directions.
Then the tangent space TxM is the set of vectors perpendicular to n(x).

• The Weingarten map Wx :Tx →Tx is defined by Wx (v) = ∂v n(x). Tx is an inner product
space (induced by the inner product in Rd ). Then Wx is self-adjoint operator on Tx and
the eigenvalues of Wx are the principal curvatures at x.

• Since Wx is self-adjoint and Tx is finite dimensional then there exists an orthonormal
basis of Tx consisting of eigenvectors of Wx .
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Definition 1.1

The second fundamental form is defined as IIx (v, w) =Wx (v)·w . When v = w we denote
IIx (v).

From definition it follows that if M is parametrized by r = r (u) and x = r (u0) then

IIx (v) =−∂2
v r ·n(x), v ∈Tx (1.2)

which readily follows from the differentiation of n ·∂v r = 0.
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Definition 1.2:

Let c :Rd ×Rd →R be a cost function such that c ∈C 4(Rd ×Rd ) and U ,V ⊂Rd .
• Let u : U → R be a continuous function. A c−support function of u at x0 ∈ U is

ϕx0 (x) = c(x, y0)+a0, y0 ∈Rd such that the following two conditions hold

u(x0) = ϕx0 (x0),

u(x) ≥ ϕx0 (x), x ∈U .

• If u has c−support at every x0 ∈U then we say that u is c−convex in U .

• c−segment with respect to a point y0 ∈Rd is the set

{x ∈Rd s.t . cy (x, y0) = line segment}.

One may take in the above definition {x ∈Rd s.t . cy (x, y0) = t p1+(1− t )p0} with t ∈ [0,1]

and p0, p1 being two points in Rd .
• We say that U is c−convex with respect to V ⊂ Rd if the image of the set U under

the mapping cy (·, y) denoted by cy (U , y) is convex set for all y ∈ V . Equivalently, U is
c−convex with respect to V if for any pair of points x1, x2 ∈U there is y0 ∈ V such that
there is a c−segment with respect to y0 joining x1 with x2 and lying in U .
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1.3 Sub-level sets

Definition 1.3

Let u be a c−convex function then the sub-level set of u at x0 ∈U is

Sh,u(x0) = {x ∈Rd s.t . u(x) < c(x, y0)+ [u(x0)− c(x0, y0)]+h} (1.3)

for some constant h.

• Equivalently, Sh,u(x0) = {x ∈U s.t . u(x) <ϕx0 (x)+h} where ϕx0 is the c−support function
of u at x0 ∈U .

• Observe that in the previous definition on may take u(x) = c(x, y1) for some fixed y1 6= y0.
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• We recall Kantorovich’s formulation of optimal transport problem: Let f : U →R, g : V →R

be two nonnegative integrable functions satisfying the mass balance condition∫
U

f (x)d x =
∫
V

g (y)d y.

Then one wishes to minimize∫
U

u(x) f (x)+
∫
V

v(y)g (y)d y → min

among all pairs of functions u : U → R, v : V → R such that u(x)+ v(y) ≥ c(x, y). It is
well-known that a minimizing pair (u, v) exists and formally the potential u solves the
equation

det(ui j − Ai j (x,Du)) = |detcxi ,y j |
f (x)

(g ◦ y)(x)
.

Here Ai j (x, p) = cxi x j (x, y(x, p)) where y(x, p) is determined from Dx (c(x, y(x, p))) = p.
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Assume that c satisfies the following conditions:

A1 For all x, p ∈ Rd there is unique y = y(x, p) ∈ Rd such that ∂x c(x, y) = p and for any
y, q ∈Rd there is unique x = x(y, q) such that ∂y c(x, y) = q.

A2 For all x, y ∈Rd detcxi ,y j (x, y) 6= 0.

A3 For x, p ∈Rd there is a positive constant c0 > 0 such that

Ai j ,kl (x, p)ξiξ jηkηl ≥ c0|ξ|2|η|2 ∀ξ,η ∈Rd ,ξ⊥ η. (1.4)
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• A3 is the Ma-Trudinger-Wang condition.

• J.Liu proved that if A1-A3 hold then Sh,u(x0) is c−convex with respect to y0.

• There are cost functions satisfying the weak A3

Ai j ,kl (x, p)ξiξ jηkηl ≥ 0 ∀ξ,η ∈Rd ,ξ⊥ η. (1.5)

i.e. when c0 = 0 in (1.4), such that the corresponding sub-level sets are convex in classical
sense.

• We also remark that the condition A3 is equivalent to

d 2

d t 2 ci j (x, y(x, pt ))ξiξ j ≥ c0|p1 −p0|2 (1.6)

where x is fixed, cx (x, y(x, pt )) = t p1+ (1− t )p0, t ∈ [0,1] cx (x, y) = p1,cx (x, y0) = p0 (this
determines the so-called c∗−segment with respect to fixed x).

Aram Karakhanyan | UoE 13/35

UoE


2 Main result

Theorem 2.1

et y1, y2 ∈ V and N (y1, y2, a) = {x ∈ Rd : c(x, y0) = c(x, y1)+a} for some a ∈ R where c

satisfies A1,A2 and weak A3. Assume that N is convex for all y1, y2, a and U is convex
domain with smooth boundary such that U is c−convex with respect to V . If N and
∂U are internally tangent at some point z0 then U is inside N .

Using the terminology of Blaschke’s theorem it follows that under the conditions of Theorem
2.1 U rolls freely inside N . Observe that the c−convexity of sub-level sets is known under
stronger condition A3 (Liu). In the next section we give an example of cost function c satisfying
weaker form of A3 (1.5) but such that N is convex for all y1, y2, a. Proof to follow is inspired
in Trudinger-Wang paper (ARMA 2009).
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Proof. Step 1: (Parametrizations)

To apply Theorem 1.1 we take M =U and M ′ =N and assume that U and N are internally
tangent at z0. Assume that at x ′

0 ∈N and x0 ∈ ∂U N and ∂U have the same outward normal,
see Figure 1.

In what follows we use the following radial parametrizations:

∂U R(ζ), ζ ∈ DU ,

N X (ω), ω ∈ DN ,

∂(cy (∂U , y0)) ρ(ζ) = cy (R(ζ), y0).

Here DU and DN are the domains of corresponding parameters. Moreover, there are ω̄ ∈ DN

and ζ̄ ∈ DU such that
x ′

0 :=X (ω̄) ∈N and x0 := R(ζ̄) ∈ ∂U . (2.1)

Aram Karakhanyan | UoE 15/35

UoE


From now on ζ̄ and ω̄ are fixed. Let n̄(ζ̄) denote the outward normal of the image cy (U , y0)

at the point ρ(ζ̄). We have
n̄m(ζ̄) = cym ,xi (R(ζ̄), y0)ni (ζ̄). (2.2)

Observe that by assumption the constant matrix µ= [cym ,xi (R(ζ̄), y0)]−1 has non-trivial determi-
nant, by A2. Furthermore, the set µcy (U , y0) = {µx s.t . x ∈ cy (U , y0)} is again convex because
for any two points q1 = µz1, q2 = µz2 such that q1, q2 ∈ µcy (U , y0) and z1, z2 ∈ cy (U , y0) we
have

µcy (U , y0) 3µ(θz1 + (1−θ)z2) = θµz1 + (1−θ)µz2 = θq1 + (1−θ)q2

for all θ ∈ [0,1].

Step 2: (Computing the second fundamental form of X )

Next, we introduce the vectorfield r = r (ζ),ζ ∈ DU such that

r (ζ) =µρ(ζ) =µcy (R(ζ), y0). (2.3)
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Figure 1: Schematic view to parametrizations of ∂U ,N ,∂(cy (U , y0)) and µ∂(cy (U , y0)).
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We compute the first and second derivatives

r m
ζs

:= r m
s =µαβcyβ,xi R i

s , (2.4)

r m
st = µαβ

[
cyβ,xi x j R i

s R j
t + cyβ,xi R i

st

]
. (2.5)

From (2.4) and (2.2) we see that at r (ζ̄) the normal is

n(ζ̄) =µn̄(ζ̄). (2.6)

Take pt = (1− t )p0 + t p1, t ∈ [0,1] and

pt = cx (x0, y(x ′
0, pt )), (2.7)
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then yt := y(x ′
0, pt ) defines the c−segment joining y0 and y1, by A2 and inverse mapping. In

particular, one has

p i
1 −p i

0 = cxi ,ym (x0, y(x ′
0, pt ))

d

d t
ym(x ′

0, pt ) (2.8)

=
[

d

d t
ym(x ′

0, pt )

]
cym ,xi (x0, y(x ′

0, pt )) =
[

d

d t
ym(x ′

0, pt )

]
µ−1

m,i .

Let X t (ω) be the parametrization of N (t) = {x ∈U : c(x, y0) = c(x, yt )+a} (recall that N (t)

is convex as the boundary of sub-level set). We can choose a = a(t) so that all N (t) pass
through the point x ′

0, in other words there is ω̄t such that X t (ω̄t ) = x ′
0. Moreover, by (2.7) it

follows that

cxi (X t (ω̄t ), y0)− cxi (X t (ω̄t ), yt ) = cxi (x ′
0, y0)− cxi (x ′

0, yt ) (2.9)
= p i

0 −p i
t

= t (p i
0 −p i

1).
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After fixing t and differentiating the identity c(X t (ω), y0) = c(X t (ω), yt )+a(t ) in ω we get[
cxi (X t , y0)− cxi (X t , yt )

]
X i ,t

ωk
= 0,[

cxi x j (X t , y0)− cxi x j (X t , yt )
]
X

j ,t
ωl

X i ,t
ωk

+ [
cxi (X t , y0)− cxi (X t , yt )

]
X i ,t

ωkωl
= 0. (2.10)

Thus the normals of N (t ) at x ′
0 are collinear to p1 −p0 for all t ∈ [0,1], that is

n(x0) = n′(x ′
0) = p1 −p0

|p1 −p0|
, µn̄ = n (recall n(ζ̄) =µn̄(ζ̄)). (2.11)

Hence we can rewrite (2.10) as follows[
(cxi x j (X t , y0)− cxi x j (X t , yt )

]
X

j ,t
ωl

X i ,t
ωk

=−t (p i
0 −p i

1)X i ,t
ωkωl

. (2.12)

Keeping X t (ω̄t ) = x ′
0 fixed for all t ∈ [0,1], dividing both sides of the last identity by t and

then sending t → 0 we obtain

−
[

y ′(x ′
0, p0)cy,xi x j (x ′

0, y0)
]
X

j ,t=0
ωl

X i ,t=0
ωk

=−(p i
0 −p i

1)X i ,t=0
ωkωl

. (2.13)
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On the other hand from (2.8) we see that d
d t y(x ′

0, pt )
∣∣

t=0 = (p1 −p0)µ. Thus substituting this
into the last equality we obtain[

(p1 −p0)µcy,xi x j (x ′
0, y0)

]
X

j ,t=0
ωl

X i ,t=0
ωk

= (p i
0 −p i

1)X i ,t=0
ωkωl

(2.14)

= −(p i
1 −p i

0)X i ,t=0
ωkωl

or equivalently [
nαµαβcyβ,xi x j (x ′

0, y0)
]
X

j ,t=0
ωl

X i ,t=0
ωk

=−ni X i ,t=0
ωkωl

(2.15)

if we utilize (2.11).

Step 3: (Monotone bending)

Recall that by assumption Tx0∂U and Tx′
0
N (t = 0) have the same local coordinate system (by

reparametrizing N (t = 0) if necessary). From convexity of µcy (U , y0) boundary of which is
parametrized by r we have
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0 ≥ rαst nα =µρst n =µαβ(cyβ,xi x j R i
s R j

t + cyβ,xi R i
st )nα (2.16)

= µαβcyβ,xi x j R i
s R j

t nα+R i
st ni

(2.15)= −ni X i ,t=0
ωkωl

+R i
st ni .

Now A3 yields that at x ′
0

ni X i ,t
ωkωl

≥ ni X i ,t=0
ωkωl

(4.8)≥ R i
st ni . (2.17)

Recalling II=−n∂2r we finally obtain the required inequality

IIx′
0
N ≤ IIx0∂U .

The proof is now complete.
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Remark 2.1

Note that weak A3 (i.e. when c0 = 0 in (1.6)) is enough for the monotonicity to
conclude the inequality ni X i ,t

ωkωl
≥ ni X i ,t=0

ωkωl
.

• There is a wide class of cost functions for which the set N is convex. Observe that
c(x, y) = 1

p |x − y |p satisfies A3 for −2 < p < 1 and weak A3 if p =±2 (MTW).

• It is useful to note that if Ωψ = {x ∈Rd s.t . ψ(x) < 0} for some smooth function ψ :Rd →R

such that Ωψ 6= ; then

∂2ψ(x)τ(x) ·τ(x) ≥ 0, ∀τ(x) ∈Tx (2.18)

is a necessary and sufficient condition for Ωψ to be convex provided that ∇ψ
|∇ψ| is directed

towards positive ψ.
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Figure 2: From left to right: a = −2, y1 = (−10−3,0), y2 = (−1,−10−2); a = 1, y1 =
(−10−1,−10−1), y2 = (1,10−2); a =−1, y1 = (−10−4,0), y2 = (1.1,−10−1).
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3 Antenna design problems

• In parallel reflector problem one deals with the paraboloids of revolution

P (x,σ, Z ) = σ

2
+Z n+1 − 1

2σ
|x − z|2 (3.1)

which play the role of support functions.

• Here the point Z = (z, Z n+1) ∈Rn+1 is the focus of the paraboloid such that ψ(z, Z n+1) = 0

for some smooth function ψ satisfying some structural conditions and σ is a constant.
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• If P1 is internally tangent to P2 at z0 and IIz0 P1 ≥ IIz0 P2 then P1 is inside P2, see Lemma
8.1 (K, 2014). This again follows from Blaschke’s theorem. Indeed, we have that at the
points x and x ′ corresponding to coinciding outward normals

IIx P1 = 1√
1+|DP1(x)|2

1

σ1
δi j

and
IIx′P2 = 1√

1+|DP2(x ′)|2
1

σ2
δi j .

Furthermore DP1(x) = DP2(x ′) and hence√
1+|DP1(x)|2 =

√
1+|DP2(x ′)|2. (3.2)

From IIz0 P1 ≥ IIz0 P2 we infer that
1

σ1
≥ 1

σ2
. (3.3)

Consequently (3.3) and (3.2) imply that

IIx P1 ≥ IIx′P2.
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4 Near-field Refractor

U

γ

E

en+1

Z

x

Y

Σ

V
Ru(E)

ℓx

θ1

θ2

M

Figure 3: The blue doted lines confine the boundary of media I.
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If n1 and n2 are the refractive indices of media I and II respectively then

ε= n1

n2
= sinθ2

sinθ1
=

{ p
a2−b2

a < 1 for ellipsoids,p
a2+b2

a > 1 for hyperboloids.
(4.1)

Here ε is the eccentricity. Since ε is fixed we can drop the dependence of E and H from
b = a

√
|ε2 −1| and take

E(x, a, Z ) = Z n+1 −aε−a

√
1− (x − z)2

a2(1−ε2)
, if ε< 1, (4.2)

H(x, a, Z ) = Z n+1 −aε−a

√
1+ (x − z)2

a2(ε2 −1)
, if ε> 1. (4.3)

We also define the constant
κ= ε2 −1

ε2 . (4.4)
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Theorem 4.1

Let u ∈C 2(U ) be a solution. Then

1◦ Y = ε
(
κDu
1+q ,1− κ

1+q

)
is the unit direction of refracted ray,

2◦ u solves the equation∣∣∣∣det

[
q +1

tεκ

{
Id−κε2Du ⊗Du

}+D2u

]∣∣∣∣= ∣∣∣∣−εq

[
q +1

tεκ

]n ∇ψ ·Y

|∇ψ|
f

g

∣∣∣∣ , (4.5)

where
q(x) =

√
1−κ(1+|Du|2), κ= ε2 −1

ε2 (4.6)

and t is the stretch function defined via an implicit relation ψ(x +en+1u(x)+Y t ) = 0.
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∇ψ(Z ) · (X −Z ) > 0 ∀X ∈ (U × [0,m0]),∀Z ∈Σ and for some large constant m0 > 0,

dist(U ,V ) > 0,

V is R −convex with respect to U ,

f , g > 0,

1

t

[
tεκ

q +1

]2

II+ κ

q

ψn+1

|∇ψ|
(
Id+κp ⊗p

q2

)
< 0, if κ> 0.

• Let Hi (x) = H(x, ai , Zi ), i = 1,2 be two global supporting hyperboloids of u at x0 such
that the contact set Λ 6= {x0}. Thus u is not differentiable at x0. To fix the ideas take
x0 = 0.

• If γi is the normal of the graph of Hi , i = 1,2 at x0 then for any θ ∈ (0,1) there is
Zθ ∈Σ∩C0,γ1,γ2 and aθ > 0 such that H (x) = H (x, aθ , Zθ) is a local supporting hyperboloid
of u at 0 and

D Hθ(0) = θD H1(0)+ (1−θ)D H2(0). (4.7)
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• Observe that the correspondence θ 7→ Zθ is one-to-one thanks to our assumptions. By
choosing a suitable coordinate system we can assume that D H1(0)−D H2(0) = (0, . . . ,0,α)

for some α> 0. Then we have that for all 0 < θ < 1 (Loeper type argument)

min[H1(x), H2(x)] ≤ θH1(x)+ (1−θ)H2(x)

= u(0)+ [D H2(0)+αθ] xn + 1

2

[
θD2H1(0)+ (1−θ)D2H2(0)

]
x ⊗x

+o(|x|2)

where the last line follows from Taylor’s expansion.

Then
D2Hθ(0) =−G(x0,u(0), p1 +θ(p2 −p1))

εκ
.
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where we set pi = D Hi (0), i = 1,2 and used (4.7). For all unit vectors τ perpendicular to
xn axis we have

d 2

dθ2 D2
ττHθ(0) = − d 2

dθ2

G i j (0,u(0), p1 +θ(p2 −p1))τiτ j

εκ
(4.8)

= −α2 ∂2

∂p2
n

G j j (0,u(0), p1 +θ(p2 −p1))τiτ j

εκ

≤ −α2c0

where the last line follows from (A3) with c0 > 0.
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5 More inclusion principles
• There are various inclusion principles in geometry, we want to mention the following

elementary one due to J. Nitsche : Each continuous closed curve of length L in Euclidean
3-space is contained in a closed ball of radius R < L/4. Equality holds only for a "needle",
i.e., a segment of length L/2 gone through twice, in opposite directions.

• Later J. Spruck generalized this result for compact Riemannian manifold M of dimension
n ≥ 3 as follows: if the sectional curvatures K (σ) ≥ 1/c2 for all tangent plane sections σ
then M is contained in a ball of radius R < 1

2πc, and this bound is best possible.

• We remark here that there is a smooth surface S ⊂ R3 such that the mean curvature
H ≥ 1 and the Gauss curvature K ≥ 1 then the unit ball cannot be fit inside S, (Spruck,
JDG 1973). Notice that K is an intrinsic quantity and H ≥ 1 implies that K ≥ 1.
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