Comparison theorems in optimal transport and beyond

Aram Karakhanyan

April 12, 2017

1 The rolling ball Theorem of Blaschke

- Let *M* and *M*' be two hypersurfaces in ℝ^d. We say that *M* and *M*' are *internally* tangent at x ∈ *M* if they are tangent at x and have the same outward normal.
- Denote by II_x *M* the second fundamental form of *M* at x and let n(x) be the outward unit normal at x. Then we have

Theorem 1.1:

Suppose \mathscr{M} and \mathscr{M}' are smooth convex surfaces with strictly positive scalar curvature such that $\prod_x \mathscr{M} \ge \prod_{x'} \mathscr{M}'$ for all $x \in \mathscr{M}, x' \in \mathscr{M}'$ such that n(x) = n'(x'). If \mathscr{M} and \mathscr{M}' are internally tangent at one point then \mathscr{M} is contained in the convex region bounded by \mathscr{M}' .

- W. Blaschke proved Theorem 1.1 in 1918 for closed curves in \mathbb{R}^2 .
- D. Koutroufiotis generalized Blaschke's theorem for complete curves in ℝ² and complete surfaces in ℝ³ (Arch. Math 1972).
- J. Rauch for compact surfaces in \mathbb{R}^d (JDG 1974)
- J.A. Delgado for complete surfaces (JDG 1979)
- J.N. Brooks and J.B. Strantzen generalized Blaschke's theorem for non-smooth convex sets showing that the local inclusion implies global inclusion (Mem. AMS 1989)

Observe that if *M* and *M'* are internally tangent at *x*, then a necessary condition for *M* to be inside *M'* near *x* is

$$||_{x}(v) \ge ||'_{x'}(v) \quad \text{for all } v \in \mathbb{T}_{x}\mathcal{M} \cong \mathbb{T}_{x'}\mathcal{M}'. \tag{1.1}$$

The tangent planes are parallel because \mathcal{M} and \mathcal{M}' are internally tangent at x.

Therefore Theorem 1.1 says that if for all x ∈ M, x' ∈ M', x ≠ x' with coinciding normals n'(x') = n(x) such that after translating M by x - x' we have that the translated surface M is locally inside M' then M is globally inside M'. In other words,

the local inclusion implies global inclusion or \mathscr{M} rolls freely inside \mathscr{M}' .

1.1 Blaschke's proof in \mathbb{R}^2

- Support function *h*(*t*)
- Support line $x \cos t + y \sin t h(t) = 0$ and $-x \sin t + y \cos t h'(t) = 0$ from where

```
x = h\cos t - h'\sin ty = h\sin t - h'\cos t
```

- Radius of curvature $\rho(t) = h''(t) + h(t)$
- In our case

$$h(0) = 0, \quad h'(0) = 0$$

 $h(0) = 0, \quad h'(0) = 0$

• From periodicity we get $\int_{-\pi}^{\pi} \rho(s) \cos s ds = 0$, $\int_{-\pi}^{\pi} \rho(s) \sin s ds = 0$

$$h(t) = \int_0^t \rho(s) \sin(t-s) ds.$$

1.2 Shape operator

- If *M* is a surface with positive sectional curvature then by Sacksteder's theorem (AJM 1960) *M* is convex.
- For x ∈ M, let n(x) be the unit outward normal at x (n(x) points outside of the convex body bounded by M). The Gauss map x → n(x) is a diffeomorphism of M onto S^d (H.Wu, JDG, 1974), where S^d is the unit sphere in R^d. The inverse map n⁻¹ gives a parametrization of M by S^d.
- If \mathcal{M}' is another smooth convex surface, and $w \in \mathbb{S}^d$, then $n^{-1}(w)$ and $(n')^{-1}(w)$ are the points on \mathcal{M} and \mathcal{M}' with equal outward normals.

• Let $F: \Omega \to \mathbb{R}^m$ be a smooth map on a set $\Omega \subset \mathbb{R}^d$ and $v = (v_1, \dots, v_d) \in \mathbb{R}^d$ then

$$\partial_{v}F(y) = \sum_{i=1}^{d} v_{i} \frac{\partial F(y)}{\partial y_{i}}, y \in \Omega$$

is the directional derivative operator.

- We view the tangent space as a linear subspace of ℝ^d consisting of tangential directions. Then the tangent space T_xM is the set of vectors perpendicular to n(x).
- The Weingarten map $W_x: \mathbb{T}_x \to \mathbb{T}_x$ is defined by $W_x(v) = \partial_v n(x)$. \mathbb{T}_x is an inner product space (induced by the inner product in \mathbb{R}^d). Then W_x is self-adjoint operator on \mathbb{T}_x and the eigenvalues of W_x are the principal curvatures at x.
- Since W_x is self-adjoint and T_x is finite dimensional then there exists an orthonormal basis of T_x consisting of eigenvectors of W_x.

Definition 1.1

The second fundamental form is defined as $II_x(v, w) = W_x(v) \cdot w$. When v = w we denote $II_x(v)$.

From definition it follows that if \mathcal{M} is parametrized by r = r(u) and $x = r(u_0)$ then

$$||_{x}(v) = -\partial_{v}^{2} r \cdot n(x), \quad v \in \mathbb{T}_{x}$$

$$(1.2)$$

which readily follows from the differentiation of $n \cdot \partial_v r = 0$.

Definition 1.2:

Let $c: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ be a cost function such that $c \in C^4(\mathbb{R}^d \times \mathbb{R}^d)$ and $\mathcal{U}, \mathcal{V} \subset \mathbb{R}^d$.

• Let $u: \mathcal{U} \to \mathbb{R}$ be a continuous function. A *c*-support function of *u* at $x_0 \in \mathcal{U}$ is $\varphi_{x_0}(x) = c(x, y_0) + a_0, y_0 \in \mathbb{R}^d$ such that the following two conditions hold

$$u(x_0) = \varphi_{x_0}(x_0),$$

$$u(x) \ge \varphi_{x_0}(x), x \in \mathcal{U}$$

- If u has c-support at every $x_0 \in \mathcal{U}$ then we say that u is c-convex in \mathcal{U} .
- *c*-segment with respect to a point $y_0 \in \mathbb{R}^d$ is the set

$$\{x \in \mathbb{R}^d \text{ s.t. } c_y(x, y_0) = \text{line segment}\}.$$

One may take in the above definition $\{x \in \mathbb{R}^d \ s.t. \ c_y(x, y_0) = tp_1 + (1-t)p_0\}$ with $t \in [0,1]$ and p_0, p_1 being two points in \mathbb{R}^d .

• We say that \mathscr{U} is *c*-convex with respect to $\mathscr{V} \subset \mathbb{R}^d$ if the image of the set \mathscr{U} under the mapping $c_y(\cdot, y)$ denoted by $c_y(\mathscr{U}, y)$ is convex set for all $y \in \mathscr{V}$. Equivalently, \mathscr{U} is *c*-convex with respect to \mathscr{V} if for any pair of points $x_1, x_2 \in \mathscr{U}$ there is $y_0 \in \mathscr{V}$ such that there is a *c*-segment with respect to y_0 joining x_1 with x_2 and lying in \mathscr{U} .

1.3 Sub-level sets

Definition 1.3

Let *u* be a *c*-convex function then the sub-level set of *u* at $x_0 \in \mathcal{U}$ is

$$S_{h,u}(x_0) = \{ x \in \mathbb{R}^d \ s.t. \ u(x) < c(x, y_0) + [u(x_0) - c(x_0, y_0)] + h \}$$
(1.3)

for some constant h.

- Equivalently, $S_{h,u}(x_0) = \{x \in \mathcal{U} \ s.t. \ u(x) < \varphi_{x_0}(x) + h\}$ where φ_{x_0} is the *c*-support function of *u* at $x_0 \in \mathcal{U}$.
- Observe that in the previous definition on may take $u(x) = c(x, y_1)$ for some fixed $y_1 \neq y_0$.

We recall Kantorovich's formulation of optimal transport problem: Let f: U → R, g: V → R
 be two nonnegative integrable functions satisfying the mass balance condition

$$\int_{\mathscr{U}} f(x) dx = \int_{\mathscr{V}} g(y) dy.$$

Then one wishes to minimize

$$\int_{\mathcal{U}} u(x)f(x) + \int_{\mathcal{V}} v(y)g(y)dy \to \min$$

among all pairs of functions $u: \mathcal{U} \to \mathbb{R}, v: \mathcal{V} \to \mathbb{R}$ such that $u(x) + v(y) \ge c(x, y)$. It is well-known that a minimizing pair (u, v) exists and formally the potential u solves the equation

$$\det(u_{ij} - A_{ij}(x, Du)) = |\det c_{x_i, y_j}| \frac{f(x)}{(g \circ y)(x)}$$

Here $A_{ij}(x, p) = c_{x_i x_j}(x, y(x, p))$ where y(x, p) is determined from $D_x(c(x, y(x, p))) = p$.

Assume that c satisfies the following conditions:

- A1 For all $x, p \in \mathbb{R}^d$ there is unique $y = y(x, p) \in \mathbb{R}^d$ such that $\partial_x c(x, y) = p$ and for any $y, q \in \mathbb{R}^d$ there is unique x = x(y, q) such that $\partial_y c(x, y) = q$.
- **A2** For all $x, y \in \mathbb{R}^d$ det $c_{x_i, y_j}(x, y) \neq 0$.
- **A3** For $x, p \in \mathbb{R}^d$ there is a positive constant $c_0 > 0$ such that

$$A_{ij,kl}(x,p)\xi_i\xi_j\eta_k\eta_l \ge c_0|\xi|^2|\eta|^2 \quad \forall \xi,\eta \in \mathbb{R}^d, \xi \perp \eta.$$
(1.4)

- A3 is the Ma-Trudinger-Wang condition.
- J.Liu proved that if A1-A3 hold then $S_{h,u}(x_0)$ is *c*-convex with respect to y_0 .
- There are cost functions satisfying the weak A3

$$A_{ij,kl}(x,p)\xi_i\xi_j\eta_k\eta_l \ge 0 \quad \forall \xi, \eta \in \mathbb{R}^d, \xi \perp \eta.$$
(1.5)

i.e. when $c_0 = 0$ in (1.4), such that the corresponding sub-level sets are convex in classical sense.

• We also remark that the condition A3 is equivalent to

$$\frac{d^2}{dt^2}c_{ij}(x, y(x, p_t))\xi_i\xi_j \ge c_0|p_1 - p_0|^2$$
(1.6)

where x is fixed, $c_x(x, y(x, p_t)) = tp_1 + (1-t)p_0, t \in [0, 1]$ $c_x(x, y) = p_1, c_x(x, y_0) = p_0$ (this determines the so-called c^* -segment with respect to fixed x).

2 Main result

Theorem 2.1

et $y_1, y_2 \in \overline{\mathcal{V}}$ and $\mathcal{N}(y_1, y_2, a) = \{x \in \mathbb{R}^d : c(x, y_0) = c(x, y_1) + a\}$ for some $a \in \mathbb{R}$ where c satisfies **A1**, **A2** and weak **A3**. Assume that \mathcal{N} is convex for all y_1, y_2, a and \mathcal{U} is convex domain with smooth boundary such that \mathcal{U} is c-convex with respect to \mathcal{V} . If \mathcal{N} and $\partial \mathcal{U}$ are internally tangent at some point z_0 then \mathcal{U} is inside \mathcal{N} .

Using the terminology of Blaschke's theorem it follows that under the conditions of Theorem 2.1 \mathscr{U} rolls freely inside \mathscr{N} . Observe that the *c*-convexity of sub-level sets is known under stronger condition **A3** (Liu). In the next section we give an example of cost function *c* satisfying weaker form of **A3** (1.5) but such that \mathscr{N} is convex for all y_1, y_2, a . Proof to follow is inspired in Trudinger-Wang paper (ARMA 2009).

Proof. Step 1: (Parametrizations)

To apply Theorem 1.1 we take $\mathcal{M} = \mathcal{U}$ and $\mathcal{M}' = \mathcal{N}$ and assume that \mathcal{U} and \mathcal{N} are internally tangent at z_0 . Assume that at $x'_0 \in \mathcal{N}$ and $x_0 \in \partial \mathcal{U}$ \mathcal{N} and $\partial \mathcal{U}$ have the same outward normal, see Figure 1.

In what follows we use the following radial parametrizations:

$$\begin{array}{ll} \partial \mathcal{U} & R(\zeta), \quad \zeta \in D_{\mathcal{U}}, \\ \mathcal{N} & \mathcal{X}(\omega), \quad \omega \in D_{\mathcal{N}}, \\ \partial (c_{\gamma}(\partial \mathcal{U}, y_0)) & \rho(\zeta) = c_{\gamma}(R(\zeta), y_0). \end{array}$$

Here $D_{\mathscr{U}}$ and $D_{\mathscr{N}}$ are the domains of corresponding parameters. Moreover, there are $\bar{\omega} \in D_{\mathscr{N}}$ and $\bar{\zeta} \in D_{\mathscr{U}}$ such that

$$x'_0 := \mathscr{X}(\bar{\omega}) \in \mathscr{N} \quad \text{and} \quad x_0 := R(\bar{\zeta}) \in \partial \mathscr{U}.$$
 (2.1)

From now on $\bar{\zeta}$ and $\bar{\omega}$ are fixed. Let $\bar{n}(\bar{\zeta})$ denote the outward normal of the image $c_y(\mathcal{U}, y_0)$ at the point $\rho(\bar{\zeta})$. We have

$$\bar{n}^m(\bar{\zeta}) = c_{y_m, x_i}(R(\bar{\zeta}), y_0) n^i(\bar{\zeta}).$$
 (2.2)

Observe that by assumption the constant matrix $\mu = [c_{y_m,x_i}(R(\bar{\zeta}), y_0)]^{-1}$ has non-trivial determinant, by **A2**. Furthermore, the set $\mu c_y(\mathcal{U}, y_0) = \{\mu x \ s.t. \ x \in c_y(\mathcal{U}, y_0)\}$ is again convex because for any two points $q_1 = \mu z_1, q_2 = \mu z_2$ such that $q_1, q_2 \in \mu c_y(\mathcal{U}, y_0)$ and $z_1, z_2 \in c_y(\mathcal{U}, y_0)$ we have

$$\mu c_{y}(\mathcal{U}, y_{0}) \ni \mu(\theta z_{1} + (1 - \theta)z_{2}) = \theta \mu z_{1} + (1 - \theta)\mu z_{2} = \theta q_{1} + (1 - \theta)q_{2}$$

for all $\theta \in [0,1]$.

Step 2: (Computing the second fundamental form of \mathscr{X})

Next, we introduce the vectorfield $r = r(\zeta), \zeta \in D_{\mathcal{U}}$ such that

$$r(\zeta) = \mu \rho(\zeta) = \mu c_y(R(\zeta), y_0).$$
(2.3)

Figure 1: Schematic view to parametrizations of $\partial \mathcal{U}, \mathcal{N}, \partial(c_y(\mathcal{U}, y_0))$ and $\mu \partial(c_y(\mathcal{U}, y_0))$.

We compute the first and second derivatives

$$r_{\zeta_s}^m := r_s^m = \mu_{\alpha\beta} c_{y_\beta, x_i} R_s^i, \qquad (2.4)$$

$$r_{st}^{m} = \mu_{\alpha\beta} \left[c_{y_{\beta}, x_{i}x_{j}} R_{s}^{i} R_{t}^{j} + c_{y_{\beta}, x_{i}} R_{st}^{i} \right].$$

$$(2.5)$$

From (2.4) and (2.2) we see that at $r(\bar{\zeta})$ the normal is

$$n(\bar{\zeta}) = \mu \bar{n}(\bar{\zeta}). \tag{2.6}$$

Take $p_t = (1 - t)p_0 + tp_1, t \in [0, 1]$ and

$$p_t = c_x(x_0, y(x'_0, p_t)), \tag{2.7}$$

then $y_t := y(x'_0, p_t)$ defines the *c*-segment joining y_0 and y_1 , by **A2** and inverse mapping. In particular, one has

$$p_{1}^{i} - p_{0}^{i} = c_{x_{i}, y_{m}}(x_{0}, y(x_{0}', p_{t})) \frac{d}{dt} y^{m}(x_{0}', p_{t})$$

$$= \left[\frac{d}{dt} y^{m}(x_{0}', p_{t}) \right] c_{y_{m}, x_{i}}(x_{0}, y(x_{0}', p_{t})) = \left[\frac{d}{dt} y^{m}(x_{0}', p_{t}) \right] \mu_{m, i}^{-1}.$$
(2.8)

Let $\mathscr{X}^t(\omega)$ be the parametrization of $\mathscr{N}(t) = \{x \in \mathscr{U} : c(x, y_0) = c(x, y_t) + a\}$ (recall that $\mathscr{N}(t)$ is convex as the boundary of sub-level set). We can choose a = a(t) so that all $\mathscr{N}(t)$ pass through the point x'_0 , in other words there is $\bar{\omega}^t$ such that $\mathscr{X}^t(\bar{\omega}^t) = x'_0$. Moreover, by (2.7) it follows that

$$c_{x_{i}}(\mathscr{X}^{t}(\bar{\omega}^{t}), y_{0}) - c_{x_{i}}(\mathscr{X}^{t}(\bar{\omega}^{t}), y_{t}) = c_{x_{i}}(x'_{0}, y_{0}) - c_{x_{i}}(x'_{0}, y_{t})$$

$$= p_{0}^{i} - p_{t}^{i}$$

$$= t(p_{0}^{i} - p_{1}^{i}).$$
(2.9)

After fixing t and differentiating the identity $c(\mathscr{X}^t(\omega), y_0) = c(\mathscr{X}^t(\omega), y_t) + a(t)$ in ω we get

$$\left[c_{x_i}(\mathscr{X}^t, y_0) - c_{x_i}(\mathscr{X}^t, y_t)\right] \mathscr{X}_{\omega_k}^{i,t} = 0,$$

$$\left[c_{x_ix_j}(\mathscr{X}^t, y_0) - c_{x_ix_j}(\mathscr{X}^t, y_t)\right] \mathscr{X}^{j,t}_{\omega_l} \mathscr{X}^{i,t}_{\omega_k} + \left[c_{x_i}(\mathscr{X}^t, y_0) - c_{x_i}(\mathscr{X}^t, y_t)\right] \mathscr{X}^{i,t}_{\omega_k\omega_l} = 0.$$
(2.10)

Thus the normals of $\mathcal{N}(t)$ at x'_0 are collinear to $p_1 - p_0$ for all $t \in [0,1]$, that is

$$n(x_0) = n'(x'_0) = \frac{p_1 - p_0}{|p_1 - p_0|}, \quad \mu \bar{n} = n \quad (\text{recall} \quad n(\bar{\zeta}) = \mu \bar{n}(\bar{\zeta})). \tag{2.11}$$

Hence we can rewrite (2.10) as follows

$$\left[\left(c_{x_i x_j} (\mathscr{X}^t, y_0) - c_{x_i x_j} (\mathscr{X}^t, y_t) \right] \mathscr{X}_{\omega_l}^{j,t} \mathscr{X}_{\omega_k}^{i,t} = -t(p_0^i - p_1^i) \mathscr{X}_{\omega_k \omega_l}^{i,t}.$$

$$(2.12)$$

Keeping $\mathscr{X}^t(\bar{\omega}^t) = x'_0$ fixed for all $t \in [0,1]$, dividing both sides of the last identity by t and then sending $t \to 0$ we obtain

$$-\left[y'(x_0', p_0)c_{y, x_i x_j}(x_0', y_0)\right] \mathscr{X}_{\omega_l}^{j,t=0} \mathscr{X}_{\omega_k}^{i,t=0} = -(p_0^i - p_1^i) \mathscr{X}_{\omega_k \omega_l}^{i,t=0}.$$
(2.13)

On the other hand from (2.8) we see that $\frac{d}{dt}y(x'_0, p_t)|_{t=0} = (p_1 - p_0)\mu$. Thus substituting this into the last equality we obtain

$$\left[(p_1 - p_0) \mu c_{y, x_i x_j}(x'_0, y_0) \right] \mathscr{X}^{j, t=0}_{\omega_l} \mathscr{X}^{i, t=0}_{\omega_k} = (p_0^i - p_1^i) \mathscr{X}^{i, t=0}_{\omega_k \omega_l}$$

$$= -(p_1^i - p_0^i) \mathscr{X}^{i, t=0}_{\omega_k \omega_l}$$

$$(2.14)$$

or equivalently

$$\left[n^{\alpha}\mu_{\alpha\beta}c_{y_{\beta},x_{i}x_{j}}(x_{0}',y_{0})\right]\mathscr{X}_{\omega_{l}}^{j,t=0}\mathscr{X}_{\omega_{k}}^{i,t=0}=-n^{i}\mathscr{X}_{\omega_{k}\omega_{l}}^{i,t=0}$$
(2.15)

if we utilize (2.11).

Step 3: (*Monotone bending*)

Recall that by assumption $\mathbb{T}_{x_0}\partial \mathscr{U}$ and $\mathbb{T}_{x'_0}\mathcal{N}(t=0)$ have the same local coordinate system (by reparametrizing $\mathcal{N}(t=0)$ if necessary). From convexity of $\mu c_y(\mathscr{U}, y_0)$ boundary of which is parametrized by r we have

$$0 \geq r_{st}^{\alpha} n^{\alpha} = \mu \rho_{st} n = \mu_{\alpha\beta} (c_{\gamma\beta,x_i x_j} R_s^i R_t^j + c_{\gamma\beta,x_i} R_{st}^i) n^{\alpha}$$

$$= \mu_{\alpha\beta} c_{\gamma\beta,x_i x_j} R_s^i R_t^j n^{\alpha} + R_{st}^i n^i$$

$$\stackrel{(2.15)}{=} -n^i \mathscr{X}_{\omega_k \omega_l}^{i,t=0} + R_{st}^i n^i.$$

$$(2.16)$$

Now **A3** yields that at x'_0

$$n^{i} \mathscr{X}^{i,t}_{\omega_{k}\omega_{l}} \ge n^{i} \mathscr{X}^{i,t=0}_{\omega_{k}\omega_{l}} \stackrel{(4.8)}{\ge} R^{i}_{st} n^{i}.$$

$$(2.17)$$

Recalling $II = -n\partial^2 r$ we finally obtain the required inequality

 $||_{x_0'}\mathcal{N} \leq ||_{x_0}\partial \mathcal{U}.$

The proof is now complete.

Remark 2.1

Note that weak **A3** (i.e. when $c_0 = 0$ in (1.6)) is enough for the monotonicity to conclude the inequality $n^i \mathscr{X}^{i,t}_{\omega_k \omega_l} \ge n^i \mathscr{X}^{i,t=0}_{\omega_k \omega_l}$.

- There is a wide class of cost functions for which the set \mathcal{N} is convex. Observe that $c(x, y) = \frac{1}{p}|x-y|^p$ satisfies A3 for $-2 and weak A3 if <math>p = \pm 2$ (MTW).
- It is useful to note that if $\Omega_{\psi} = \{x \in \mathbb{R}^d \ s.t. \ \psi(x) < 0\}$ for some smooth function $\psi : \mathbb{R}^d \to \mathbb{R}$ such that $\Omega_{\psi} \neq \emptyset$ then

$$\partial^2 \psi(x) \tau(x) \cdot \tau(x) \ge 0, \quad \forall \tau(x) \in \mathbb{T}_x$$
(2.18)

is a necessary and sufficient condition for Ω_{ψ} to be convex provided that $\frac{\nabla \psi}{|\nabla \psi|}$ is directed towards positive ψ .

Figure 2: From left to right: $a = -2, y_1 = (-10^{-3}, 0), y_2 = (-1, -10^{-2}); a = 1, y_1 = (-10^{-1}, -10^{-1}), y_2 = (1, 10^{-2}); a = -1, y_1 = (-10^{-4}, 0), y_2 = (1.1, -10^{-1}).$

3 Antenna design problems

• In parallel reflector problem one deals with the paraboloids of revolution

$$P(x,\sigma,Z) = \frac{\sigma}{2} + Z^{n+1} - \frac{1}{2\sigma} |x-z|^2$$
(3.1)

which play the role of support functions.

• Here the point $Z = (z, Z^{n+1}) \in \mathbb{R}^{n+1}$ is the focus of the paraboloid such that $\psi(z, Z^{n+1}) = 0$ for some smooth function ψ satisfying some structural conditions and σ is a constant.

If P₁ is internally tangent to P₂ at z₀ and II_{z0}P₁ ≥ II_{z0}P₂ then P₁ is inside P₂, see Lemma 8.1 (K, 2014). This again follows from Blaschke's theorem. Indeed, we have that at the points x and x' corresponding to coinciding outward normals

$$\mathsf{II}_x P_1 = \frac{1}{\sqrt{1+|DP_1(x)|^2}} \frac{1}{\sigma_1} \delta_{ij}$$

and

$$||_{x'}P_2 = \frac{1}{\sqrt{1+|DP_2(x')|^2}} \frac{1}{\sigma_2} \delta_{ij}.$$

Furthermore $DP_1(x) = DP_2(x')$ and hence

$$\sqrt{1+|DP_1(x)|^2} = \sqrt{1+|DP_2(x')|^2}.$$
(3.2)

From $\prod_{z_0} P_1 \ge \prod_{z_0} P_2$ we infer that

$$\frac{1}{\sigma_1} \ge \frac{1}{\sigma_2}.\tag{3.3}$$

Consequently (3.3) and (3.2) imply that

 $||_{x}P_{1} \geq ||_{x'}P_{2}.$

4 Near-field Refractor

Figure 3: The blue doted lines confine the boundary of media I.

If n_1 and n_2 are the refractive indices of media I and II respectively then

$$\varepsilon = \frac{n_1}{n_2} = \frac{\sin\theta_2}{\sin\theta_1} = \begin{cases} \frac{\sqrt{a^2 - b^2}}{a} < 1 & \text{for ellipsoids,} \\ \frac{\sqrt{a^2 + b^2}}{a} > 1 & \text{for hyperboloids.} \end{cases}$$
(4.1)

Here ε is the eccentricity. Since ε is fixed we can drop the dependence of E and H from $b = a\sqrt{|\varepsilon^2 - 1|}$ and take

$$E(x, a, Z) = Z^{n+1} - a\varepsilon - a\sqrt{1 - \frac{(x-z)^2}{a^2(1-\varepsilon^2)}}, \quad \text{if } \varepsilon < 1, \tag{4.2}$$
$$H(x, a, Z) = Z^{n+1} - a\varepsilon - a\sqrt{1 + \frac{(x-z)^2}{a^2(\varepsilon^2 - 1)}}, \quad \text{if } \varepsilon > 1. \tag{4.3}$$

We also define the constant

$$\kappa = \frac{\varepsilon^2 - 1}{\varepsilon^2}.$$
(4.4)

Theorem 4.1

Let $u \in C^2(\mathcal{U})$ be a solution. Then

1° $Y = \varepsilon \left(\frac{\kappa D u}{1+q}, 1 - \frac{\kappa}{1+q}\right)$ is the unit direction of refracted ray,

 $\mathbf{2}^{\circ}$ *u* solves the equation

$$\left|\det\left[\frac{q+1}{t\varepsilon\kappa}\left\{\mathrm{Id}-\kappa\varepsilon^{2}Du\otimes Du\right\}+D^{2}u\right]\right|=\left|-\varepsilon q\left[\frac{q+1}{t\varepsilon\kappa}\right]^{n}\frac{\nabla\psi\cdot Y}{|\nabla\psi|}\frac{f}{g}\right|,\qquad(4.5)$$

where

$$q(x) = \sqrt{1 - \kappa (1 + |Du|^2)}, \quad \kappa = \frac{\varepsilon^2 - 1}{\varepsilon^2}$$
 (4.6)

and *t* is the stretch function defined via an implicit relation $\psi(x + e_{n+1}u(x) + Yt) = 0$.

 $\nabla \psi(Z) \cdot (X - Z) > 0 \quad \forall X \in (\mathcal{U} \times [0, m_0]), \forall Z \in \Sigma \text{ and for some large constant } m_0 > 0,$ $\operatorname{dist}(\mathcal{U}, \mathcal{V}) > 0,$

 \mathcal{V} is R – convex with respect to \mathcal{U} ,

$$\begin{split} f,g > 0, \\ \frac{1}{t} \left[\frac{t\varepsilon\kappa}{q+1} \right]^2 \mathrm{II} + \frac{\kappa}{q} \frac{\psi_{n+1}}{|\nabla \psi|} \left(\mathrm{Id} + \kappa \frac{p \otimes p}{q^2} \right) < 0, \quad \text{if } \kappa > 0. \end{split}$$

- Let $H_i(x) = H(x, a_i, Z_i)$, i = 1, 2 be two global supporting hyperboloids of u at x_0 such that the contact set $\Lambda \neq \{x_0\}$. Thus u is not differentiable at x_0 . To fix the ideas take $x_0 = 0$.
- If γ_i is the normal of the graph of H_i , i = 1, 2 at x_0 then for any $\theta \in (0, 1)$ there is $Z_{\theta} \in \Sigma \cap \mathscr{C}_{0,\gamma_1,\gamma_2}$ and $a_{\theta} > 0$ such that $H(x) = H(x, a_{\theta}, Z_{\theta})$ is a local supporting hyperboloid of u at 0 and

$$DH_{\theta}(0) = \theta DH_1(0) + (1 - \theta) DH_2(0).$$
(4.7)

• Observe that the correspondence $\theta \mapsto Z_{\theta}$ is one-to-one thanks to our assumptions. By choosing a suitable coordinate system we can assume that $DH_1(0) - DH_2(0) = (0, ..., 0, \alpha)$ for some $\alpha > 0$. Then we have that for all $0 < \theta < 1$ (Loeper type argument)

$$\min[H_1(x), H_2(x)] \leq \theta H_1(x) + (1-\theta)H_2(x)$$

$$= u(0) + [DH_2(0) + \alpha\theta] x_n + \frac{1}{2} \left[\theta D^2 H_1(0) + (1-\theta)D^2 H_2(0)\right] x \otimes x$$

$$+ o(|x|^2)$$

where the last line follows from Taylor's expansion.

Then

$$D^{2}H_{\theta}(0) = -\frac{G(x_{0}, u(0), p_{1} + \theta(p_{2} - p_{1}))}{\varepsilon\kappa}.$$

where we set $p_i = DH_i(0)$, i = 1, 2 and used (4.7). For all unit vectors τ perpendicular to x_n axis we have

$$\frac{d^2}{d\theta^2} D_{\tau\tau}^2 H_{\theta}(0) = -\frac{d^2}{d\theta^2} \frac{G^{ij}(0, u(0), p_1 + \theta(p_2 - p_1))\tau_i \tau_j}{\varepsilon \kappa} \qquad (4.8)$$

$$= -\alpha^2 \frac{\partial^2}{\partial p_n^2} \frac{G^{jj}(0, u(0), p_1 + \theta(p_2 - p_1))\tau_i \tau_j}{\varepsilon \kappa}$$

$$\leq -\alpha^2 c_0$$

where the last line follows from (A3) with $c_0 > 0$.

5 More inclusion principles

- There are various inclusion principles in geometry, we want to mention the following elementary one due to J. Nitsche : Each continuous closed curve of length L in Euclidean 3-space is contained in a closed ball of radius R < L/4. Equality holds only for a "needle", i.e., a segment of length L/2 gone through twice, in opposite directions.
- Later J. Spruck generalized this result for compact Riemannian manifold \mathcal{M} of dimension $n \ge 3$ as follows: if the sectional curvatures $K(\sigma) \ge 1/c^2$ for all tangent plane sections σ then \mathcal{M} is contained in a ball of radius $R < \frac{1}{2}\pi c$, and this bound is best possible.
- We remark here that there is a smooth surface $S \subset \mathbb{R}^3$ such that the mean curvature $H \ge 1$ and the Gauss curvature $K \ge 1$ then the unit ball cannot be fit inside S, (Spruck, JDG 1973). Notice that K is an intrinsic quantity and $H \ge 1$ implies that $K \ge 1$.

Thank You