Comparison theorems in optimal transport and beyond

Aram Karakhanyan

April 12, 2017

1 The rolling ball Theorem of Blaschke

- Let \mathscr{M} and \mathscr{M}^{\prime} be two hypersurfaces in \mathbb{R}^{d}. We say that \mathscr{M} and \mathscr{M}^{\prime} are internally tangent at $x \in \mathscr{M}$ if they are tangent at x and have the same outward normal.
- Denote by $\mathrm{II}_{x} \mathscr{M}$ the second fundamental form of \mathscr{M} at x and let $n(x)$ be the outward unit normal at x. Then we have

Theorem 1.1:

Suppose \mathscr{M} and \mathscr{M}^{\prime} are smooth convex surfaces with strictly positive scalar curvature such that $\mathrm{II}_{x} \mathscr{M} \geq \mathrm{II}_{x^{\prime}} \mathscr{M}^{\prime}$ for all $x \in \mathscr{M}, x^{\prime} \in \mathscr{M}^{\prime}$ such that $n(x)=n^{\prime}\left(x^{\prime}\right)$. If \mathscr{M} and \mathscr{M}^{\prime} are internally tangent at one point then \mathscr{M} is contained in the convex region bounded by \mathscr{M}^{\prime}.

- W. Blaschke proved Theorem 1.1 in 1918 for closed curves in \mathbb{R}^{2}.
- D. Koutroufiotis generalized Blaschke's theorem for complete curves in \mathbb{R}^{2} and complete surfaces in \mathbb{R}^{3} (Arch. Math 1972).
- J. Rauch for compact surfaces in \mathbb{R}^{d} (JDG 1974)
- J.A. Delgado for complete surfaces (JDG 1979)
- J.N. Brooks and J.B. Strantzen generalized Blaschke's theorem for non-smooth convex sets showing that the local inclusion implies global inclusion (Mem. AMS 1989)
- Observe that if \mathscr{M} and \mathscr{M}^{\prime} are internally tangent at x, then a necessary condition for \mathscr{M} to be inside \mathscr{M}^{\prime} near x is

$$
\begin{equation*}
I_{x}(\nu) \geq I_{x^{\prime}}^{\prime}(\nu) \quad \text { for all } v \in \mathbb{T}_{x} \mathscr{M} \cong \mathbb{T}_{x^{\prime}} \mathscr{M}^{\prime} \tag{1.1}
\end{equation*}
$$

The tangent planes are parallel because \mathscr{M} and \mathscr{M}^{\prime} are internally tangent at x.

- Therefore Theorem 1.1 says that if for all $x \in \mathscr{M}, x^{\prime} \in \mathscr{M}^{\prime}, x \neq x^{\prime}$ with coinciding normals $n^{\prime}\left(x^{\prime}\right)=n(x)$ such that after translating \mathscr{M} by $x-x^{\prime}$ we have that the translated surface $\widetilde{\mathscr{M}}$ is locally inside \mathscr{M}^{\prime} then \mathscr{M} is globally inside \mathscr{M}^{\prime}. In other words,

$$
\text { the local inclusion implies global inclusion or } \mathscr{M} \text { rolls freely inside } \mathscr{M}^{\prime} \text {. }
$$

1.1 Blaschke's proof in \mathbb{R}^{2}

- Support function $h(t)$
- Support line $x \cos t+y \sin t-h(t)=0$ and $-x \sin t+y \cos t-h^{\prime}(t)=0$ from where

$$
\begin{aligned}
& x=h \cos t-h^{\prime} \sin t \\
& y=h \sin t-h^{\prime} \cos t
\end{aligned}
$$

- Radius of curvature $\rho(t)=h^{\prime \prime}(t)+h(t)$
- In our case

$$
\begin{array}{ll}
h(0)=0, & h^{\prime}(0)=0 \\
h(0)=0, & h^{\prime}(0)=0
\end{array}
$$

- From periodicity we get $\int_{-\pi}^{\pi} \rho(s) \cos s d s=0, \int_{-\pi}^{\pi} \rho(s) \sin s d s=0$

$$
h(t)=\int_{0}^{t} \rho(s) \sin (t-s) d s
$$

1.2 Shape operator

- If \mathscr{M} is a surface with positive sectional curvature then by Sacksteder's theorem (AJM 1960) \mathscr{M} is convex.
- For $x \in \mathscr{M}$, let $n(x)$ be the unit outward normal at $x(n(x)$ points outside of the convex body bounded by $\mathscr{M})$. The Gauss map $x \rightarrow n(x)$ is a diffeomorphism of \mathscr{M} onto \mathbb{S}^{d} (H.Wu, JDG, 1974), where \mathbb{S}^{d} is the unit sphere in \mathbb{R}^{d}. The inverse map n^{-1} gives a parametrization of \mathscr{M} by \mathbb{S}^{d}.
- If \mathscr{M}^{\prime} is another smooth convex surface, and $w \in \mathbb{S}^{d}$, then $n^{-1}(w)$ and $\left(n^{\prime}\right)^{-1}(w)$ are the points on \mathscr{M} and \mathscr{M}^{\prime} with equal outward normals.
- Let $F: \Omega \rightarrow \mathbb{R}^{m}$ be a smooth map on a set $\Omega \subset \mathbb{R}^{d}$ and $\nu=\left(\nu_{1}, \ldots, \nu_{d}\right) \in \mathbb{R}^{d}$ then

$$
\partial_{\nu} F(y)=\sum_{i=1}^{d} v_{i} \frac{\partial F(y)}{\partial y_{i}}, y \in \Omega
$$

is the directional derivative operator.

- We view the tangent space as a linear subspace of \mathbb{R}^{d} consisting of tangential directions. Then the tangent space $\mathbb{\pi}_{x} \mathscr{M}$ is the set of vectors perpendicular to $n(x)$.
- The Weingarten map $W_{x}: \mathbb{T}_{x} \rightarrow \mathbb{T}_{x}$ is defined by $W_{x}(\nu)=\partial_{v} n(x) . \mathbb{T}_{x}$ is an inner product space (induced by the inner product in \mathbb{R}^{d}). Then W_{x} is self-adjoint operator on \mathbb{T}_{x} and the eigenvalues of W_{x} are the principal curvatures at x.
- Since W_{x} is self-adjoint and \mathbb{T}_{x} is finite dimensional then there exists an orthonormal basis of \mathbb{T}_{x} consisting of eigenvectors of W_{x}.

Definition 1.1

The second fundamental form is defined as $\mathrm{II}_{x}(\nu, w)=W_{x}(\nu) \cdot w$. When $v=w$ we denote $\mathrm{II}_{x}(v)$.

From definition it follows that if \mathscr{M} is parametrized by $r=r(u)$ and $x=r\left(u_{0}\right)$ then

$$
\begin{equation*}
\|_{x}(v)=-\partial_{v}^{2} r \cdot n(x), \quad v \in \mathbb{T}_{x} \tag{1.2}
\end{equation*}
$$

which readily follows from the differentiation of $n \cdot \partial_{v} r=0$.

Definition 1.2:

Let $c: \mathbb{R}^{d} \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a cost function such that $c \in C^{4}\left(\mathbb{R}^{d} \times \mathbb{R}^{d}\right)$ and $\mathscr{U}, V \subset \mathbb{R}^{d}$.

- Let $u: \mathscr{U} \rightarrow \mathbb{R}$ be a continuous function. A c-support function of u at $x_{0} \in \mathscr{U}$ is $\varphi_{x_{0}}(x)=c\left(x, y_{0}\right)+a_{0}, y_{0} \in \mathbb{R}^{d}$ such that the following two conditions hold

$$
\begin{aligned}
& u\left(x_{0}\right)=\varphi_{x_{0}}\left(x_{0}\right) \\
& u(x) \geq \varphi_{x_{0}}(x), x \in \mathscr{U} .
\end{aligned}
$$

- If u has c-support at every $x_{0} \in \mathscr{U}$ then we say that u is c-convex in \mathscr{U}.
- c-segment with respect to a point $y_{0} \in \mathbb{R}^{d}$ is the set

$$
\left\{x \in \mathbb{R}^{d} \text { s.t. } c_{y}\left(x, y_{0}\right)=\text { line segment }\right\} .
$$

One may take in the above definition $\left\{x \in \mathbb{R}^{d}\right.$ s.t. $\left.c_{y}\left(x, y_{0}\right)=t p_{1}+(1-t) p_{0}\right\}$ with $t \in[0,1]$ and p_{0}, p_{1} being two points in \mathbb{R}^{d}.

- We say that \mathscr{U} is c-convex with respect to $\mathscr{V} \subset \mathbb{R}^{d}$ if the image of the set \mathscr{U} under the mapping $c_{y}(\cdot, y)$ denoted by $c_{y}(\mathscr{U}, y)$ is convex set for all $y \in \mathcal{V}$. Equivalently, \mathscr{U} is c-convex with respect to \mathcal{V} if for any pair of points $x_{1}, x_{2} \in \mathscr{U}$ there is $y_{0} \in \mathcal{V}$ such that there is a c-segment with respect to y_{0} joining x_{1} with x_{2} and lying in \mathscr{U}.

1.3 Sub-level sets

Definition 1.3

Let u be a c-convex function then the sub-level set of u at $x_{0} \in \mathscr{U}$ is

$$
\begin{equation*}
S_{h, u}\left(x_{0}\right)=\left\{x \in \mathbb{R}^{d} \text { s.t. } u(x)<c\left(x, y_{0}\right)+\left[u\left(x_{0}\right)-c\left(x_{0}, y_{0}\right)\right]+h\right\} \tag{1.3}
\end{equation*}
$$

for some constant h.

- Equivalently, $S_{h, u}\left(x_{0}\right)=\left\{x \in \mathscr{U}\right.$ s.t. $\left.u(x)<\varphi_{x_{0}}(x)+h\right\}$ where $\varphi_{x_{0}}$ is the c-support function of u at $x_{0} \in \mathscr{U}$.
- Observe that in the previous definition on may take $u(x)=c\left(x, y_{1}\right)$ for some fixed $y_{1} \neq y_{0}$.
- We recall Kantorovich's formulation of optimal transport problem: Let $f: \mathscr{U} \rightarrow \mathbb{R}, g: V \rightarrow \mathbb{R}$ be two nonnegative integrable functions satisfying the mass balance condition

$$
\int_{\mathscr{U}} f(x) d x=\int_{V} g(y) d y .
$$

Then one wishes to minimize

$$
\int_{\mathscr{U}} u(x) f(x)+\int_{\mathcal{V}} v(y) g(y) d y \rightarrow \min
$$

among all pairs of functions $u: \mathscr{U} \rightarrow \mathbb{R}, v: \mathscr{V} \rightarrow \mathbb{R}$ such that $u(x)+v(y) \geq c(x, y)$. It is well-known that a minimizing pair (u, v) exists and formally the potential u solves the equation

$$
\operatorname{det}\left(u_{i j}-A_{i j}(x, D u)\right)=\left|\operatorname{det} c_{x_{i}, y_{j}}\right| \frac{f(x)}{(g \circ y)(x)} .
$$

Here $A_{i j}(x, p)=c_{x_{i} x_{j}}(x, y(x, p))$ where $y(x, p)$ is determined from $D_{x}(c(x, y(x, p)))=p$.

Assume that c satisfies the following conditions:

A1 For all $x, p \in \mathbb{R}^{d}$ there is unique $y=y(x, p) \in \mathbb{R}^{d}$ such that $\partial_{x} c(x, y)=p$ and for any $y, q \in \mathbb{R}^{d}$ there is unique $x=x(y, q)$ such that $\partial_{y} c(x, y)=q$.

A2 For all $x, y \in \mathbb{R}^{d} \operatorname{det} c_{x_{i}, y_{j}}(x, y) \neq 0$.

A3 For $x, p \in \mathbb{R}^{d}$ there is a positive constant $c_{0}>0$ such that

$$
\begin{equation*}
A_{i j, k l}(x, p) \xi_{i} \xi_{j} \eta_{k} \eta_{l} \geq c_{0}|\xi|^{2}|\eta|^{2} \quad \forall \xi, \eta \in \mathbb{R}^{d}, \xi \perp \eta . \tag{1.4}
\end{equation*}
$$

- A3 is the Ma-Trudinger-Wang condition.
- J.Liu proved that if A1-A3 hold then $S_{h, u}\left(x_{0}\right)$ is c-convex with respect to y_{0}.
- There are cost functions satisfying the weak A3

$$
\begin{equation*}
A_{i j, k l}(x, p) \xi_{i} \xi_{j} \eta_{k} \eta_{l} \geq 0 \quad \forall \xi, \eta \in \mathbb{R}^{d}, \xi \perp \eta . \tag{1.5}
\end{equation*}
$$

i.e. when $c_{0}=0$ in (1.4), such that the corresponding sub-level sets are convex in classical sense.

- We also remark that the condition $\mathbf{A} \mathbf{3}$ is equivalent to

$$
\begin{equation*}
\frac{d^{2}}{d t^{2}} c_{i j}\left(x, y\left(x, p_{t}\right)\right) \xi_{i} \xi_{j} \geq c_{0}\left|p_{1}-p_{0}\right|^{2} \tag{1.6}
\end{equation*}
$$

where x is fixed, $c_{x}\left(x, y\left(x, p_{t}\right)\right)=t p_{1}+(1-t) p_{0}, t \in[0,1] c_{x}(x, y)=p_{1}, c_{x}\left(x, y_{0}\right)=p_{0}$ (this determines the so-called c^{*}-segment with respect to fixed x).

2 Main result

Theorem 2.1

et $y_{1}, y_{2} \in \overline{\mathscr{V}}$ and $\mathscr{N}\left(y_{1}, y_{2}, a\right)=\left\{x \in \mathbb{R}^{d}: c\left(x, y_{0}\right)=c\left(x, y_{1}\right)+a\right\}$ for some $a \in \mathbb{R}$ where c satisfies A1,A2 and weak A3. Assume that \mathscr{N} is convex for all y_{1}, y_{2}, a and \mathscr{U} is convex domain with smooth boundary such that \mathscr{U} is c-convex with respect to \mathscr{V}. If \mathscr{N} and $\partial \mathscr{U}$ are internally tangent at some point z_{0} then \mathscr{U} is inside \mathscr{N}.

Using the terminology of Blaschke's theorem it follows that under the conditions of Theorem $2.1 \mathscr{U}$ rolls freely inside \mathscr{N}. Observe that the c-convexity of sub-level sets is known under stronger condition A3 (Liu). In the next section we give an example of cost function c satisfying weaker form of A3 (1.5) but such that \mathscr{N} is convex for all y_{1}, y_{2}, a. Proof to follow is inspired in Trudinger-Wang paper (ARMA 2009).

Proof. Step 1: (Parametrizations)

To apply Theorem 1.1 we take $\mathscr{M}=\mathscr{U}$ and $\mathscr{M}^{\prime}=\mathscr{N}$ and assume that \mathscr{U} and \mathscr{N} are internally tangent at z_{0}. Assume that at $x_{0}^{\prime} \in \mathscr{N}$ and $x_{0} \in \partial \mathscr{U} \mathscr{N}$ and $\partial \mathscr{U}$ have the same outward normal, see Figure 1.

In what follows we use the following radial parametrizations:

$$
\begin{array}{ll}
\partial \mathscr{U} & R(\zeta), \quad \zeta \in D_{\mathscr{U}}, \\
\mathscr{N} & \mathscr{X}(\omega), \quad \omega \in D_{\mathscr{N}} \\
\partial\left(c_{y}\left(\partial \mathscr{U}, y_{0}\right)\right) & \rho(\zeta)=c_{y}\left(R(\zeta), y_{0}\right) .
\end{array}
$$

Here $D_{\mathscr{U}}$ and $D_{\mathcal{N}}$ are the domains of corresponding parameters. Moreover, there are $\bar{\omega} \in D_{\mathcal{N}}$ and $\bar{\zeta} \in D_{\mathscr{U}}$ such that

$$
\begin{equation*}
x_{0}^{\prime}:=\mathscr{X}(\bar{\omega}) \in \mathscr{N} \quad \text { and } \quad x_{0}:=R(\bar{\zeta}) \in \partial \mathscr{U} . \tag{2.1}
\end{equation*}
$$

From now on $\bar{\zeta}$ and $\bar{\omega}$ are fixed. Let $\bar{n}(\bar{\zeta})$ denote the outward normal of the image $c_{y}\left(\mathscr{U}, y_{0}\right)$ at the point $\rho(\bar{\zeta})$. We have

$$
\begin{equation*}
\bar{n}^{m}(\bar{\zeta})=c_{y_{m}, x_{i}}\left(R(\bar{\zeta}), y_{0}\right) n^{i}(\bar{\zeta}) . \tag{2.2}
\end{equation*}
$$

Observe that by assumption the constant matrix $\mu=\left[c_{y_{m}, x_{i}}\left(R(\bar{\zeta}), y_{0}\right)\right]^{-1}$ has non-trivial determinant, by A2. Furthermore, the set $\mu c_{y}\left(\mathscr{U}, y_{0}\right)=\left\{\mu x\right.$ s.t. $\left.x \in c_{y}\left(\mathscr{U}, y_{0}\right)\right\}$ is again convex because for any two points $q_{1}=\mu z_{1}, q_{2}=\mu z_{2}$ such that $q_{1}, q_{2} \in \mu c_{y}\left(\mathscr{U}, y_{0}\right)$ and $z_{1}, z_{2} \in c_{y}\left(\mathscr{U}, y_{0}\right)$ we have

$$
\mu c_{y}\left(\mathscr{U}, y_{0}\right) \ni \mu\left(\theta z_{1}+(1-\theta) z_{2}\right)=\theta \mu z_{1}+(1-\theta) \mu z_{2}=\theta q_{1}+(1-\theta) q_{2}
$$

for all $\theta \in[0,1]$.

Step 2: (Computing the second fundamental form of \mathscr{X})
Next, we introduce the vectorfield $r=r(\zeta), \zeta \in D_{\mathscr{U}}$ such that

$$
\begin{equation*}
r(\zeta)=\mu \rho(\zeta)=\mu c_{y}\left(R(\zeta), y_{0}\right) \tag{2.3}
\end{equation*}
$$

Figure 1: Schematic view to parametrizations of $\partial \mathscr{U}, \mathscr{N}, \partial\left(c_{y}\left(\mathscr{U}, y_{0}\right)\right)$ and $\mu \partial\left(c_{y}\left(\mathscr{U}, y_{0}\right)\right)$.

We compute the first and second derivatives

$$
\begin{align*}
r_{\zeta_{s}}^{m} & :=r_{s}^{m}=\mu_{\alpha \beta} c_{y_{\beta}, x_{i}} R_{s}^{i}, \tag{2.4}\\
r_{s t}^{m} & =\mu_{\alpha \beta}\left[c_{y_{\beta}, x_{i} x_{j}} R_{s}^{i} R_{t}^{j}+c_{y_{\beta}, x_{i}} R_{s t}^{i}\right] . \tag{2.5}
\end{align*}
$$

From (2.4) and (2.2) we see that at $r(\bar{\zeta})$ the normal is

$$
\begin{equation*}
n(\bar{\zeta})=\mu \bar{n}(\bar{\zeta}) . \tag{2.6}
\end{equation*}
$$

Take $p_{t}=(1-t) p_{0}+t p_{1}, t \in[0,1]$ and

$$
\begin{equation*}
p_{t}=c_{x}\left(x_{0}, y\left(x_{0}^{\prime}, p_{t}\right)\right), \tag{2.7}
\end{equation*}
$$

then $y_{t}:=y\left(x_{0}^{\prime}, p_{t}\right)$ defines the c-segment joining y_{0} and y_{1}, by $\mathbf{A} 2$ and inverse mapping. In particular, one has

$$
\begin{align*}
p_{1}^{i}-p_{0}^{i} & =c_{x_{i}, y_{m}}\left(x_{0}, y\left(x_{0}^{\prime}, p_{t}\right)\right) \frac{d}{d t} y^{m}\left(x_{0}^{\prime}, p_{t}\right) \tag{2.8}\\
& =\left[\frac{d}{d t} y^{m}\left(x_{0}^{\prime}, p_{t}\right)\right] c_{y_{m}, x_{i}}\left(x_{0}, y\left(x_{0}^{\prime}, p_{t}\right)\right)=\left[\frac{d}{d t} y^{m}\left(x_{0}^{\prime}, p_{t}\right)\right] \mu_{m, i}^{-1}
\end{align*}
$$

Let $\mathscr{X}^{t}(\omega)$ be the parametrization of $\mathscr{N}(t)=\left\{x \in \mathscr{U}: c\left(x, y_{0}\right)=c\left(x, y_{t}\right)+a\right\}$ (recall that $\mathscr{N}(t)$ is convex as the boundary of sub-level set). We can choose $a=a(t)$ so that all $\mathscr{N}(t)$ pass through the point x_{0}^{\prime}, in other words there is $\bar{\omega}^{t}$ such that $\mathscr{X}^{t}\left(\bar{\omega}^{t}\right)=x_{0}^{\prime}$. Moreover, by (2.7) it follows that

$$
\begin{align*}
c_{x_{i}}\left(\mathscr{X}^{t}\left(\bar{\omega}^{t}\right), y_{0}\right)-c_{x_{i}}\left(\mathscr{X}^{t}\left(\bar{\omega}^{t}\right), y_{t}\right) & =c_{x_{i}}\left(x_{0}^{\prime}, y_{0}\right)-c_{x_{i}}\left(x_{0}^{\prime}, y_{t}\right) \tag{2.9}\\
& =p_{0}^{i}-p_{t}^{i} \\
& =t\left(p_{0}^{i}-p_{1}^{i}\right)
\end{align*}
$$

After fixing t and differentiating the identity $c\left(\mathscr{X}^{t}(\omega), y_{0}\right)=c\left(\mathscr{X}^{t}(\omega), y_{t}\right)+a(t)$ in ω we get

$$
\begin{align*}
{\left[c_{x_{i}}\left(\mathscr{X}^{t}, y_{0}\right)-c_{x_{i}}\left(\mathscr{X}^{t}, y_{t}\right)\right] \mathscr{X}_{\omega_{k}}^{i, t} } & =0, \\
{\left[c_{x_{i} x_{j}}\left(\mathscr{X}^{t}, y_{0}\right)-c_{x_{i} x_{j}}\left(\mathscr{X}^{t}, y_{t}\right)\right] \mathscr{X}_{\omega_{l}}^{j, t} \mathscr{X}_{\omega_{k}}^{i, t}+\left[c_{x_{i}}\left(\mathscr{X}^{t}, y_{0}\right)-c_{x_{i}}\left(\mathscr{X}^{t}, y_{t}\right)\right] \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t} } & =0 . \tag{2.10}
\end{align*}
$$

Thus the normals of $\mathscr{N}(t)$ at x_{0}^{\prime} are collinear to $p_{1}-p_{0}$ for all $t \in[0,1]$, that is

$$
\begin{equation*}
n\left(x_{0}\right)=n^{\prime}\left(x_{0}^{\prime}\right)=\frac{p_{1}-p_{0}}{\left|p_{1}-p_{0}\right|}, \quad \mu \bar{n}=n \quad(\text { recall } \quad n(\bar{\zeta})=\mu \bar{n}(\bar{\zeta})) . \tag{2.11}
\end{equation*}
$$

Hence we can rewrite (2.10) as follows

$$
\begin{equation*}
\left[\left(c_{x_{i} x_{j}}\left(\mathscr{X}^{t}, y_{0}\right)-c_{x_{i} x_{j}}\left(\mathscr{X}^{t}, y_{t}\right)\right] \mathscr{X}_{\omega_{l}}^{j, t} \mathscr{X}_{\omega_{k}}^{i, t}=-t\left(p_{0}^{i}-p_{1}^{i}\right) \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t} .\right. \tag{2.12}
\end{equation*}
$$

Keeping $\mathscr{X}^{t}\left(\bar{\omega}^{t}\right)=x_{0}^{\prime}$ fixed for all $t \in[0,1]$, dividing both sides of the last identity by t and then sending $t \rightarrow 0$ we obtain

$$
\begin{equation*}
-\left[y^{\prime}\left(x_{0}^{\prime}, p_{0}\right) c_{y, x_{i} x_{j}}\left(x_{0}^{\prime}, y_{0}\right)\right] \mathscr{X}_{\omega_{l}}^{j, t=0} \mathscr{X}_{\omega_{k}}^{i, t=0}=-\left(p_{0}^{i}-p_{1}^{i}\right) \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t=0} . \tag{2.13}
\end{equation*}
$$

On the other hand from (2.8) we see that $\left.\frac{d}{d t} y\left(x_{0}^{\prime}, p_{t}\right)\right|_{t=0}=\left(p_{1}-p_{0}\right) \mu$. Thus substituting this into the last equality we obtain

$$
\begin{align*}
{\left[\left(p_{1}-p_{0}\right) \mu c_{y, x_{i} x_{j}}\left(x_{0}^{\prime}, y_{0}\right)\right] \mathscr{X}_{\omega_{l}}^{j, t=0} \mathscr{X}_{\omega_{k}}^{i, t=0} } & =\left(p_{0}^{i}-p_{1}^{i}\right) \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t=0} \tag{2.14}\\
& =-\left(p_{1}^{i}-p_{0}^{i}\right) \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t=0}
\end{align*}
$$

or equivalently

$$
\begin{equation*}
\left[n^{\alpha} \mu_{\alpha \beta} c_{y_{\beta}, x_{i} x_{j}}\left(x_{0}^{\prime}, y_{0}\right)\right] \mathscr{X}_{\omega_{l}}^{j, t=0} \mathscr{X}_{\omega_{k}}^{i, t=0}=-n^{i} \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t=0} \tag{2.15}
\end{equation*}
$$

if we utilize (2.11).

Step 3: (Monotone bending)
Recall that by assumption $\mathbb{T}_{x_{0}} \partial \mathscr{U}$ and $\mathbb{T}_{x_{0}^{\prime}} \mathscr{N}(t=0)$ have the same local coordinate system (by reparametrizing $\mathscr{N}(t=0)$ if necessary). From convexity of $\mu c_{y}\left(\mathscr{U}, y_{0}\right)$ boundary of which is parametrized by r we have

$$
\begin{align*}
0 & \geq r_{s t}^{\alpha} n^{\alpha}=\mu \rho_{s t} n=\mu_{\alpha \beta}\left(c_{y_{\beta}, x_{i} x_{j}} R_{s}^{i} R_{t}^{j}+c_{y_{\beta}, x_{i}} R_{s t}^{i}\right) n^{\alpha} \tag{2.16}\\
& =\mu_{\alpha \beta} c_{y_{\beta}, x_{i} x_{j}} R_{s}^{i} R_{t}^{j} n^{\alpha}+R_{s t}^{i} n^{i} \\
& \stackrel{(2.15)}{=}-n^{i} \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t=0}+R_{s t}^{i} n^{i} .
\end{align*}
$$

Now A3 yields that at x_{0}^{\prime}

$$
\begin{equation*}
n^{i} \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t} \geq n^{i} \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t=0} \stackrel{(4.8)}{\geq} R_{s t}^{i} n^{i} \tag{2.17}
\end{equation*}
$$

Recalling II $=-n \partial^{2} r$ we finally obtain the required inequality

$$
I_{x_{0}^{\prime}} \mathscr{N} \leq I_{x_{0}} \partial \mathscr{U}
$$

The proof is now complete.

Remark 2.1

Note that weak A3 (i.e. when $c_{0}=0$ in (1.6)) is enough for the monotonicity to conclude the inequality $n^{i} \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t} \geq n^{i} \mathscr{X}_{\omega_{k} \omega_{l}}^{i, t=0}$.

- There is a wide class of cost functions for which the set \mathscr{N} is convex. Observe that $c(x, y)=\frac{1}{p}|x-y|^{p}$ satisfies A3 for $-2<p<1$ and weak A3 if $p= \pm 2$ (MTW).
- It is useful to note that if $\Omega_{\psi}=\left\{x \in \mathbb{R}^{d}\right.$ s.t. $\left.\psi(x)<0\right\}$ for some smooth function $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ such that $\Omega_{\psi} \neq \varnothing$ then

$$
\begin{equation*}
\partial^{2} \psi(x) \tau(x) \cdot \tau(x) \geq 0, \quad \forall \tau(x) \in \mathbb{T}_{x} \tag{2.18}
\end{equation*}
$$

is a necessary and sufficient condition for Ω_{ψ} to be convex provided that $\frac{\nabla \psi}{|\nabla \psi|}$ is directed towards positive ψ.

Figure 2: From left to right: $\quad a=-2, y_{1}=\left(-10^{-3}, 0\right), y_{2}=\left(-1,-10^{-2}\right) ; \quad a=1, y_{1}=$ $\left(-10^{-1},-10^{-1}\right), y_{2}=\left(1,10^{-2}\right) ; a=-1, y_{1}=\left(-10^{-4}, 0\right), y_{2}=\left(1.1,-10^{-1}\right)$.

3 Antenna design problems

- In parallel reflector problem one deals with the paraboloids of revolution

$$
\begin{equation*}
P(x, \sigma, Z)=\frac{\sigma}{2}+Z^{n+1}-\frac{1}{2 \sigma}|x-z|^{2} \tag{3.1}
\end{equation*}
$$

which play the role of support functions.

- Here the point $Z=\left(z, Z^{n+1}\right) \in \mathbb{R}^{n+1}$ is the focus of the paraboloid such that $\psi\left(z, Z^{n+1}\right)=0$ for some smooth function ψ satisfying some structural conditions and σ is a constant.
- If P_{1} is internally tangent to P_{2} at z_{0} and $\mathrm{II}_{z_{0}} P_{1} \geq \mathrm{II}_{z_{0}} P_{2}$ then P_{1} is inside P_{2}, see Lemma 8.1 (K, 2014). This again follows from Blaschke's theorem. Indeed, we have that at the points x and x^{\prime} corresponding to coinciding outward normals

$$
\mathrm{I}_{x} P_{1}=\frac{1}{\sqrt{1+\left|D P_{1}(x)\right|^{2}}} \frac{1}{\sigma_{1}} \delta_{i j}
$$

and

$$
\|_{x^{\prime}} P_{2}=\frac{1}{\sqrt{1+\left|D P_{2}\left(x^{\prime}\right)\right|^{2}}} \frac{1}{\sigma_{2}} \delta_{i j}
$$

Furthermore $D P_{1}(x)=D P_{2}\left(x^{\prime}\right)$ and hence

$$
\begin{equation*}
\sqrt{1+\left|D P_{1}(x)\right|^{2}}=\sqrt{1+\left|D P_{2}\left(x^{\prime}\right)\right|^{2}} \tag{3.2}
\end{equation*}
$$

From $\mathrm{II}_{z_{0}} P_{1} \geq \mathrm{II}_{z_{0}} P_{2}$ we infer that

$$
\begin{equation*}
\frac{1}{\sigma_{1}} \geq \frac{1}{\sigma_{2}} \tag{3.3}
\end{equation*}
$$

Consequently (3.3) and (3.2) imply that

$$
I_{x} P_{1} \geq I_{x^{\prime}} P_{2}
$$

4 Near-field Refractor

Figure 3: The blue doted lines confine the boundary of media I.

If n_{1} and n_{2} are the refractive indices of media I and II respectively then

$$
\varepsilon=\frac{n_{1}}{n_{2}}=\frac{\sin \theta_{2}}{\sin \theta_{1}}= \begin{cases}\frac{\sqrt{a^{2}-b^{2}}}{a}<1 \text { for ellipsoids } \tag{4.1}\\ \frac{\sqrt{a^{2}+b^{2}}}{a}>1 \text { for hyperboloids. }\end{cases}
$$

Here ε is the eccentricity. Since ε is fixed we can drop the dependence of E and H from $b=a \sqrt{\left|\varepsilon^{2}-1\right|}$ and take

$$
\begin{array}{ll}
E(x, a, Z)=Z^{n+1}-a \varepsilon-a \sqrt{1-\frac{(x-z)^{2}}{a^{2}\left(1-\varepsilon^{2}\right)}}, & \text { if } \varepsilon<1 \\
H(x, a, Z)=Z^{n+1}-a \varepsilon-a \sqrt{1+\frac{(x-z)^{2}}{a^{2}\left(\varepsilon^{2}-1\right)}}, & \text { if } \varepsilon>1 \tag{4.3}
\end{array}
$$

We also define the constant

$$
\begin{equation*}
\kappa=\frac{\varepsilon^{2}-1}{\varepsilon^{2}} . \tag{4.4}
\end{equation*}
$$

Theorem 4.1

Let $u \in C^{2}(\mathscr{U})$ be a solution. Then
$1^{\circ} Y=\varepsilon\left(\frac{\kappa D u}{1+q}, 1-\frac{\kappa}{1+q}\right)$ is the unit direction of refracted ray,
$\mathbf{2}^{\circ} u$ solves the equation

$$
\begin{equation*}
\left|\operatorname{det}\left[\frac{q+1}{t \varepsilon \kappa}\left\{\operatorname{Id}-\kappa \varepsilon^{2} D u \otimes D u\right\}+D^{2} u\right]\right|=\left|-\varepsilon q\left[\frac{q+1}{t \varepsilon \kappa}\right]^{n} \frac{\nabla \psi \cdot Y}{|\nabla \psi|} \frac{f}{g}\right|, \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
q(x)=\sqrt{1-\kappa\left(1+|D u|^{2}\right)}, \quad \kappa=\frac{\varepsilon^{2}-1}{\varepsilon^{2}} \tag{4.6}
\end{equation*}
$$

and t is the stretch function defined via an implicit relation $\psi\left(x+e_{n+1} u(x)+Y t\right)=0$.

$$
\begin{aligned}
& \nabla \psi(Z) \cdot(X-Z)>0 \quad \forall X \in\left(\mathscr{U} \times\left[0, m_{0}\right]\right), \forall Z \in \Sigma \text { and for some large constant } m_{0}>0, \\
& \operatorname{dist}(\mathscr{U}, \mathscr{V})>0, \\
& \mathcal{V} \text { is } R \text { - convex with respect to } \mathscr{U}, \\
& f, g>0, \\
& \frac{1}{t}\left[\frac{t \varepsilon \kappa}{q+1}\right]^{2} \mathrm{II}+\frac{\kappa}{q} \frac{\psi_{n+1}}{|\nabla \psi|}\left(\operatorname{Id}+\kappa \frac{p \otimes p}{q^{2}}\right)<0, \quad \text { if } \kappa>0 .
\end{aligned}
$$

- Let $H_{i}(x)=H\left(x, a_{i}, Z_{i}\right), i=1,2$ be two global supporting hyperboloids of u at x_{0} such that the contact set $\Lambda \neq\left\{x_{0}\right\}$. Thus u is not differentiable at x_{0}. To fix the ideas take $x_{0}=0$.
- If γ_{i} is the normal of the graph of $H_{i}, i=1,2$ at x_{0} then for any $\theta \in(0,1)$ there is $Z_{\theta} \in \Sigma \cap \mathscr{C}_{0, \gamma_{1}, \gamma_{2}}$ and $a_{\theta}>0$ such that $H(x)=H\left(x, a_{\theta}, Z_{\theta}\right)$ is a local supporting hyperboloid of u at 0 and

$$
\begin{equation*}
D H_{\theta}(0)=\theta D H_{1}(0)+(1-\theta) D H_{2}(0) . \tag{4.7}
\end{equation*}
$$

- Observe that the correspondence $\theta \mapsto Z_{\theta}$ is one-to-one thanks to our assumptions. By choosing a suitable coordinate system we can assume that $D H_{1}(0)-D H_{2}(0)=(0, \ldots, 0, \alpha)$ for some $\alpha>0$. Then we have that for all $0<\theta<1$ (Loeper type argument)

$$
\begin{aligned}
\min \left[H_{1}(x), H_{2}(x)\right] \leq & \theta H_{1}(x)+(1-\theta) H_{2}(x) \\
= & u(0)+\left[D H_{2}(0)+\alpha \theta\right] x_{n}+\frac{1}{2}\left[\theta D^{2} H_{1}(0)+(1-\theta) D^{2} H_{2}(0)\right] x \otimes x \\
& +o\left(|x|^{2}\right)
\end{aligned}
$$

where the last line follows from Taylor's expansion.

Then

$$
D^{2} H_{\theta}(0)=-\frac{G\left(x_{0}, u(0), p_{1}+\theta\left(p_{2}-p_{1}\right)\right)}{\varepsilon \kappa} .
$$

where we set $p_{i}=D H_{i}(0), i=1,2$ and used (4.7). For all unit vectors τ perpendicular to x_{n} axis we have

$$
\begin{align*}
\frac{d^{2}}{d \theta^{2}} D_{\tau \tau}^{2} H_{\theta}(0) & =-\frac{d^{2}}{d \theta^{2}} \frac{G^{i j}\left(0, u(0), p_{1}+\theta\left(p_{2}-p_{1}\right)\right) \tau_{i} \tau_{j}}{\varepsilon \kappa} \tag{4.8}\\
& =-\alpha^{2} \frac{\partial^{2}}{\partial p_{n}^{2}} \frac{G^{j j}\left(0, u(0), p_{1}+\theta\left(p_{2}-p_{1}\right)\right) \tau_{i} \tau_{j}}{\varepsilon \kappa} \\
& \leq-\alpha^{2} c_{0}
\end{align*}
$$

where the last line follows from (A3) with $c_{0}>0$.

5 More inclusion principles

- There are various inclusion principles in geometry, we want to mention the following elementary one due to J. Nitsche : Each continuous closed curve of length L in Euclidean 3 -space is contained in a closed ball of radius $R<L / 4$. Equality holds only for a "needle", i.e., a segment of length $L / 2$ gone through twice, in opposite directions.
- Later J. Spruck generalized this result for compact Riemannian manifold \mathscr{M} of dimension $n \geq 3$ as follows: if the sectional curvatures $K(\sigma) \geq 1 / c^{2}$ for all tangent plane sections σ then \mathscr{M} is contained in a ball of radius $R<\frac{1}{2} \pi c$, and this bound is best possible.
- We remark here that there is a smooth surface $S \subset \mathbb{R}^{3}$ such that the mean curvature $H \geq 1$ and the Gauss curvature $K \geq 1$ then the unit ball cannot be fit inside S, (Spruck, JDG 1973). Notice that K is an intrinsic quantity and $H \geq 1$ implies that $K \geq 1$.

Thank You

