

From slow diffusion to a hard height constraint: characterizing congested aggregation

Katy Craig University of California, Santa Barbara

BIRS April 12, 2017

collective dynamics

biological chemotaxis (a colony of slime mold)

- collective dynamics
- optimal transport and Wasserstein gradient flow
- ω -convexity and height constrained aggregation
- future work

plan

- collective dynamics
- optimal transport and Wasserstein gradient flow
- ω -convexity and height constrained aggregation
- future work

motivation

- $\rho(x,t)$: $\mathbb{R}^d \times \mathbb{R} \rightarrow [0, +\infty)$ nonnegative density
- mass is conserved $\Rightarrow \int \rho(x) dx = 1$

aggregation equation with degenerate diffusion:

$$\frac{d}{dt}\rho = \nabla \cdot ((\nabla K * \rho)\rho) + \Delta \rho^{m} \quad \text{for } K(x) : \mathbb{R}^{d} \to \mathbb{R} \text{ and } m \ge 1$$

self attraction degenerate diffusion

interaction kernels:

- granular media: $K(x) = |x|^3$
- swarming: $K(x) = |x|^{a}/a |x|^{b}/b$, -d < b < a

• chemotaxis:
$$K(x) = \begin{cases} \frac{1}{2\pi} \log |x| & \text{if } a = 2, \\ C_d |x|^{2-d} & \text{otherwise.} \end{cases}$$

degenerate diffusion:

•
$$\Delta \rho^m = \nabla \cdot (\underline{m\rho^{m-1}} \nabla \rho)$$

D

collective dynamics: mathematics

Aggregation equation with degenerate diffusion:

$$\frac{d}{dt}\rho + \nabla \cdot \left(\left(-\nabla K * \rho \right) \rho \right) = \Delta \rho^m$$

for
$$K(x) : \mathbb{R}^d \to \mathbb{R}$$
 and $m \ge 1$

Mathematical interest:

- Nonlinear
- Nonlocal
- Competing effects of attraction/repulsion
- Rich structure of equilibria

[Kolokolnikov, Sun, Uminsky, Bertozzi, 2011]

collective dynamics: main questions

Aggregation equation with degenerate diffusion:

$$\frac{d}{dt}\rho + \nabla \cdot \left(\left(-\nabla K * \rho \right) \rho \right) = \Delta \rho^m$$

for
$$K(x) : \mathbb{R}^d \to \mathbb{R}$$
 and $m \ge 1$

Main questions:

- 1. Do solutions exist?
- 2. Are they unique? stable?
- 3. How do they behave in the long time limit?
- 4. How can we simulate them numerically?

Key tool: optimal transport

- collective dynamics
- optimal transport and Wasserstein gradient flow
- ω -convexity and height constrained aggregation
- future work

Wasserstein metric

• Given two probability measures μ and ν on \mathbb{R}^d , $\mathbf{t} : \mathbb{R}^d \to \mathbb{R}^d$ transports μ onto ν if $\nu(B) = \mu(\mathbf{t}^{-1}(B))$. Write this as $\mathbf{t} \# \mu = \nu$.

• The Wasserstein distance between μ and $\nu \in P_2(\mathbb{R}^d)$ is

$$W_{2}(\mu,\nu) := \inf \left\{ \left(\int |t(x) - x|^{2} d\mu(x) \right)^{1/2} : t \# \mu = \nu \right\}$$

For simplicity of notation,
 $\mu, \nu \ll \mathscr{L}^{d}$ effort to rearrange μ to
look like ν , using t(x) t sends μ to ν

geodesics

Not just a metric space... a geodesic metric space: there is a constant speed geodesic $\sigma : [0,1] \to \mathcal{P}_2(\mathbb{R}^d)$ connecting any μ and ν .

$$\sigma(0) = \mu, \ \sigma(1) = \nu, \ W_2(\sigma(t), \sigma(s)) = |t - s| W_2(\mu, \nu)$$

Monge

Kantorovich

レ

 \mathcal{V}

 μ

 μ

Wasserstein geodesic $\sigma(t)$

linear interpolation $(1-t)\mu + t\nu$

convexity

Since the Wasserstein metric has geodesics, it has a notion of convexity.

Likewise, in the **Wasserstein metric**, E: $P_2(\mathbb{R}^d) \rightarrow \mathbb{R}$ is $\underline{\lambda}$ -convex if

gradient flow

How does this relate to PDE? Wasserstein gradient flow.

• Informally, a curve x(t): $\mathbb{R} \to X$ is the gradient flow of an energy E: $X \to \mathbb{R}$ if

$$\frac{d}{dt}x(t) = -\nabla_X E(x(t))$$

• "x(t) evolves in the direction of steepest descent of E"

Examples:

metric	energy functional	gradient flow
$(L^2(\mathbb{R}^d), \ \cdot\ _{L^2})$	$E(f) = \frac{1}{2} \int \nabla f ^2$	$\frac{d}{dt}f = \Delta f$
$(\mathcal{P}_2(\mathbb{R}^d), W_2)$	$E(\rho) = \int \rho \log \rho$	$\frac{d}{dt}\rho = \Delta\rho$
	$E(\rho) = \frac{1}{m-1} \int \rho^m$	$\frac{d}{dt}\rho = \Delta\rho^m$

12

gradient flow

 $\rho(t): \mathbb{R} \to P_2(\mathbb{R}^d)$ is the Wasserstein gradient flow of energy E: $P_2(\mathbb{R}^d) \to \mathbb{R}$ if $\frac{{}^{\prime\prime}}{dt} \frac{d}{dt} \rho(t) = -\nabla_{W_2} E(\rho(t))$

More precisely, $\rho(t)$ is the gradient flow of E if...

• there exists $v(t) \in L^2_{\mathrm{loc}}((0, +\infty), L^2(\rho(t)))$ so that

$$\frac{d}{dt}\rho(x,t) + \nabla \cdot (\mathbf{v}(x,t)\rho(x,t)) = 0$$

• for a.e. t>0, $-v(t) \in \partial E(\rho(t))$

$$\xi \in \partial E(\rho)$$
 if as $\nu \to \mu$, $E(\nu) - E(\rho) \ge \int \langle \xi, \mathbf{t}_{\rho}^{\nu} - \mathrm{id} \rangle \mathrm{d}\mu + \mathrm{o}(\mathrm{W}_{2}(\rho, \nu))$
 $\xi(\nu - \rho)$

• If E and ρ are nice, $\partial E(\rho) = \left\{ \nabla \frac{\partial E}{\partial \rho} \right\}$, and solutions of the gradient flow can be characterized as solutions to a PDE.

collective dynamics: main questions

Aggregation equation with degenerate diffusion:

$$\frac{d}{dt}\rho + \nabla \cdot \left(\left(-\nabla K * \rho\right)\rho\right) = \Delta \rho^m \quad \text{for } K(x) : \mathbb{R}^d \to \mathbb{R} \text{ and } m \ge 1$$
$$E(\mu) = \iint K(x-y)d\mu(x)d\mu(y) + \frac{1}{m-1}\int \mu(x)^m dx$$

Main questions:

- 1. Do solutions exist?
- 2. Are they unique? stable?
- 3. How do they behave in the long time limit?
- 4. How can we simulate them numerically?

Collective of If K(x) is λ -convex, $\lambda \le 0$, so is E(μ) [CDFLS, 2011]. But what about when K(x) isn't λ -convex?

Aggregation equation with degenerate diffusion:

$$\frac{d}{dt}\rho + \nabla \cdot \left(\left(-\nabla K * \rho \right) \rho \right) = \Delta \rho^m \quad \text{for } K(x) : \mathbb{R}^d \to \mathbb{R} \text{ and } m \ge 1$$
$$E(\mu) = \iint K(x-y)d\mu(x)d\mu(y) + \frac{1}{m-1} \int \mu(x)^m dx$$

<u>Theorem</u> (Ambrosio, Gigli, Savaré 2005): If the energy is λ -convex,

- 1. Do solutions exist? Yes (JKO)
- 2. Are they unique? Yes stable? contract (λ >0)/expand (λ <0) exponentially
- 3. How do they behave in the long time limit? For λ >0, there is a unique steady state, which solutions approach exponentially quickly.
- 4. How can we simulate them numerically?

collective dynamics: applications

Aggregation equation with degenerate diffusion:

$$\frac{d}{dt}\rho + \nabla \cdot \left(\left(-\nabla K * \rho \right) \rho \right) = \Delta \rho^m \quad \text{for } K(x) : \mathbb{R}^d \to \mathbb{R} \text{ and } m \ge 1$$

<u>Applied interest:</u>

• Slime mold (chemotaxis):
$$K(x) = \begin{cases} \frac{1}{2\pi} \log |x| & \text{if } d = 2, \\ C_d |x|^{2-d} & \text{otherwise.} \end{cases}$$

• Swarming: $K(x) = |x|^a/a - |x|^b/b, \quad -d < b < a$ not λ -convex

"merely" 0-convex

• Granular media: $K(x) = |x|^3$

- collective dynamics
- optimal transport and Wasserstein gradient flow
- ω-convexity and height constrained aggregation
- future work

height constrained aggregation

<u>a new model</u> (C., Kim, Yao 2016):

inspired by the aggregation equation with degenerate diffusion, we consider a height constrained aggregation equation, for $K = \Delta^{-1}$

- Both models have self-attraction from $\nabla K * \rho$.
- The role of repulsion is played by hard height constraint instead of degenerate diffusion.
- Heuristically, hard height constraint is singular limit of degenerate diffusion: Idea: $\Delta \rho^m = \nabla \cdot (\underbrace{m\rho^{m-1}}_{D} \nabla \rho)$, so as $m \rightarrow +\infty$, $D \rightarrow \begin{cases} +\infty & \text{if } \rho > 1 \\ 0 & \text{if } \rho < 1 \end{cases}$

height constrained aggregation

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla (K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

- Hard height constraint appeared in previous work by [Maury, Roudneff-Chupin, Santambrogio 2010]—instead of K*ρ(x) had V(x).
- Has a (formal) Wasserstein gradient flow structure: <u>equation</u>

$$\frac{d}{dt}\rho = \nabla \cdot \left((\nabla K * \rho)\rho \right) + \Delta \rho^{m} \qquad E(\mu) = \iint K(x-y)d\mu(x)d\mu(y) + \frac{1}{m-1}\int \mu(x)^{m}dx$$

$$\begin{cases}
\frac{d}{dt}\rho = \nabla \cdot \left((\nabla K * \rho)\rho \right) \text{ if } \rho < 1 \\
\rho \le 1 \text{ always}
\end{cases}
\qquad E_{\infty}(\mu) = \begin{cases}
\iint K(x-y)d\mu(x)d\mu(y) & \text{ if } \|\mu\|_{L^{\infty}} \le 1 \\
+\infty & \text{ otherwise}
\end{cases}$$

Since K(x) is not λ -convex, E_{∞} falls outside the scope of the existing theory.

ω-convexity

Even though we don't have

 E_{∞} does satisfy a similar inequality for a modulus of convexity $\omega(x) = x |\log(x)|$.

$$E_{\infty}(\sigma(t)) \le (1-t)E_{\infty}(\mu) + tE_{\infty}(\nu) - \frac{\lambda}{2} \left[(1-t)\omega \left(t^2 W_2^2(\mu,\nu) \right) + t\omega \left((1-t)^2 W_2^2(\mu,\nu) \right) \right]$$

[Carrillo, McCann, Villani, 2006] [Ambrosio, Serfaty, 2008] [Carrillo, Lisini, Mainini, 2014]

- Inequalities coincide for $\omega(x) = x$; ω -convexity generalizes λ -convexity.
- Sufficient condition: above the tangent line inequality

$$E(\mu_{1}) - E(\mu_{0}) - \frac{d}{d\alpha} E(\mu_{\alpha})|_{\alpha=0} \ge \frac{\lambda}{2} \omega(W_{2}^{2}(\mu_{0}, \mu_{1}))$$

 ω -convexity

collective dynamics: main questions

Aggregation equation with degenerate diffusion:

$$\frac{d}{dt}\rho + \nabla \cdot \left(\left(-\nabla K * \rho \right) \rho \right) = \Delta \rho^m \quad \text{for } K(x) : \mathbb{R}^d \to \mathbb{R} \text{ and } m \ge 1$$
$$E(\mu) = \iint K(x-y)d\mu(x)d\mu(y) + \frac{1}{m-1} \int \mu(x)^m dx$$

Main questions:

- 1. Do solutions exist?
- 2. Are they unique? stable?
- 3. How do they behave in the long time limit?
- 4. How can we simulate them numerically?

collective d

In general, for $\omega(x)$ satisfying Osgood's condition, i.e.

$$\int_0^1 \frac{dx}{\omega(x)} = +\infty$$

Aggregation equation

 $\left| \frac{d}{dt} \rho + \nabla \cdot \left(\left(-\nabla F \right) \right) \right|$

$$F_{2t}(W_2^2(\rho_1(t), \rho_2(t))) \le W_2^2(\rho_1(0), \rho_2(0))$$

$$d_{T_1(t)} \ge (T_2(t))$$

 $E(\mu) = \iint \text{ from which we recover [AGS, 2005] \& [CMV, 2006].}$

<u>Theorem</u> (C. 2016): If the energy is ω -convex, $\omega(x) = x |\log(x)|$,

- 1. Do solutions exist? Yes (JKO)
- 2. Are they unique? Yes stable? expand at most double-exponentially $W_2^2(\rho_1(t), \rho_2(t)) \leq W_2^2(\rho_1(0), \rho_2(0))^{e^{2\lambda t}}$

we obtain the stability estimate

ω-convexity: applications

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla (K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 $\frac{d}{dt}\rho = \nabla \cdot \left(\left(\nabla K * \rho \right) \rho \right) + \Delta \rho^m$

 $\begin{cases} \frac{1}{2\pi} \log |x| & \text{if } d = 2\\ C_d |x|^{2-d} & \text{otherwise} \end{cases}$ • Slime mold singular limit: K(x) = ω -convex

• Slime mold (chemotaxis):
$$K(x) = \begin{cases} \frac{1}{2\pi} \log |x| & \text{if } d = 2\\ C_d |x|^{2-d} & \text{otherwise} \end{cases}$$

• Swarming:
$$K(x) = |x|^{a}/a - |x|^{b}/b$$
, $-d < b < a$

• Granular media: $K(x) = |x|^3$

 ω -convex on measures with fixed center of mass and $\omega(x) = x^{3/2}$

2

 ω -convex

on bounded

measures

ω-convex on

L^p measures

for 2-d≤b<a

collective dynamics: main questions

Aggregation equation with degenerate diffusion:

$$\frac{d}{dt}\rho + \nabla \cdot \left(\left(-\nabla K * \rho \right) \rho \right) = \Delta \rho^m$$

for
$$K(x) : \mathbb{R}^d \to \mathbb{R}$$
 and $m \ge 1$

Main questions:

- Do solutions exist?
- Are they unique? stable?
- 3. How do they behave in the long time limit? depends on choice of K(x)
- 4. How can we simulate them numerically?

long time behavior: $K = \Delta^{-1}$

For $K = \Delta^{-1}$ and $1 \le m \le +\infty$, long time behavior of Keller-Segel equation has been the subject of recent interest.

• Supercritical power ($m \le 2-2/d$):

Profiles of steady states known for certain of m; solutions can "blow up" to a Dirac mass in finite time or remain bounded.

[Sugiyama 2006, 2007], [Luckhaus and Sugiyama 2006, 2007], [Blanchet, Carlen, Carrillo 2012], [Chen, Liu, Wang 2012]

Subcritical power (m > 2-2/d):

All steady states are radially symmetric and decreasing; still, convergence to equilibrium is only known in d=1, 2 and for radial solutions in higher dimensions.

[Carrillo, Hitter, Volzone, Yao 2016], [Kim, Yao 2012]

long time behavior: $K = \Delta^{-1}$, $m = +\infty$

In the case of the height constrained aggregation equation, we obtained quantitative rates of convergence to equilibrium for patch solutions:

Theorem (C., Kim, Yao 2016):

- Suppose $\rho(x,t)$ solves congested aggregation eqn with $\rho(x,0) = 1_{\Omega(0)}(x)$.
- Then, in two dimensions,

$$\rho(x,t) \xrightarrow{L^p} 1_B(x) \text{ for all } 1 \le p < +\infty$$

and

$$|E_{\infty}(\rho(\cdot,t)) - E_{\infty}(1_B)| \le C_{\Omega(0)}t^{-1/6}$$

- In any dimension, the Riesz Rearrangement Inequality guarantees that the unique minimizer of E_{∞} is $1_{B}(x)$.
- The tricky part is showing mass of p(x,t) doesn't escape to +∞. To do this, we characterize the dynamics of patch solutions in terms of a free boundary problem and control M₂(p(t)) by Talenti inequality (d=2).

collective dynamics: main questions

Aggregation equation with degenerate diffusion:

$$\frac{d}{dt}\rho + \nabla \cdot \left(\left(-\nabla K * \rho \right) \rho \right) = \Delta \rho^m$$

for
$$K(x) : \mathbb{R}^d \to \mathbb{R}$$
 and $m \ge 1$

Main questions:

- Do solutions exist?
- \checkmark Are they unique? stable?
- 2. How do they behave in the long time limit?
- 4. How can we simulate them numerically?

numerics

• For nice velocity fields and $\rho = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i(t)}$,

$$\frac{d}{dt}\rho(x,t) + \nabla \cdot (v(x,t)\rho(x,t)) = 0 \qquad \longleftrightarrow \qquad \frac{d}{dt}x_i(t) = v(x_i(t),t), \quad \forall i = 1,\dots, N$$

• For any $\rho(\mathbf{x})$, there exist $\mathbf{x}_1, \ldots, \mathbf{x}_N$ so that $W_2\left(\rho, \frac{1}{N}\sum_{i=1}^N \delta_{x_i}\right) \xrightarrow{N \to +\infty} 0$

<u>General Numerical Strategy:</u> to approximate a solution p(x,t) of a PDE...

- 1) Approximate $\rho(x,0)$ by $\rho_N(x,0) = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$.
- 2) Compute the solution with initial data ρ_N by numerically solving the corresponding system of ODEs.
- 3) Use stability of PDE to conclude that the numerical solution $\rho_N(x,t)$ must be close to $\rho(x,t)$ on bounded time intervals.

What about when v(x,t) is not "nice"?

numerics

None of the v(x,t) mentioned so far are nice! We need to make them nice.

Aggregation equation without diffusion:

Regularize K by convolution with a mollifier ("blob")

$$\left(\frac{d}{dt}\rho = \nabla \cdot \left(\left(\nabla K * \rho\right)\rho\right)\right)$$

• **Theorem** [C., Bertozzi 2014]: If you remove the mollification as you add particles, the particle "blob" method converges.

numerics

Aggregation equation w/ deg. diffusion:

Regularize both K and v by convolution

$$\rho^{m} = \nabla \cdot (m\rho^{m-1}\nabla\rho) = \nabla \cdot (\underbrace{(m\rho^{m-2}\nabla\rho)}_{\rho}\rho)$$

 Theorem [Carrillo, C., Patacchini (in progress)]: If you remove the mollification as you add particles, the particle "blob" method Γ-converges.

v

Newtonian attraction (K = Δ^{-1}) and m=2 and m=100 diffusion

 $\frac{d}{dt}\rho = \nabla \cdot \left(\left(\nabla K * \rho \right) \rho \right) + \Delta \rho^m$

future work:

Does Keller-Segel converge to congested aggregation?

$$\frac{d}{dt}\rho = \nabla \cdot \left((\nabla K * \rho)\rho \right) + \Delta \rho^m \qquad \text{m} \to +\infty \qquad \begin{cases} \frac{d}{dt}\rho = \nabla \cdot \left(\nabla (K * \rho)\rho \right) \text{ if } \rho < 1 \\ \rho \leq 1 \text{ always} \end{cases}$$

For V(x) convex, [Alexander, Kim, Yao 2014] showed

$$\frac{d}{dt}\rho = \nabla \cdot ((\nabla V)\rho) + \Delta \rho^{m} \qquad \text{m} \to +\infty \qquad \begin{cases} \frac{d}{dt}\rho = \nabla \cdot ((\nabla V)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

 Connecting Keller-Segel and the congested aggregation eqn would lead to greater insight in long-time behavior of supercritical (m>2-2/d) Keller-Segel.

Further examples of ω -convex energies?

More applications with a height constraint?

motivation for free boundary problem

How does congested aggregation equation relate to free boundary problem?

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla (K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

- Consider patch solutions. For a domain Ω , suppose that $\rho(x,t)$ is a solution with initial data $\rho(x,0) = \begin{cases} 1 & \text{if } x \in \Omega, \\ 0 & \text{otherwise.} \end{cases}$
- Since $K = \Delta^{-1}$, $\nabla K * \rho$ causes self-attraction. Thus, we expect $\rho(x,t)$ to remain a characteristic function.
- Let $\Omega(t) = \{\rho = 1\}$ be congested region, so $\rho(x,t) = \mathbf{1}_{\Omega(t)}(x)$.

What free boundary problem describes evolution of $\Omega(t)$?

260=5

O(i)

2(10)

セニレ

t=10

formal derivation

• Here is a formal derivation of the related free boundary problem.

"

• Suppose ρ(x,t) solves

$$\begin{cases} \frac{d}{dt}\rho = \nabla \cdot (\nabla (K * \rho)\rho) \text{ if } \rho < 1\\ \rho \leq 1 \text{ always} \end{cases}$$

• Since mass is conserved, we expect $\rho(x,t)$ satisfies a continuity equation

$$\frac{d}{dt}\rho = \nabla \cdot \left(\underbrace{\left(\nabla K * \rho + \nabla \mathbf{p}\right)}_{v}\rho\right)$$

where $\nabla p(x,t)$ is the pressure arising from the height constraint.

Height constraint is active on the congested region $\{p>0\} = \Omega(t)$.

Height constraint is inactive outside the congested region $\{\mathbf{p}=0\}=\Omega(t)^{c}$.

formal derivation

Given
$$\underbrace{\frac{d}{dt}\rho = \nabla \cdot \left(\left(\nabla K * \rho + \nabla \mathbf{p} \right) \rho \right)}_{v}$$

what happens on congested region?

- Because of hard height constraint, on the congested region Ω(t)={ρ=1}, the velocity field is incompressible, ∇·v=0.
- Since $K = \Delta^{-1}$, $\nabla \cdot v = \Delta K * \rho + \Delta \mathbf{p} = \rho + \Delta \mathbf{p}$, so incompressibility means

$$-\Delta \mathbf{p} = \rho \text{ on } \Omega(t) = \{\rho = 1\}$$

 Using that the height constraint is active on the congested region, Ω(t)={p>0}, we obtain the following equation for the pressure:

$$-\Delta \mathbf{p} = 1 \text{ on } \{\mathbf{p} > 0\}$$

formal derivation

Given
$$\frac{d}{dt} \rho = \nabla \cdot (\underbrace{(\nabla K * \rho + \nabla \mathbf{p})}_{v} \rho)$$

what about bdy of congested region?

outward normal velocity of $\partial \Omega(t)$

• By conservation of mass,

$$0 = \frac{d}{dt} \int_{\Omega(t)} \rho = \int_{\Omega(t)} \frac{d}{dt} \rho + \int_{\partial \Omega(t)} V \rho$$

Using that p(x,t) solves the above continuity equation, this equals

$$= \int_{\Omega(t)} \nabla \cdot \left((\nabla K * \rho + \nabla \mathbf{p}) \rho \right) + \int_{\partial \Omega(t)} V \rho = \int_{\partial \Omega(t)} (\partial_{\nu} K * \rho + \partial_{\nu} \mathbf{p} + V) \rho$$

• Using that $\rho(x,t)=1_{\Omega(t)}(x)$, for $\Omega(t)=\{p>0\}$, we again obtain an equation for p,

 $\partial_{\nu} K * 1_{\{\mathbf{p}>0\}} + \partial_{\nu} \mathbf{p} + V = 0 \text{ on } \partial\{\mathbf{p}>0\}$

free boundary problem

Combining the observations that...

• on the congested region,

$$-\Delta \mathbf{p} = 1 \text{ on } \{\mathbf{p} > 0\}$$

and on the boundary of the congested region,

$$\partial_{\nu} K * 1_{\{\mathbf{p}>0\}} + \partial_{\nu} \mathbf{p} + V = 0 \text{ on } \partial\{\mathbf{p}>0\}$$

Theorem (C., Kim, Yao 2016):

- Suppose $\rho(x,t)$ solves congested aggregation eqn with $\rho(x,0) = 1_{\Omega(0)}(x)$.
- Then $\rho(x,t)=1_{\Omega(t)}(x)$, for $\Omega(t) = \{p(x,t)>0\}$, where p a viscosity solution of

$$\begin{cases} -\Delta \mathbf{p} = 1 & \text{on } \{\mathbf{p} > 0\} \\ V = -\partial_{\nu} K * \mathbf{1}_{\{\mathbf{p} > 0\}} - \partial_{\nu} \mathbf{p} & \text{on } \partial\{\mathbf{p} > 0\}. \end{cases}$$

outward normal

velocity of $\partial \Omega(t)$

collective dynamics

- $\rho(x,t): \mathbb{R}^d \times \mathbb{R} \to [0,+\infty)$ nonnegative density
- Mass is conserved (assume $\int \rho(x) dx = 1$), and $\rho(x,t)$ evolves according to a continuity equation:

$$\frac{d}{dt}\rho(x,t) + \nabla \cdot (\mathbf{v}(x,t)\rho(x,t)) = 0$$

- Particle approximation:
 - Suppose $\rho = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i(t)}$
 - For "nice" velocity fields, $\rho(x,t)$ solves the continuity equation iff

$$\frac{d}{dt}x_i(t) = v(x_i(t), t), \quad \forall i = 1, \dots, N$$

collective dynamics: slime mold

In the case of the slime mold, we have 1) self-attraction and 2) diffusion.

1) Self-Attraction

• At the particle level, we may formulate self-attraction as

$$\begin{aligned} \overline{\frac{d}{dt}x_i(t)} &= -\frac{1}{N}\sum_{j=1}^N \nabla K(x_i(t) - x_j(t)) \\ K(x) &= \begin{cases} \frac{1}{2\pi} \log |x| & \text{if } d = 2, \\ C_d |x|^{2-d} & \text{otherwise.} \end{cases} \end{aligned}$$

• Since $\rho = \frac{1}{N} \sum_{i=1}^{N} \delta_{x_i(t)}$, we write the resulting velocity field as

$$-\frac{1}{N}\sum_{j=1}^{N}\nabla K(x-x_j(t)) = -\int \nabla K(x-y)d\rho(y) = -\nabla K * \rho(x)$$

collective dynamics: slime mold

In the case of the slime mold, we have 1) self-attraction and 2) diffusion.

2) Diffusion

• Combining self-attraction with diffusion gives the Keller-Segel equation

$$\left(\frac{d}{dt}\rho + \nabla \cdot \left(\left(-\nabla K * \rho\right)\rho\right) = \Delta\rho\right)$$

• More generally, we can consider degenerate diffusion for $m \ge 1$

$$\underbrace{\frac{d}{dt}\rho + \nabla \cdot \left(\left(-\nabla K * \rho \right) \rho \right) = \Delta \rho^{m}}$$

$$\Delta \rho^m = \nabla \cdot (\underbrace{m\rho^{m-1}}_{D} \nabla \rho)$$