Problem formulation

Causal transport

Semimartingale preservation

Causal optimal transport and its links to enlargement of filtrations and stochastic optimization problems

Beatrice Acciaio London School of Economics

joint work with J. Backhoff Veraguas and A. Zalashko

Workshop on "Generated Jacobian Equations: from Geometric Optics to Economics" Banff International Research Station, April 9-14, 2017

Problem formulation

Problem: Given

- two filtrations $\mathcal{F} := (\mathcal{F}_t)_t \subset (\mathcal{G}_t)_t =: \mathcal{G}$ on a space of events Ω
- a probability measure $\mathbb P$
- X semimartingale in $(\Omega, \mathcal{F}, \mathbb{P})$
- \rightarrow when is X going to remain a semimartingale in $(\Omega, \mathcal{G}, \mathbb{P})$?

Problem formulation

Problem: Given

- two filtrations $\mathcal{F} := (\mathcal{F}_t)_t \subset (\mathcal{G}_t)_t =: \mathcal{G}$ on a space of events Ω
- a probability measure $\mathbb P$
- X semimartingale in $(\Omega, \mathcal{F}, \mathbb{P})$
- \rightarrow when is X going to remain a semimartingale in $(\Omega, \mathcal{G}, \mathbb{P})$?

Why is this interesting?

- Semimartingales are the processes for which classical stochastic integration works: ∫HdX (e.g. asset price proc.)
- Agents have access to different sets of information

Problem formulation

Problem: Given

- two filtrations $\mathcal{F} := (\mathcal{F}_t)_t \subset (\mathcal{G}_t)_t =: \mathcal{G}$ on a space of events Ω
- a probability measure $\mathbb P$
- X semimartingale in $(\Omega, \mathcal{F}, \mathbb{P})$
- \rightarrow when is X going to remain a semimartingale in $(\Omega, \mathcal{G}, \mathbb{P})$?

Why is this interesting?

- Semimartingales are the processes for which classical stochastic integration works: ∫HdX (e.g. asset price proc.)
- Agents have access to different sets of information

Today: X = B Brownian motion in its own filtration $\mathcal{F} \subset \mathcal{G}$:

- When is *B* semimartingale w.r.t. G? $B_t = \tilde{B}_t + A_t$
- In particular, when is $FV \ll \mathcal{L}$? $B_t = \tilde{B}_t + \int_0^t a_s ds$
- $\rightarrow\,$ We will answer via a specific kind of transport

From classical to causal transport

• Classical (Monge-Kantorovich) transport problem: Given two Polish probability spaces $(X, \mu), (\mathcal{Y}, \nu)$, "move the mass" from μ to ν minimizing the cost of transportation $c : X \times \mathcal{Y} \to [0, \infty]$

 $\boldsymbol{P} := \inf \left\{ \mathbb{E}^{\pi} [\boldsymbol{c}(\boldsymbol{x}, \boldsymbol{y})] : \pi \in \Pi(\mu, \nu) \right\},\$

 $\Pi(\mu, \nu)$: probability measures on $X \times \mathcal{Y}$ with marginals μ and ν .

From classical to causal transport

• Classical (Monge-Kantorovich) transport problem: Given two Polish probability spaces $(X, \mu), (\mathcal{Y}, \nu)$, "move the mass" from μ to ν minimizing the cost of transportation $c : X \times \mathcal{Y} \to [0, \infty]$

 $\boldsymbol{P} := \inf \left\{ \mathbb{E}^{\pi} [\boldsymbol{c}(\boldsymbol{x}, \boldsymbol{y})] : \pi \in \Pi(\mu, \nu) \right\},\$

 $\Pi(\mu, \nu)$: probability measures on $X \times \mathcal{Y}$ with marginals μ and ν .

• **Causal transport problem:** Given right-continuous filtrations $\mathcal{F}^{\mathcal{X}} = (\mathcal{F}_t^{\mathcal{X}})_{t \in [0,T]}$ on \mathcal{X} , and $\mathcal{F}^{\mathcal{Y}} = (\mathcal{F}_t^{\mathcal{Y}})_{t \in [0,T]}$ on \mathcal{Y} , $T < \infty$:

Definition (Yamada-Watanabe'71 criterion, Lassalle'13)

A transport plan $\pi \in \Pi(\mu, \nu)$ is called causal between $(\mathcal{X}, \mathcal{F}^{\mathcal{X}}, \mu)$ and $(\mathcal{Y}, \mathcal{F}^{\mathcal{Y}}, \nu)$ if, for all *t* and $D \in \mathcal{F}_t^{\mathcal{Y}}$, the map $\mathcal{X} \ni \mathbf{x} \mapsto \pi^{\mathbf{x}}(D)$ is measurable w.r.t. $\mathcal{F}_t^{\mathcal{X}}$ ($\pi^{\mathbf{x}}$ regular conditional kernel w.r.t. \mathcal{X}).

From classical to causal transport

• Classical (Monge-Kantorovich) transport problem: Given two Polish probability spaces $(X, \mu), (\mathcal{Y}, \nu)$, "move the mass" from μ to ν minimizing the cost of transportation $c : X \times \mathcal{Y} \to [0, \infty]$

 $\boldsymbol{P} := \inf \left\{ \mathbb{E}^{\pi} [\boldsymbol{c}(\boldsymbol{x}, \boldsymbol{y})] : \pi \in \Pi(\mu, \nu) \right\},\$

 $\Pi(\mu, \nu)$: probability measures on $X \times \mathcal{Y}$ with marginals μ and ν .

• **Causal transport problem:** Given right-continuous filtrations $\mathcal{F}^{\mathcal{X}} = (\mathcal{F}_t^{\mathcal{X}})_{t \in [0,T]}$ on \mathcal{X} , and $\mathcal{F}^{\mathcal{Y}} = (\mathcal{F}_t^{\mathcal{Y}})_{t \in [0,T]}$ on \mathcal{Y} , $T < \infty$:

Definition (Yamada-Watanabe'71 criterion, Lassalle'13)

A transport plan $\pi \in \Pi(\mu, \nu)$ is called causal between $(\mathcal{X}, \mathcal{F}^{\mathcal{X}}, \mu)$ and $(\mathcal{Y}, \mathcal{F}^{\mathcal{Y}}, \nu)$ if, for all *t* and $D \in \mathcal{F}_t^{\mathcal{Y}}$, the map $\mathcal{X} \ni \mathbf{x} \mapsto \pi^{\mathbf{x}}(D)$ is measurable w.r.t. $\mathcal{F}_t^{\mathcal{X}}$ ($\pi^{\mathbf{x}}$ regular conditional kernel w.r.t. \mathcal{X}).

$$\boldsymbol{P}_{\boldsymbol{C}} := \inf \left\{ \mathbb{E}^{\pi}[\boldsymbol{c}(\boldsymbol{x},\boldsymbol{y})] : \pi \in \Pi^{\mathcal{F}^{\mathcal{X}},\mathcal{F}^{\mathcal{Y}}}(\mu,\nu) := \Pi(\mu,\nu) \cap \text{causal} \right\}$$

Semimartingale preservation

Prominent example I: weak-solutions of SDEs

- $\mathcal{X} = \mathcal{Y} = C := C_0[0, T]$
- $\bullet \ \mathcal{F}$ right-continuous canonical filtration on \mathcal{C}

Example (Yamada-Watanabe'71)

Assume weak-existence of the solution to the SDE:

 $d\mathbf{Y}_t = \sigma(\mathbf{Y}_t)d\mathbf{B}_t + b(\mathbf{Y}_t)dt$, b, σ Borel measurable.

 \Rightarrow (*B*, Y)_# \mathbb{P} causal plan between (*C*, \mathcal{F} , *B*_# \mathbb{P}) and (*C*, \mathcal{F} , Y_# \mathbb{P})

Prominent example I: weak-solutions of SDEs

- $\mathcal{X} = \mathcal{Y} = C := C_0[0, T]$
- $\bullet \ \mathcal{F}$ right-continuous canonical filtration on \mathcal{C}

Example (Yamada-Watanabe'71)

Assume weak-existence of the solution to the SDE:

 $d\mathbf{Y}_t = \sigma(\mathbf{Y}_t)d\mathbf{B}_t + b(\mathbf{Y}_t)dt$, b, σ Borel measurable.

 \Rightarrow (*B*, Y)_# \mathbb{P} causal plan between (*C*, \mathcal{F} , *B*_# \mathbb{P}) and (*C*, \mathcal{F} , Y_# \mathbb{P})

• **Transport perspective:** from an observed trajectory of *B*, the mass can be split at each moment of time into *Y* only based on the information available up to that time.

Prominent example I: weak-solutions of SDEs

- $\mathcal{X} = \mathcal{Y} = C := C_0[0, T]$
- $\bullet \ \mathcal{F}$ right-continuous canonical filtration on \mathcal{C}

Example (Yamada-Watanabe'71)

Assume weak-existence of the solution to the SDE:

 $d\mathbf{Y}_t = \sigma(\mathbf{Y}_t)d\mathbf{B}_t + b(\mathbf{Y}_t)dt$, b, σ Borel measurable.

 \Rightarrow (*B*, Y)_# \mathbb{P} causal plan between (*C*, \mathcal{F} , *B*_# \mathbb{P}) and (*C*, \mathcal{F} , Y_# \mathbb{P})

- **Transport perspective:** from an observed trajectory of *B*, the mass can be split at each moment of time into *Y* only based on the information available up to that time.
- Monge transport \iff strong solution Y = F(B).

Prominent example II: filtration enlargement

- $X = \mathcal{Y} = C$, and $\mathcal{F}^X = \mathcal{F}$ as above.
- 𝓕^Y = 𝔅 obtained as enlargement of 𝓕 with 𝔅(𝔅)=(𝔅_t(𝔅))_t (𝔅 coordinate process on 𝔅):

$$\mathcal{G}_t := \bigcap_{\epsilon > 0} \mathcal{G}_{t+\epsilon}^0, \quad \mathcal{G}_t^0 := \mathcal{F}_t \lor \sigma(\{\mathcal{G}_s, s \le t\}).$$

Prominent example II: filtration enlargement

•
$$X = \mathcal{Y} = C$$
, and $\mathcal{F}^X = \mathcal{F}$ as above.

 𝓕^Y = 𝔅 obtained as enlargement of 𝓕 with 𝔅(𝔅)=(𝔅_t(𝔅))_t (𝔅 coordinate process on 𝔅):

$$\mathcal{G}_t := \bigcap_{\epsilon>0} \mathcal{G}_{t+\epsilon}^0, \quad \mathcal{G}_t^0 := \mathcal{F}_t \lor \sigma(\{\mathcal{G}_s, s \le t\}).$$

Example

Let *B* be a Brownian motion on $(\Omega, \mathcal{F}^B = B^{-1}(\mathcal{F}), \mathbb{P})$, which remains a semimartingale w.r.t. $\mathcal{F}^{B,G} = B^{-1}(\mathcal{G})$, with

$$d\mathbf{B}_t = d\tilde{\mathbf{B}}_t + d\mathbf{A}_t.$$

 $\Rightarrow (\tilde{B}, B)_{\#}\mathbb{P}$ is a causal plan between (C, \mathcal{F}, γ) and (C, \mathcal{G}, γ)

where $\gamma =$ Wiener measure on *C*

Characterizations of causality

Remark. For a probability measure $\pi \in \mathcal{P}(X \times \mathcal{Y})$, TFAE:

• π is a causal transport plan w.r.t. \mathcal{F}^{χ} and $\mathcal{F}^{\mathcal{Y}}$;

•
$$\pi \left(X \times D_t | \mathcal{F}_t^X \otimes \{\emptyset, \mathcal{Y}\} \right) = \pi \left(X \times D_t | \mathcal{F}_T^X \otimes \{\emptyset, \mathcal{Y}\} \right),$$

 $\forall t, D_t \in \mathcal{F}_t^{\mathcal{Y}};$

- $\{\emptyset, X\} \otimes \mathcal{F}_t^{\mathcal{Y}}$ conditionally independent from $\mathcal{F}_T^X \otimes \{\emptyset, \mathcal{Y}\}$ given $\mathcal{F}_t^X \otimes \{\emptyset, \mathcal{Y}\}$ w.r.t. π , for all t;
- *H*-hypothesis between *F^X* ⊗ {Ø, *Y*} and *F^X* ⊗ *F^Y* w.r.t. *π* (all sq.integrable *F^X* ⊗ {Ø, *Y*}-mart. remain *F^X* ⊗ *F^Y*-mart.).

Recall our questions

→ Given *B*, Brownian motion in its own filtration \mathcal{F}^B , and given a bigger filtration $\mathcal{F}^{B,G}$, when is *B* semimartingale w.r.t. $\mathcal{F}^{B,G}$?

Recall our questions

- → Given *B*, Brownian motion in its own filtration \mathcal{F}^B , and given a bigger filtration $\mathcal{F}^{B,G}$, when is *B* semimartingale w.r.t. $\mathcal{F}^{B,G}$?
 - Brownian bridge: $dB_t = d\tilde{B}_t + \frac{B_T B_t}{T t} dt$
 - Initial enlargement under Jacod's condition
 - Progressive enlargement with a random time (Jeulin-Yor's formula)
 - Enlargement with $J_t := \inf_{s \ge t} R_s$, where $dR_t = \frac{1}{R_t} dt + dB_t$: $dB_t = d\tilde{B}_t + 2dJ_t - \frac{1}{R_t} dt$

Recall our questions

- → Given *B*, Brownian motion in its own filtration \mathcal{F}^B , and given a bigger filtration $\mathcal{F}^{B,G}$, when is *B* semimartingale w.r.t. $\mathcal{F}^{B,G}$?
 - Brownian bridge: $dB_t = d\tilde{B}_t + \frac{B_T B_t}{T t} dt$
 - Initial enlargement under Jacod's condition
 - Progressive enlargement with a random time (Jeulin-Yor's formula)
 - Enlargement with $J_t := \inf_{s \ge t} R_s$, where $dR_t = \frac{1}{R_t}dt + dB_t$: $dB_t = d\tilde{B}_t + 2dJ_t - \frac{1}{R_t}dt$
- → In particular, when does it have an absolutely continuous finite variation part? $(B_t = \tilde{B}_t + \int_0^t a_s ds)$

Semimartingale preservation

Semimartingale preservation

Notations. $(\omega, \overline{\omega})$: generic element in $C \times C$, γ = Wiener measure, $V_t(Z)$: total variation of a process/path *Z* up to time *t*.

Semimartingale preservation

Notations. $(\omega, \overline{\omega})$: generic element in $C \times C$, γ = Wiener measure, $V_t(Z)$: total variation of a process/path *Z* up to time *t*.

Theorem

For any fixed anticipation G, TFAE:

- i. any process B which is Brownian motion on some $(\Omega, \mathcal{F}^B, \mathbb{P})$, remains a semimartingale in the enlarged filtration $\mathcal{F}^{B,G}$;
- ii. for some $\nu \sim \gamma$, the following causal transport problem is finite

$$\inf_{\pi\in\Pi^{\mathcal{F},\mathcal{G}}(\gamma,\nu)}\mathbb{E}^{\pi}[V_{T}(\overline{\omega}-\omega)].$$

Optimal transport $\hat{\pi} := (\xi, id)_{\#} v$, where $\xi_t(\overline{\omega}) := \overline{\omega}_t - A_t(\overline{\omega})$, with $A(\pi, \{\emptyset, C\} \times \mathcal{G})$ -dual pr.pr. of $(\overline{\omega}_t - \omega_t)$, for any π with finite cost.

The absolutely continuous case

 $\rightarrow\,$ In order to characterize the absolutely continuous case, the total variation will be replaced by the following type of costs

$$c_{\rho}(\omega,\overline{\omega}) := \int_0^T \rho(\widehat{\overline{\omega}_t - \omega_t}) dt,$$

where $\rho : \mathbb{R} \to \mathbb{R}_+$ is convex, even, $\rho(0) = 0$ and $\rho(+\infty) = +\infty$.

→ For such cost functions, the causal transport problem is over transports π under which $\overline{\omega} - \omega \ll \mathcal{L}$.

The absolutely continuous case

Theorem

- For any fixed anticipation G, TFAE:
 - i. any process B which is Brownian motion on some $(\Omega, \mathcal{F}^B, \mathbb{P})$, remains a semimartingale in $\mathcal{F}^{B,G}$, with decomposition

$$dB_t = d\tilde{B}_t + \alpha_t(B)dt;$$

ii. for some $\nu \sim \gamma$, and some ρ as above (eqv., for $\rho = |.|$), the following causal transport problem is finite

$$\inf_{\pi\in\Pi^{\mathcal{F},\mathcal{G}}(\gamma,\nu)}\mathbb{E}^{\pi}\left[\boldsymbol{c}_{\rho}\right].$$

Optimal transport $\hat{\pi} := (\xi, id)_{\# \gamma}$, where $\xi_t(\overline{\omega}) := \overline{\omega}_t - \int_0^t a_s(\overline{\omega}) ds$, a is $(\pi, \{\emptyset, C\} \times G)$ -pr.pr. of $\widehat{\overline{\omega}_t - \omega}_t$, for any π with finite cost. 1

Causal transport

Cameron-Martin cost

Consider the case
$$\rho(x) = x^2 \Rightarrow c_{\rho}(\omega, \overline{\omega}) = |\overline{\omega} - \omega|_H^2$$
.

Cameron-Martin cost

Consider the case $\rho(x) = x^2 \Rightarrow c_{\rho}(\omega, \overline{\omega}) = |\overline{\omega} - \omega|_H^2$.

• If
$$P_C = \inf \left\{ \mathbb{E}^{\pi}[c_{\rho}] : \pi \in \Pi^{\mathcal{F},\mathcal{G}}(\gamma,\gamma) \right\} < \infty$$
, then
• $dB_t = d\tilde{B}_t + \alpha_t(B)dt$, with α square integrable;
• $P_C = \mathbb{E}^{\gamma} \left[\int_0^T \alpha_t^2 dt \right]$.

• If
$$\mathcal{G} = \mathcal{F}$$
 and $v \ll \gamma$, then $\inf \left\{ \mathbb{E}^{\pi}[c_{\rho}] : \pi \in \Pi^{\mathcal{F},\mathcal{F}}(\gamma, \nu) \right\} < \infty$,
 $2H(\nu|\gamma) = \inf \left\{ \mathbb{E}^{\pi}[|\overline{\omega} - \omega|_{H}^{2}] : \pi \in \Pi^{\mathcal{F},\mathcal{F}}(\gamma, \nu) \right\}$
 $\geq \inf \left\{ \mathbb{E}^{\pi}[|\overline{\omega} - \omega|_{H}^{2}] : \pi \in \Pi(\gamma, \nu) \right\}$
 $= d_{H}^{2}(\gamma, \nu)$

Wasserstein distance between γ and ν w.r.t. the CM space. (\Rightarrow Talagrand's inequality for Gaussian measures) Extensions

Causal transport

Our results have natural extensions in two directions:

- \rightarrow Multidimensional processes.
- → General continuous semimartingales: for non-Brownian processes, generalization of the definition of causality:

 $\mathbb{E}^{\pi}[(\omega_t - \omega_s)f_s(\overline{\omega})] = 0, \qquad 0 \le s < t \le T, \ f_s \in L^{\infty}(C, \mathcal{G}_s, \nu),$

which leads to analogous results.

In particular, if *X* continuous semimartingale which remains a semimartingale in the enlarged filtration $\mathcal{F}^{X,G}$, with $X = \widetilde{X} + N$ \Rightarrow the transport plan $(\widetilde{X}, X)_{\#}\mathbb{P}$ satisfies the condition above.

- We imposed the causal constraint on transport plans → causal optimal transport problem (time matters!).
- With **cost function = total variation**, we used the causal optimal transport problem to characterize the preservation of semimartingale property in enlarged filtrations.

- We imposed the causal constraint on transport plans → causal optimal transport problem (time matters!).
- With **cost function = total variation**, we used the causal optimal transport problem to characterize the preservation of semimartingale property in enlarged filtrations.
- With the **same cost function**, the causal optimal transport problem can be used to estimate the value of additional information for classical stochastic optimization problems.
- In analogy to classical optimal transport: attainability of causal optimal transport problem, and duality results.

Bibliography

- T. Yamada and S. Watanabe (1971): "On the uniqueness of solutions of stochastic differential equations", Journal of Mathematics of Kyoto University 11/1, 155-167
- R. Lassalle 2015): "Causal transference plans and their Monge-Kantorovich problems", preprint
- B. Acciaio, J. Backhoff and A. Zalashko (2016): "Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization", submitted

THANK YOU FOR YOUR ATTENTION!