An Iterative Method for Generated Jacobian Equations

Farhan Abedin
Temple University
$$
4 / 10 / 17
$$

Outline

Joint work with C．E．Gutiérrez．
（1）Motivating Example：the Parallel Reflector Problem．
（2）Weak Solutions of Generated Jacobian Equations．
（3）An Iterative Method for Constructing Approximate Solutions．
（9）Finite Step Convergence．

The Parallel Reflector Problem

- $\Omega, \Omega^{*} \subset \mathbb{R}^{n}$ bounded domains; $\Omega=$ source domain, $\Omega^{*}=$ target domain.
- μ and ν Radon measures on Ω and Ω^{*} respectively; $\mu=$ source intensity, $\nu=$ target intensity
- Conservation of energy: $\mu(\Omega)=\nu\left(\Omega^{*}\right)$.
- Light beams emanate from Ω in the e_{n+1} direction, strike a surface $\Sigma \subset \mathbb{R}^{n+1}$ and are reflected onto Ω^{*}.
- Σ determines the reflector map, $\Phi_{\Sigma}: \Omega \rightarrow \Omega^{*}$, which takes points from the source to the target according to the law of reflection.
- Parallel Reflector Problem: Given domains Ω, Ω^{*} and measures μ, ν s.t. $\mu(\Omega)=\nu\left(\Omega^{*}\right)$, find the reflecting surface Σ whose reflector map Φ_{Σ} conserves energy locally; i.e.

$$
\mu\left(\Phi_{\Sigma}^{-1}(F)\right)=\nu(F) \quad \forall F \subset \Omega^{*} \text { Borel. }
$$

The Parallel Reflector Problem: the Semi-Discrete Case

(1) Ω^{*} consists of a finite number of distinct points y_{1}, \ldots, y_{N}.
(2) Source intensity μ assumed to be an absolutely continuous measure with density $g \in L^{1}(\Omega), g>0$ a.e.
(3) Target measure ν assumed to be a Dirac measure; $\nu=\sum_{i=1}^{N} f_{i} \delta_{y_{i}}$.
(9) Conservation of Energy implies

$$
\int_{\Omega} g(x) d x=\sum_{i=1}^{N} f_{i}
$$

The Parallel Reflector Problem: the Semi-Discrete Case

- Law of reflection determines underlying geometry.
- The reflecting surface Σ consists of pieces of downward facing paraboloids P_{i} with focus at $y_{i} \in \Omega^{*}$, given by the equation

$$
P_{i}(x)=P\left(x, y_{i}, b_{i}\right)=\frac{1}{b_{i}}-b_{i}\left|x-y_{i}\right|^{2}, b_{i}>0
$$

- $b_{i}=$ opening of the paraboloid; determines how much light is reflected onto y_{i}.
- Knowledge of the numbers b_{1}, \ldots, b_{N} allows reconstruction of the reflector surface Σ.

Statement of the Parallel Reflector Problem

Determine the numbers b_{1}, \ldots, b_{N} so that the graph of the function $u(x)=\max _{1 \leq i \leq N} P\left(x, y_{i}, b_{i}\right)$ reflects f_{i} amount of radiation onto the point y_{i} for each $i=1, \ldots, N$.

Aim of this Talk

- Given the source intensity g and the target intensities f_{1}, \ldots, f_{N} for each target point y_{1}, \ldots, y_{N}, is there an iterative method to solve for the coefficients b_{1}, \ldots, b_{N} up to a prescribed error?
- The method we will consider first appeared in work of Caffarelli-Kochengin-Oliker on the far-field reflector problem; subsequently generalized by Kitagawa to the semi-discrete optimal mass transport problem.
- Our contribution: generalize this method to the setting of generated Jacobian equations (GJEs) and provide a simpler proof of finite-step convergence under minimal assumptions on the data.
- Previous works used smoothness of source density g and the Ma-Trudinger-Wang Condition on the cost function; the idea behind the simplified proof originates in work of DeLeo-Gutierrez-Mawi on the far-field refractor problem.

From the Parallel Reflector Problem to GJEs

- The parallel reflector problem provides the prototypical example of a generated Jacobian equation.
- $\Omega, \Omega^{*} \subset \mathbb{R}^{n}$ bounded domains.
- μ an absolutely continuous measure on Ω with density $g \in L^{1}(\Omega)$, $g>0$ Lebesgue a.e..
- $\nu=\sum_{i=1}^{N} f_{i} \delta_{y_{i}}$ for $y_{1}, \ldots, y_{N} \in \Omega^{*}$ distinct and $f_{1}, \ldots, f_{N}>0$.
- μ and ν satisfy the mass-balance condition $\mu(\Omega)=\nu\left(\Omega^{*}\right)$; that is

$$
\int_{\Omega} g(x) d x=\sum_{i=1}^{N} f_{i}
$$

Generating Functions for GJEs

- Let $G: \bar{\Omega} \times \overline{\Omega^{*}} \times \mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$be a given generating function.
- Assume $G=G(x, y, v)$ satisfies the following structural conditions:
(1) (Regularity) $G(x, y, v)$ continuously differentiable in v, twice continuously differentiable in x for $x \in \Omega$, and, for any $\alpha>0$,

$$
\sup _{\Omega \times \Omega^{*} \times(0, \alpha)}\left|G_{x}(x, y, v)\right|<\infty .
$$

(2) (Monotonicity) $G_{v}(x, y, v)<0$ for all $(x, y) \in \Omega \times \Omega^{*}$.
(3) (Twist) The map $(y, v) \mapsto\left(G(x, y, v), G_{x}(x, y, v)\right)$ is injective for each $x \in \Omega$.
(9) (Uniform Convergence Property) For each $y \in \Omega^{*}$, we have $G(x, y, v) \rightarrow \infty$ uniformly in $x \in \bar{\Omega}$ as $v \rightarrow 0^{+}$.

Notions of Convexity for GJEs

G-Convexity

A function $\phi: \Omega \rightarrow \mathbb{R}$ is said to be G-convex if for all $x_{0} \in \Omega$, there exists $y_{0} \in \Omega^{*}$ and $v_{0} \in \mathbb{R}$ such that $\phi(x) \geq G\left(x, y_{0}, v_{0}\right)$ with equality at $x=x_{0}$. The function $G\left(\cdot, y_{0}, v_{0}\right)$ is said to be a G-support to ϕ at x_{0}.

G-Normal Map

Given a G-convex function ϕ, we define the G-normal map of ϕ to be the set-valued function

$$
\partial_{G} \phi\left(x_{0}\right)=\left\{y \in \Omega^{*}: \exists v_{0} \in \mathbb{R} \text { s.t. } G\left(\cdot, y, v_{0}\right) \text { supports } \phi \text { at } x_{0}\right\} .
$$

- (Regularity) \Rightarrow each G-convex function ϕ is uniformly Lipschitz.
- (Twist) $\Rightarrow \partial_{G} \phi(x)$ is single-valued for Lebesgue a.e. $x \in \Omega$.

Weak Solutions of GJEs

Tracing Map

The tracing map of ϕ is defined as

$$
\tau_{G} \phi\left(y_{0}\right):=\left(\partial_{G} \phi\right)^{-1}\left(y_{0}\right)=\left\{x \in \Omega: y_{0} \in \partial_{G} \phi(x)\right\} .
$$

For each $F \subset \Omega^{*}$, we define $\tau_{G} \phi(F):=\bigcup_{y \in F} \tau_{G} \phi(y)$.

Weak (Brenier) Solutions

The G-convex function ϕ is said to be a weak (Brenier) solution of the generated Jacobian equation if $\left(\partial_{G} \phi\right)_{\#} \mu=\nu$; that is, for each Borel set $F \subset \Omega^{*}$, we have

$$
\mu\left[\tau_{G} \phi(F)\right]=\nu(F) .
$$

Back to the Parallel Reflector Problem

- The generating function for the parallel reflector problem is $G(x, y, v)=\frac{1}{2 v}-\frac{v}{2}|x-y|^{2}$. It satisfies all the structural conditions outlined above under certain restrictions on the configuration of the target points y_{1}, \ldots, y_{N} (more later).
- The reflector surface Σ is the graph of a G-convex function ϕ.
- The G-normal map for the reflector problem is the set of target points y_{1}, \ldots, y_{N}.
- The tracing map $\tau_{\phi}\left(y_{i}\right)$ for a point $y_{i} \in \Omega^{*}$ is the set of points $x \in \Omega$ which are reflected by Σ onto y_{i}.
- The solution to the parallel reflector problem for discrete targets is a weak (Brenier) solution of the GJE associated to the above generating function.

Setup for the Iterative Method

- We use the short-hand $\mathbf{b}>0$ to denote a vector $\mathbf{b}=\left(b_{1}, \ldots, b_{N}\right) \in \mathbb{R}^{N}$ with $b_{i}>0$ for $1 \leq i \leq N$.
- Given $\mathbf{b}>0$, define the envelope

$$
\phi_{\mathbf{b}}(x):=\max _{1 \leq i \leq N} G\left(x, y_{i}, b_{i}\right) .
$$

- Intensity functions:

$$
H_{i}(\mathbf{b}):=\mu\left[\tau_{G} \phi_{\mathbf{b}}\left(y_{i}\right)\right], 1 \leq i \leq N .
$$

- Voronoi Cells:

$$
\begin{gathered}
V_{i, j}^{\mathbf{b}}:=\left\{x \in \Omega: G\left(x, y_{i}, b_{i}\right) \geq G\left(x, y_{j}, b_{j}\right)\right\} \\
V_{i}^{\mathbf{b}}:=\Omega \cap \bigcap_{j \neq i} V_{i, j}^{\mathbf{b}}=\left\{x \in \Omega: \phi_{\mathbf{b}}(x)=G\left(x, y_{i}, b_{i}\right)\right\} .
\end{gathered}
$$

- By (Twist), the sets $V_{i}^{\mathbf{b}}$ form a partition of Ω.

An Important Lemma

Lemma

Fix $i \in\{1, \ldots, N\}$.
(1) If $V_{i}^{\mathbf{b}} \neq \emptyset$, then $V_{i}^{\mathbf{b}}=\tau_{G} \phi_{\mathbf{b}}\left(y_{i}\right)$.
(2) If $V_{i}^{\mathbf{b}}=\emptyset$, then $H_{i}(\mathbf{b})=0$.

Corollary

Let $1 \leq i \leq N$ and $b_{j}>0$ for all $j \neq i$. Then $H_{i}(\mathbf{b})$ is increasing in b_{i} and $H_{j}(\mathbf{b})$ is decreasing in b_{i} if $j \neq i$. Furthermore,

$$
\lim _{b_{i} \rightarrow 0^{+}} H_{i}(\mathbf{b})=\mu(\Omega) \text { and } \lim _{b_{i} \rightarrow 0^{+}} H_{j}(\mathbf{b})=0 \text { for all } j \neq i .
$$

Initializing the Iterative Method

- Let $\epsilon>0$ be a given tolerance.
- We wish to find a vector $\mathbf{b}_{\epsilon}>0$ such that $\left|H_{i}\left(\mathbf{b}_{\epsilon}\right)-f_{i}\right|<\epsilon$ for each $i=1, \ldots, N$.
- Fix $\delta:=\min \left\{\frac{\epsilon}{N-1}, \frac{f_{1}}{N}\right\}$ and initialize $b_{2}=\cdots=b_{N}=1$.
- By the uniform convergence property, there exists $\beta>0$ such that if $b_{1}=\beta$, then $G\left(x, y_{1}, b_{1}\right)>G\left(x, y_{i}, 1\right)$ for each $i=2, \ldots, N$ and $x \in \Omega$.
- The vector $\mathbf{b}_{\text {initial }}:=(\beta, 1, \ldots, 1)$ thus satisfies $H_{1}(\mathbf{b})=\mu(\Omega)$ and $H_{i}(\mathbf{b})=0$ for each $i=2, \ldots, N$.
- Define the set

$$
W_{\delta}:=\left\{\mathbf{b}>0: b_{1}=\beta \text { and } H_{i}(\mathbf{b}) \leq f_{i}+\delta \text { for all } i=2, \ldots, N\right\}
$$

- Clearly $\mathbf{b}_{\text {initial }} \in W_{\delta}$, and so $W_{\delta} \neq \emptyset$.

Description of the Iterative Method

Choose any $\mathbf{b}^{0} \in W_{\delta}$ and construct the sequence $\mathbf{b}^{M} \in W_{\delta}$ as follows:
(1) Given $\mathbf{b}^{M} \in W_{\delta}, M \geq 0$, construct N intermediate vectors $\mathbf{b}^{M, 1}, \ldots, \mathbf{b}^{M, N} \in W_{\delta}$ (recall, $N=$ number of target points).
(2) Start by letting $\mathbf{b}^{M, 1}=\mathbf{b}^{M}$. Since $\mathbf{b}^{M} \in W_{\delta}$, we know $H_{2}\left(\mathbf{b}^{M, 1}\right) \leq f_{2}+\delta$.

- Case 1: $H_{2}\left(\mathbf{b}^{M, 1}\right) \geq f_{2}-\delta$. Then $\left|H_{2}\left(\mathbf{b}^{M, 1}\right)-f_{2}\right| \leq \delta$, so set $\mathbf{b}^{M, 2}=\mathbf{b}^{M, 1}$.
- Case 2: $H_{2}\left(\mathbf{b}^{M, 1}\right)<f_{2}-\delta$. Since $f_{2}<\mu(\Omega), \exists \bar{b} \in\left(0, b_{2}^{M, 1}\right)$ s.t. $\mathbf{b}^{M, 2}:=\left(b_{1}^{M, 1}, \bar{b}, b_{3}^{M, 1}, \ldots, b_{N}^{M, 1}\right)$ satisfies $H_{2}\left(\mathbf{b}^{M, 2}\right) \in\left(f_{2}, f_{2}+\delta\right)$.
(3) The inequalities $H_{i}\left(\mathbf{b}^{M, 2}\right) \leq f_{i}+\delta$ for $i=3, \ldots, N$ follow due to the Corollary. Hence, $\mathbf{b}^{M, 2} \in W_{\delta}$.
(9) Continue in this manner for each $\mathbf{b}^{M, k}, k=2, \ldots, N$ and set $\mathbf{b}^{M+1}:=\mathbf{b}^{M, N}$.

Stopping Criteria

- If at some step M we have $\mathbf{b}^{M}:=\mathbf{b}^{M, 1}=\mathbf{b}^{M, 2}=\cdots=\mathbf{b}^{M, N}$, then $\left|H_{i}\left(\mathbf{b}^{M}\right)-f_{i}\right| \leq \delta<\epsilon$ for each $i=2, \ldots, N$.
- By the choice of δ, and the mass-balance condition $\mu(\Omega)=\nu\left(\Omega^{*}\right)$

$$
\begin{aligned}
\left|H_{1}\left(\mathbf{b}^{M}\right)-f_{1}\right| & =\left|\mu(\Omega)-\sum_{i=2}^{N} H_{i}\left(\mathbf{b}^{M}\right)-\nu\left(\Omega^{*}\right)+\sum_{i=2}^{N} f_{i}\right| \\
& \leq \sum_{i=2}^{N}\left|H_{i}\left(\mathbf{b}^{M}\right)-f_{i}\right| \\
& \leq(N-1) \delta<\epsilon
\end{aligned}
$$

- Thus, \mathbf{b}^{M} is the desired vector.

Finite Step Convergence

- Suppose we are at the (M, i)-th step of the iterative procedure. Then we either decrease $b_{i+1}^{M, i}$ to $b_{i+1}^{M, i+1}$ or leave it unchanged.
- In the first scenario, we have

$$
H_{i+1}\left(\mathbf{b}^{M, i+1}\right)-H_{i+1}\left(\mathbf{b}^{M, i}\right)>f_{i+1}-\left(f_{i+1}-\delta\right)=\delta
$$

- Assume $H_{i}(\mathbf{b})$ is Lipschitz on W_{δ} for each $i=2, \ldots, N$, with Lipschitz constant L; then

$$
\delta<H_{i+1}\left(\mathbf{b}^{M, i+1}\right)-H_{i+1}\left(\mathbf{b}^{M, i}\right) \leq L\left(b_{i+1}^{M, i}-b_{i+1}^{M, i+1}\right)
$$

- Since only positive vectors \mathbf{b} are admissible, we conclude that each b_{i} can only be decreased a finite number of times.
- Conclusion: If $H_{i}(\mathbf{b})$ satisfies a Lipschitz estimate on W_{δ} for each $i=1, \ldots, N$, then the method terminates in a finite number of steps.

Main Result

Let $j \in\{1, \ldots, N\}, j \neq i$, and let $\mathcal{G}_{i j}(x):=G\left(x, y_{j}, b_{j}\right)-G\left(x, y_{i}, b_{i}\right)$. Assume $\exists \lambda>0$ s.t.

$$
\begin{equation*}
\inf _{x \in \Omega, \Lambda \leq b_{i}, b_{j} \leq 1}\left|D_{x} \mathcal{G}_{i j}(x)\right| \geq \lambda>0 \tag{1}
\end{equation*}
$$

Lipschitz Estimate for H_{i}

Let G be a generating function satisfying the structural conditions and (1). Then for $\mathbf{b} \in W_{\delta}$ and $0<t \leq b_{i}-\Lambda$, we have the one-sided Lipschitz estimate

$$
0 \leq H_{i}\left(\mathbf{b}^{t}\right)-H_{i}(\mathbf{b}) \leq \frac{C}{\lambda}(N-1)\|g\|_{L^{\infty}(\Omega)}\left(\mathcal{H}^{n-1}(\partial \Omega)+K \mathcal{L}^{n}(\Omega)\right) t
$$

where $K=K\left(\lambda,\left\|D_{x} G\right\|_{L^{\infty}(\Omega)},\left\|D_{x}^{2} G\right\|_{L^{\infty}(\Omega)}\right)$ is a positive constant, λ is the constant in (1), and $C=\sup _{x \in \Omega, \wedge \leq b \leq 1}\left|G_{v}\left(x, y_{i}, b\right)\right|$.

Parallel Reflectors Once Again

Let us check the condition (1) for the parallel reflector. Recall that $G(x, y, v)=\frac{1}{2 v}-\frac{v}{2}|x-y|^{2}$. An easy calculation shows

$$
D_{x} \mathcal{G}_{i j}(x):=b_{j}\left(y_{j}-x\right)-b_{i}\left(y_{i}-x\right)
$$

This vanishes if and only if the points x, y_{i}, y_{j} are colinear.
Conclusion: Suppose the target Ω^{*} is arranged in such a way that for any distinct pair of points $y_{i}, y_{j} \in \Omega^{*}$, the line containing y_{i} and y_{j} does not intersect Ω. Then by compactness of Ω and the fact that $b_{i}, b_{j} \neq 0$, we obtain (1) for the parallel reflector problem.

Lipschitz Estimate for H_{i} (Idea of Proof)

W_{δ} stays away from zero

There exists a positive number $\Lambda=\Lambda\left(\beta, \Omega, \Omega^{*}\right)$ such that for all $\delta>0$, $W_{\delta} \subset \mathcal{B}_{\Lambda}$, where $\mathcal{B}_{\Lambda}:=\left\{\mathbf{b}>0: b_{1}=\beta, b_{k} \geq \Lambda\right.$ for $\left.k=2, \ldots, N\right\}$.

- Proof: By the assumption $\delta \leq \frac{f_{1}}{N}$ and the mass-balance condition, it follows that for any $\mathbf{b} \in W_{\delta}$,

$$
\begin{aligned}
0 & \leq f_{1}-N \delta<f_{1}-(N-1) \delta \\
& =\nu\left(\Omega^{*}\right)-\sum_{i=2}^{N}\left(f_{i}+\delta\right) \leq \mu(\Omega)-\sum_{i=2}^{N} H_{i}(\mathbf{b})=H_{1}(\mathbf{b}) .
\end{aligned}
$$

- On the other hand, by the uniform convergence property, there exists a positive number $\Lambda=\Lambda\left(\beta, \Omega, \Omega^{*}\right)<\beta$ such that if $0<b_{i}<\Lambda$ for any $i \neq 1$, then $G\left(x, y_{i}, b_{i}\right)>G\left(x, y_{1}, \beta\right)$ for all $x \in \Omega$.
- Hence, $V_{1}^{\mathbf{b}}=\emptyset$ and so $H_{1}(\mathbf{b})=0$, which is a contradiction. \square

Lipschitz Estimate for H_{i} (Idea of Proof)

Fix $i, j=1, \ldots, N, i \neq j$. Let $0<t<b_{i}$ and $\mathbf{b}^{t}:=b-t \mathbf{e}_{i}$.
Shorthand: $V_{i, j}=V_{i, j}^{\mathbf{b}}, V_{i, j}^{t}=V_{i, j}^{\mathbf{b}_{t}}, V_{i}=V_{i}^{\mathbf{b}}, V_{i}^{t}=V_{i}^{\mathbf{b}_{t}}$.
We have

$$
0 \leq H_{i}\left(\mathbf{b}^{t}\right)-H_{i}(\mathbf{b})=\mu\left(V_{i}^{t}\right)-\mu\left(V_{i}\right)=\mu\left(V_{i}^{t} \backslash V_{i}\right)=\int_{V_{i}^{t} \backslash V_{i}} g(x) d x
$$

It can be shown that

$$
V_{i}^{t} \backslash V_{i} \subset \bigcup_{j \neq i}\left(V_{i, j}^{t} \backslash V_{i, j}\right) .
$$

Therefore,

$$
0 \leq H_{i}\left(\mathbf{b}^{t}\right)-H_{i}(\mathbf{b})=\int_{V_{i}^{t} \backslash V_{i}} g(x) d x \leq\|g\|_{L^{\infty}(\Omega)} \sum_{j \neq i} \mathcal{L}^{n}\left(V_{i, j}^{t} \backslash V_{i, j}\right)
$$

Lipschitz Estimate for H_{i} (Idea of Proof)

By definition of $V_{i, j}$,

$$
\begin{aligned}
V_{i, j}^{t} \backslash V_{i, j} & =\left\{x \in \Omega: G\left(x, y_{i}, b_{i}\right)<G\left(x, y_{j}, b_{j}\right) \leq G\left(x, y_{i}, b_{i}-t\right)\right\} \\
& =\left\{x \in \Omega: 0<\mathcal{G}_{i j}(x) \leq G\left(x, y_{i}, b_{i}-t\right)-G\left(x, y_{i}, b_{i}\right)\right\} .
\end{aligned}
$$

By the mean value theorem,

$$
G\left(x, y_{i}, b_{i}-t\right)-G\left(x, y_{i}, b_{i}\right) \leq \sup _{x \in \Omega, \Lambda \leq v \leq 1}\left|G_{v}\left(x, y_{i}, v\right)\right| \cdot t \leq C t
$$

Thus, $V_{i, j}^{t} \backslash V_{i, j} \subset\left\{x \in \Omega: 0<\mathcal{G}_{i j}(x) \leq C t\right\}$. Under the assumption (1), it can be shown using the divergence theorem and co-area formula that

$$
\mathcal{L}^{n}\left(\left\{x \in \Omega: 0<\mathcal{G}_{i j}(x) \leq C t\right\}\right) \simeq t .
$$

Thank You．

