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Centroid bodies

Given a Borel probability measure µ on Rn, and p ≥ 1, the Lp-centroid
body Zp (µ) is de�ned by its support function:

∀θ ∈ Sn−1, hZp(µ) (θ) =

(∫

Rn
|〈θ , x〉|p dµ (x)

)1/p

.

For µ log-concave, Z1 (µ)≈ Z2 (µ), and by putting µ in isotropic
position, it follows that

∫

Rn
‖x‖Z1(µ) dµ (x)≈

(∫

Rn
‖x‖2Z2(µ) dµ (x)

)1/2

=
√
n.

Question: is it true that for any non-degenerate probability measure µ :
∫

Rn
‖x‖Z1(µ) dµ (x)≥ c

√
n?

Answer: yes.
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Generating convex sets by measures

De�nition

Given a Borel measure µ on Rn, we de�ne the convex set:

M(µ) =

{∫

Rn
yf (y)dµ (y) : 0≤ f ≤ 1,

∫

Rn
f dµ = 1

}
.

If µ = ∑
N
i=1 δxi , then M(µ) = conv(x1, . . . ,xN).

If µ (Rn)< 1, then M(µ) = /0.

For µ (Rn) = 1, then M(µ) = {∫Rn xdµ (x)} is a singleton
(the center of mass of µ).
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Examples
Discrete generating measures

1) If µ = 1
k ∑

2
i=1 δ±ei then:

k = 1
4 k = 1

2

k = 3
4 k = 1

e1

e2

e1

e1e1

e2 e2

e2
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Examples
Discrete generating measures

In general, if µ = ∑
m
i=1wiδxi then M(µ) is a polytope. More precisely,

it is the linear image of

P =

{
λλλ ∈ Rm : 0≤ λi ≤ 1,

m

∑
i=1

λiwi = 1

}
⊆ Rm

under the map F (λλλ ) = ∑
m
i=1 λiwixi .

Also satis�ed:

M(µ)⊆ conv(x1, · · · ,xm)∩Z (w1x1, . . . ,wmxm) ,

where Z (w1x1, . . . ,wmxm) is the Minkowski sum of [0,wixi ].

If µ (Rn)≤ 2 and µ ({0})≥ 1, then M(µ) = Z (w1x1, . . . ,wmxm)
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Examples
uniform measures on convex bodies

2) If µ is uniform on a convex body K ⊆ Rn with vol(K )> 1, then M(µ)
is related to the �oating body K1 of K :

θ

bar(Kθ) ∈ M(µ)

vol(Kθ) = 1

K1 =
⋂

θ∈Sn−1

(K \Kθ)

Kθ

bar(Kθ)

Kθ = {x ∈ K : 〈x, θ〉 ≥ r}

K \Kθ
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Approximation of convex bodies by polytopes

Let K ⊆ Rn be a centered convex body. For R > 1, consider:

dR (K ) = inf

{
N ∈ N : ∃P = conv(x1, . . . ,xN)⊆ Rn ,

1

R
P ⊆ K ⊆ P

}
.

For R = ∞, we trivially have d∞ (K ) = n+1 (take a big simplex).
However, consider:

DR (K )= inf

{
N

∑
i=1

‖xi‖K : ∃P = conv(x1, . . . ,xN)⊆ Rn ,
1

R
P ⊆ K ⊆ P

}
.

Note that for any R < ∞, dR (K )≤ DR (K )≤ RdR (K ).

For R = ∞, D∞ (K ) coincides with the vertex index of K , which was
introduced by Bezdek and Litvak:

vein(K ) = inf

{
N

∑
i=1

‖xi‖K : K ⊆ P = conv(x1, . . . ,xN)

}
.
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Approximation of convex bodies by measure-generated sets

Our de�nition of

M(µ) =

{∫

Rn
yf (y)dµ (y) : 0≤ f ≤ 1,

∫

Rn
f dµ = 1

}

leads to the following new quantities:

d∗R (K ) = inf

{
µ (Rn) :

1

R
M(µ)⊆ K ⊆M(µ)

}
,

D∗R (K ) = inf

{∫

Rn
‖x‖K dµ (x) :

1

R
M(µ)⊆ K ⊆M(µ)

}
,

vein∗ (K ) = inf

{∫

Rn
‖x‖K dµ (x) : K ⊆M(µ)

}
.
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Upper bounds

Theorem

Let K be a centered convex body in Rn. Then for 1< R ≤ n one has

d∗R (K )≤ exp

(
1+

n−1

R−1

)
, and D∗R (K )≤ R exp

(
1+

n−1

R−1

)
.

In particular, vein∗ (K )≤ D∗n (K ) = e2n

Theorem

Let K =−K be a convex body in Rn. Then

d∗√
n
(K )≤ C , and D∗√

n
(K )≤ Cn.

The results follow by taking appropriate uniform measures + John's
position / Brunn Minkowski .
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Estimating vein∗ (K )
Two precise computations

Recall: vein(K ) = inf

{
N

∑
i=1

‖xi‖K : K ⊆ P = conv(x1, . . . ,xN)

}
,

vein∗ (K ) = inf

{∫

Rn
‖x‖K dµ (x) : K ⊆M(µ)

}
.

Bezdek-Litvak:

vein(Bn
1 ) = 2n

In our case:

vein∗ (Bn
1 ) = 2n

Gluskin-Litvak:
√
3n3/2 ≤ vein(Bn

2 )≤ 2n3/2

In our case:

vein∗ (Bn
2 ) =

√
2πn (1+o (1))
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Estimating vein∗ (K )

Theorem (Gluskin and Litvak, '08, '12)

Let K be a centrally symmetric convex body in Rn. Then

2n = vein(Bn
1 )≤ vein(K )≤ C1 vein(Bn

2 )≤ C2n
3/2.

Theorem

Let K be a centrally symmetric convex body in Rn. Then

c
√
n ≤ c vein∗ (Bn

2 )≤ vein∗ (K )≤ C1 vein∗ (Bn
1 )≤ C2n.

Recall: upper bound is a consequence of our upper bound on D∗n (K ).
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Lower bound on vein∗ (K ): Sketch of the proof

Fact 1: ∃ T ∈ GLn (R) and a subspace E ⊆ Rn with dimE ≥ n/2 s.t.

BE
1 ⊆ PE (TK )⊆ C

√
nBE

1 .

Since vein∗ (K ) = vein∗ (TK ), we may assume that T = Id .

Fact 2: enough to consider �nite discrete measures.

Fact 3: vein∗ (K )≤ vein∗ (L)dBM (K ,L) .

Proof: Suppse µ = ∑
m
i=1wiδxi with K ⊆M(µ). De�ne ν = ∑

m
i=1wiδPE xi .

Then PEK ⊆M(ν).Moreover, ‖x‖K ≥ ‖PEx‖PEK
implies

∫

Rn
‖x‖K dµ (x)≥

∫

E
‖y‖PEK

dν (y)≥ vein∗ (PEK ) ,

but

vein∗ (PEK )≥ vein∗
(
BE
1

)

dBM
(
BE
1 ,PEK

) ≥ 2dimE

C
√
n
≥ C
√
n.
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Relation to centroid bodies

Proposition

We have inf
K=−K

vein∗ (K ) = 2 inf
µ

∫

Rn
‖x‖Z1(µ) dµ (x).

Corollary

We have inf
µ

∫

Rn
‖x‖Z1(µ) dµ (x)≥ C

√
n.

Sketch of the proof:

Suppose K ⊆M(µ). By scaling the measure and adding an atom at
the origin, we may assume that µ (Rn) = 2, µ ({0}) = 1. In other
words, µ = ν +δ0 where ν is a probability measure and
K ⊆M(ν +δ0).

Since K =−K , we may also assume that ν is symmetric. In this case,
we have M(ν +δ0) =

1
2Z1 (ν).
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Relation to centroid bodies

Thus,

inf
K

vein∗ (K ) = inf
K

inf

{∫

Rn
‖x‖Kdµ (x) : µ dis. sym., K ⊆ 1

2
Z1(µ)

}

≥ inf
K

inf

{∫

Rn
‖x‖ 1

2Z1(µ) dµ (x) : µ dis. sym., K ⊆ 1

2
Z1(µ)

}

≥ inf
µ dis. sym.

{∫

Rn
‖x‖ 1

2Z1(µ) dµ (x)

}

≥ inf
µ

{∫

Rn
‖x‖ 1

2Z1(µ) dµ (x)

}

≥ inf
µ

vein∗
(
1

2
Z1(µ)

)

≥ inf
K

vein∗ (K ) .

Thank you!
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