On Convex Bodies Generated by Borel Measures joint work with Han Huang

Boaz Slomka

University of Michigan

$$
\text { Banff, May 21-26, } 2017
$$

Centroid bodies

- Given a Borel probability measure μ on \mathbb{R}^{n}, and $p \geq 1$, the L_{p}-centroid body $Z_{p}(\mu)$ is defined by its support function:

$$
\forall \theta \in \mathbb{S}^{n-1}, \quad h_{Z_{p}(\mu)}(\theta)=\left(\int_{\mathbb{R}^{n}}|\langle\theta, x\rangle|^{p} \mathrm{~d} \mu(x)\right)^{1 / p}
$$

- For μ log-concave, $Z_{1}(\mu) \approx Z_{2}(\mu)$, and by putting μ in isotropic position, it follows that

- Question: is it true that for any non-degenerate probability measure μ :

$$
\int_{\mathbb{R}^{n}}\|x\|_{z_{1}(\mu)} \mathrm{d} \mu(x) \geq c \sqrt{n} ?
$$

Answer: yes.

Centroid bodies

- Given a Borel probability measure μ on \mathbb{R}^{n}, and $p \geq 1$, the L_{p}-centroid body $Z_{p}(\mu)$ is defined by its support function:

$$
\forall \theta \in \mathbb{S}^{n-1}, \quad h_{Z_{p}(\mu)}(\theta)=\left(\int_{\mathbb{R}^{n}}|\langle\theta, x\rangle|^{p} \mathrm{~d} \mu(x)\right)^{1 / p}
$$

- For μ log-concave, $Z_{1}(\mu) \approx Z_{2}(\mu)$, and by putting μ in isotropic position, it follows that

$$
\int_{\mathbb{R}^{n}}\|x\|_{Z_{1}(\mu)} \mathrm{d} \mu(x) \approx\left(\int_{\mathbb{R}^{n}}\|x\|_{Z_{2}(\mu)}^{2} \mathrm{~d} \mu(x)\right)^{1 / 2}=\sqrt{n}
$$

- Question: is it true that for any non-degenerate probability measure μ :

Answer: yes.

Centroid bodies

- Given a Borel probability measure μ on \mathbb{R}^{n}, and $p \geq 1$, the L_{p}-centroid body $Z_{p}(\mu)$ is defined by its support function:

$$
\forall \theta \in \mathbb{S}^{n-1}, \quad h_{Z_{p}(\mu)}(\theta)=\left(\int_{\mathbb{R}^{n}}|\langle\theta, x\rangle|^{p} \mathrm{~d} \mu(x)\right)^{1 / p}
$$

- For μ log-concave, $Z_{1}(\mu) \approx Z_{2}(\mu)$, and by putting μ in isotropic position, it follows that

$$
\int_{\mathbb{R}^{n}}\|x\|_{Z_{1}(\mu)} \mathrm{d} \mu(x) \approx\left(\int_{\mathbb{R}^{n}}\|x\|_{Z_{2}(\mu)}^{2} \mathrm{~d} \mu(x)\right)^{1 / 2}=\sqrt{n}
$$

- Question: is it true that for any non-degenerate probability measure μ :

$$
\int_{\mathbb{R}^{n}}\|x\|_{z_{1}(\mu)} \mathrm{d} \mu(x) \geq c \sqrt{n} ?
$$

Answer: yes.

Centroid bodies

- Given a Borel probability measure μ on \mathbb{R}^{n}, and $p \geq 1$, the L_{p}-centroid body $Z_{p}(\mu)$ is defined by its support function:

$$
\forall \theta \in \mathbb{S}^{n-1}, \quad h_{Z_{p}(\mu)}(\theta)=\left(\int_{\mathbb{R}^{n}}|\langle\theta, x\rangle|^{p} \mathrm{~d} \mu(x)\right)^{1 / p}
$$

- For μ log-concave, $Z_{1}(\mu) \approx Z_{2}(\mu)$, and by putting μ in isotropic position, it follows that

$$
\int_{\mathbb{R}^{n}}\|x\|_{Z_{1}(\mu)} \mathrm{d} \mu(x) \approx\left(\int_{\mathbb{R}^{n}}\|x\|_{Z_{2}(\mu)}^{2} \mathrm{~d} \mu(x)\right)^{1 / 2}=\sqrt{n}
$$

- Question: is it true that for any non-degenerate probability measure μ :

$$
\int_{\mathbb{R}^{n}}\|x\|_{z_{1}(\mu)} \mathrm{d} \mu(x) \geq c \sqrt{n} ?
$$

Answer: yes.

Generating convex sets by measures

Definition

Given a Borel measure μ on \mathbb{R}^{n}, we define the convex set:

$$
\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} y f(y) \mathrm{d} \mu(y): 0 \leq f \leq 1, \int_{\mathbb{R}^{n}} f \mathrm{~d} \mu=1\right\} .
$$

- If $\mu=\sum_{i=1}^{N} \delta_{x_{i}}$, then $\mathrm{M}(\mu)=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)$.
- If $\mu\left(\mathbb{R}^{n}\right)<1$, then $\mathrm{M}(\mu)=\emptyset$.
- For $\mu\left(\mathbb{R}^{n}\right)=1$, then $\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} x \mathrm{~d} \mu(x)\right\}$ is a singleton (the center of mass of μ).

Generating convex sets by measures

Definition

Given a Borel measure μ on \mathbb{R}^{n}, we define the convex set:

$$
\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} y f(y) \mathrm{d} \mu(y): 0 \leq f \leq 1, \int_{\mathbb{R}^{n}} f \mathrm{~d} \mu=1\right\} .
$$

- If $\mu=\sum_{i=1}^{N} \delta_{x_{i}}$, then $\mathrm{M}(\mu)=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)$.
- If $\mu\left(\mathbb{R}^{n}\right)<1$, then $\mathrm{M}(\mu)=\emptyset$.
- For $\mu\left(\mathbb{R}^{n}\right)=1$, then $\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} x \mathrm{~d} \mu(x)\right\}$ is a singleton (the center of mass of μ).

Generating convex sets by measures

Definition

Given a Borel measure μ on \mathbb{R}^{n}, we define the convex set:

$$
\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} y f(y) \mathrm{d} \mu(y): 0 \leq f \leq 1, \int_{\mathbb{R}^{n}} f \mathrm{~d} \mu=1\right\}
$$

- If $\mu=\sum_{i=1}^{N} \delta_{x_{i}}$, then $\mathrm{M}(\mu)=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)$.
- If $\mu\left(\mathbb{R}^{n}\right)<1$, then $\mathrm{M}(\mu)=\emptyset$.
- For $\mu\left(\mathbb{R}^{n}\right)=1$, then $\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} x \mathrm{~d} \mu(x)\right\}$ is a singleton (the center of mass of μ).

Generating convex sets by measures

Definition

Given a Borel measure μ on \mathbb{R}^{n}, we define the convex set:

$$
\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} y f(y) \mathrm{d} \mu(y): 0 \leq f \leq 1, \int_{\mathbb{R}^{n}} f \mathrm{~d} \mu=1\right\}
$$

- If $\mu=\sum_{i=1}^{N} \delta_{x_{i}}$, then $\mathrm{M}(\mu)=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)$.
- If $\mu\left(\mathbb{R}^{n}\right)<1$, then $\mathrm{M}(\mu)=\emptyset$.
- For $\mu\left(\mathbb{R}^{n}\right)=1$, then $\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} x \mathrm{~d} \mu(x)\right\}$ is a singleton (the center of mass of μ).

Generating convex sets by measures

Definition

Given a Borel measure μ on \mathbb{R}^{n}, we define the convex set:

$$
\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} y f(y) \mathrm{d} \mu(y): 0 \leq f \leq 1, \int_{\mathbb{R}^{n}} f \mathrm{~d} \mu=1\right\}
$$

- If $\mu=\sum_{i=1}^{N} \delta_{x_{i}}$, then $\mathrm{M}(\mu)=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)$.
- If $\mu\left(\mathbb{R}^{n}\right)<1$, then $\mathrm{M}(\mu)=\emptyset$.
- For $\mu\left(\mathbb{R}^{n}\right)=1$, then $\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} x \mathrm{~d} \mu(x)\right\}$ is a singleton (the center of mass of μ).

Examples

Discrete generating measures

1) If $\mu=\frac{1}{k} \sum_{i=1}^{2} \delta_{ \pm e_{i}}$ then:

Examples

Discrete generating measures

- In general, if $\mu=\sum_{i=1}^{m} w_{i} \delta_{x_{i}}$ then $\mathrm{M}(\mu)$ is a polytope. More precisely,
it is the linear image of

under the map $F(\boldsymbol{\lambda})=\sum_{i=1}^{m} \lambda_{i} w_{i} x_{i}$.
- Also satisfied:

where $Z\left(w_{1} x_{1}, \ldots, w_{m} x_{m}\right)$ is the Minkowski sum of $\left[0, w_{i} x_{i}\right]$.
- If $\mu\left(\mathbb{R}^{n}\right) \leq 2$ and $\mu(\{0\}) \geq 1$, then $\mathbf{M}(\mu)=Z\left(w_{1} x_{1}, \ldots, w_{m} x_{m}\right)$

Examples

Discrete generating measures

- In general, if $\mu=\sum_{i=1}^{m} w_{i} \delta_{x_{i}}$ then $\mathrm{M}(\mu)$ is a polytope. More precisely, it is the linear image of

$$
P=\left\{\lambda \in \mathbb{R}^{m}: 0 \leq \lambda_{i} \leq 1, \sum_{i=1}^{m} \lambda_{i} w_{i}=1\right\} \subseteq \mathbb{R}^{m}
$$

under the map $F(\boldsymbol{\lambda})=\sum_{i=1}^{m} \lambda_{i} w_{i} x_{i}$.

- Also satisfied:

where $Z\left(w_{1} x_{1}, \ldots, w_{m} x_{m}\right)$ is the Minkowski sum of $\left[0, w_{i} x_{i}\right]$.
- If $\mu\left(\mathbb{R}^{n}\right) \leq 2$ and $\mu(\{0\}) \geq 1$, then $\mathbb{M}(\mu)=Z\left(w_{1} x_{1}, \ldots, w_{m} x_{m}\right)$

Examples

Discrete generating measures

- In general, if $\mu=\sum_{i=1}^{m} w_{i} \delta_{x_{i}}$ then $\mathrm{M}(\mu)$ is a polytope. More precisely, it is the linear image of

$$
P=\left\{\lambda \in \mathbb{R}^{m}: 0 \leq \lambda_{i} \leq 1, \sum_{i=1}^{m} \lambda_{i} w_{i}=1\right\} \subseteq \mathbb{R}^{m}
$$

under the map $F(\boldsymbol{\lambda})=\sum_{i=1}^{m} \lambda_{i} w_{i} x_{i}$.

- Also satisfied:

$$
\mathrm{M}(\mu) \subseteq \operatorname{conv}\left(x_{1}, \cdots, x_{m}\right) \cap Z\left(w_{1} x_{1}, \ldots, w_{m} x_{m}\right)
$$

where $Z\left(w_{1} x_{1}, \ldots, w_{m} x_{m}\right)$ is the Minkowski sum of $\left[0, w_{i} x_{i}\right]$.

Examples

Discrete generating measures

- In general, if $\mu=\sum_{i=1}^{m} w_{i} \delta_{x_{i}}$ then $\mathrm{M}(\mu)$ is a polytope. More precisely, it is the linear image of

$$
P=\left\{\lambda \in \mathbb{R}^{m}: 0 \leq \lambda_{i} \leq 1, \sum_{i=1}^{m} \lambda_{i} w_{i}=1\right\} \subseteq \mathbb{R}^{m}
$$

under the map $F(\boldsymbol{\lambda})=\sum_{i=1}^{m} \lambda_{i} w_{i} x_{i}$.

- Also satisfied:

$$
\mathrm{M}(\mu) \subseteq \operatorname{conv}\left(x_{1}, \cdots, x_{m}\right) \cap Z\left(w_{1} x_{1}, \ldots, w_{m} x_{m}\right)
$$

where $Z\left(w_{1} x_{1}, \ldots, w_{m} x_{m}\right)$ is the Minkowski sum of $\left[0, w_{i} x_{i}\right]$.

- If $\mu\left(\mathbb{R}^{n}\right) \leq 2$ and $\mu(\{0\}) \geq 1$, then $\mathrm{M}(\mu)=Z\left(w_{1} x_{1}, \ldots, w_{m} x_{m}\right)$

Examples

uniform measures on convex bodies
2) If μ is uniform on a convex body $K \subseteq \mathbb{R}^{n}$ with $\operatorname{vol}(K)>1$, then $\mathrm{M}(\mu)$ is related to the floating body K_{1} of K :

Approximation of convex bodies by polytopes

- Let $K \subseteq \mathbb{R}^{n}$ be a centered convex body. For $R>1$, consider:

- For $R=\infty$, we trivially have $d_{\infty}(K)=n+1$ (take a big simplex). However, consider:

Note that for any $R<\infty, d_{R}(K) \leq D_{R}(K) \leq R d_{R}(K)$.

- For $R=\infty, D_{\infty}(K)$ coincides with the vertex index of K, which was introduced by Bezdek and Litvak:

$$
\operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{N}\left\|x_{i}\right\|_{K}: K \subseteq P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)\right\}
$$

Approximation of convex bodies by polytopes

- Let $K \subseteq \mathbb{R}^{n}$ be a centered convex body. For $R>1$, consider:

$$
d_{R}(K)=\inf \left\{N \in \mathbb{N}: \exists P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right) \subseteq \mathbb{R}^{n}, \frac{1}{R} P \subseteq K \subseteq P\right\}
$$

- For $R=\infty$, we trivially have $d_{\infty}(K)=n+1$ (take a big simplex). However, consider:

Note that for any $R<\infty, d_{R}(K) \leq D_{R}(K) \leq R d_{R}(K)$.

- For $R=\infty, D_{\infty}(K)$ coincides with the vertex index of K, which was introduced by Bezdek and Litvak:

Approximation of convex bodies by polytopes

- Let $K \subseteq \mathbb{R}^{n}$ be a centered convex body. For $R>1$, consider:

$$
d_{R}(K)=\inf \left\{N \in \mathbb{N}: \exists P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right) \subseteq \mathbb{R}^{n}, \frac{1}{R} P \subseteq K \subseteq P\right\} .
$$

- For $R=\infty$, we trivially have $d_{\infty}(K)=n+1$ (take a big simplex).

However, consider:

Note that for any $R<\infty, d_{R}(K) \leq D_{R}(K) \leq R d_{R}(K)$.

- For $R=\infty, D_{\infty}(K)$ coincides with the vertex index of K, which was introduced by Bezdek and Litvak:

Approximation of convex bodies by polytopes

- Let $K \subseteq \mathbb{R}^{n}$ be a centered convex body. For $R>1$, consider:

$$
d_{R}(K)=\inf \left\{N \in \mathbb{N}: \exists P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right) \subseteq \mathbb{R}^{n}, \frac{1}{R} P \subseteq K \subseteq P\right\} .
$$

- For $R=\infty$, we trivially have $d_{\infty}(K)=n+1$ (take a big simplex). However, consider:

$$
D_{R}(K)=\inf \left\{\sum_{i=1}^{N}\left\|x_{i}\right\|_{K}: \exists P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right) \subseteq \mathbb{R}^{n}, \frac{1}{R} P \subseteq K \subseteq P\right\} .
$$

$$
\text { Note that for any } R<\infty, d_{R}(K) \leq D_{R}(K) \leq R d_{R}(K) \text {. }
$$

- For $R=\infty, D_{\infty}(K)$ coincides with the vertex index of K, which was

 introduced by Bezdek and Litvak:

Approximation of convex bodies by polytopes

- Let $K \subseteq \mathbb{R}^{n}$ be a centered convex body. For $R>1$, consider:

$$
d_{R}(K)=\inf \left\{N \in \mathbb{N}: \exists P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right) \subseteq \mathbb{R}^{n}, \frac{1}{R} P \subseteq K \subseteq P\right\} .
$$

- For $R=\infty$, we trivially have $d_{\infty}(K)=n+1$ (take a big simplex). However, consider:

$$
D_{R}(K)=\inf \left\{\sum_{i=1}^{N}\left\|x_{i}\right\|_{K}: \exists P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right) \subseteq \mathbb{R}^{n}, \frac{1}{R} P \subseteq K \subseteq P\right\} .
$$

Note that for any $R<\infty, d_{R}(K) \leq D_{R}(K) \leq R d_{R}(K)$.
introduced by Bezdek and Litvak:

Approximation of convex bodies by polytopes

- Let $K \subseteq \mathbb{R}^{n}$ be a centered convex body. For $R>1$, consider:

$$
d_{R}(K)=\inf \left\{N \in \mathbb{N}: \exists P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right) \subseteq \mathbb{R}^{n}, \frac{1}{R} P \subseteq K \subseteq P\right\}
$$

- For $R=\infty$, we trivially have $d_{\infty}(K)=n+1$ (take a big simplex). However, consider:
$D_{R}(K)=\inf \left\{\sum_{i=1}^{N}\left\|x_{i}\right\|_{K}: \exists P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right) \subseteq \mathbb{R}^{n}, \frac{1}{R} P \subseteq K \subseteq P\right\}$.
Note that for any $R<\infty, d_{R}(K) \leq D_{R}(K) \leq R d_{R}(K)$.
- For $R=\infty, D_{\infty}(K)$ coincides with the vertex index of K, which was introduced by Bezdek and Litvak:

$$
\operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{N}\left\|x_{i}\right\|_{K}: K \subseteq P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)\right\}
$$

Approximation of convex bodies by measure-generated sets

- Our definition of

$$
\mathrm{M}(\mu)=\left\{\int_{\mathbb{R}^{n}} y f(y) \mathrm{d} \mu(y): 0 \leq f \leq 1, \int_{\mathbb{R}^{n}} f \mathrm{~d} \mu=1\right\}
$$

leads to the following new quantities:

$$
\begin{aligned}
d_{R}^{*}(K) & =\inf \left\{\mu\left(\mathbb{R}^{n}\right): \frac{1}{R} \mathrm{M}(\mu) \subseteq K \subseteq \mathrm{M}(\mu)\right\}, \\
D_{R}^{*}(K) & =\inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x): \frac{1}{R} \mathrm{M}(\mu) \subseteq K \subseteq \mathrm{M}(\mu)\right\}, \\
\operatorname{vein}^{*}(K) & =\inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x): K \subseteq \mathrm{M}(\mu)\right\} .
\end{aligned}
$$

Upper bounds

Theorem

Let K be a centered convex body in \mathbb{R}^{n}. Then for $1<R \leq n$ one has

$$
d_{R}^{*}(K) \leq \exp \left(1+\frac{n-1}{R-1}\right), \text { and } D_{R}^{*}(K) \leq R \exp \left(1+\frac{n-1}{R-1}\right)
$$

In particular, vein* $(K) \leq D_{n}^{*}(K)=e^{2} n$

Let $K=-K$ be a convex body in \mathbb{R}^{n}. Then

- The results follow by taking appropriate uniform measures + John's position / Brunn Minkowski

Upper bounds

Theorem

Let K be a centered convex body in \mathbb{R}^{n}. Then for $1<R \leq n$ one has

$$
d_{R}^{*}(K) \leq \exp \left(1+\frac{n-1}{R-1}\right), \text { and } D_{R}^{*}(K) \leq R \exp \left(1+\frac{n-1}{R-1}\right)
$$

In particular, vein* $(K) \leq D_{n}^{*}(K)=e^{2} n$

Theorem
Let $K=-K$ be a convex body in \mathbb{R}^{n}. Then

$$
d_{\sqrt{n}}^{*}(K) \leq C, \text { and } D_{\sqrt{n}}^{*}(K) \leq C n
$$

- The results follow by taking appropriate uniform measures + John's position / Brunn Minkowski

Upper bounds

Theorem

Let K be a centered convex body in \mathbb{R}^{n}. Then for $1<R \leq n$ one has

$$
d_{R}^{*}(K) \leq \exp \left(1+\frac{n-1}{R-1}\right), \text { and } D_{R}^{*}(K) \leq R \exp \left(1+\frac{n-1}{R-1}\right)
$$

In particular, vein ${ }^{*}(K) \leq D_{n}^{*}(K)=e^{2} n$
Theorem
Let $K=-K$ be a convex body in \mathbb{R}^{n}. Then

$$
d_{\sqrt{n}}^{*}(K) \leq C, \text { and } D_{\sqrt{n}}^{*}(K) \leq C n
$$

- The results follow by taking appropriate uniform measures + John's position / Brunn Minkowski.

Estimating vein* (K)

Two precise computations

$$
\begin{aligned}
\text { Recall: } \quad \operatorname{vein}(K) & =\inf \left\{\sum_{i=1}^{N}\left\|x_{i}\right\|_{K}: K \subseteq P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)\right\}, \\
\operatorname{vein}^{*}(K) & =\inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x): K \subseteq \mathrm{M}(\mu)\right\} .
\end{aligned}
$$

Estimating vein* (K)

Two precise computations

$$
\begin{aligned}
\text { Recall: } \quad \operatorname{vein}(K) & =\inf \left\{\sum_{i=1}^{N}\left\|x_{i}\right\|_{K}: K \subseteq P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)\right\}, \\
\operatorname{vein}^{*}(K) & =\inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x): K \subseteq \mathrm{M}(\mu)\right\} .
\end{aligned}
$$

Bezdek-Litvak:

$$
\operatorname{vein}\left(B_{1}^{n}\right)=2 n
$$

vein $^{*}\left(B_{1}^{n}\right)=2 n$

Estimating vein* (K)

Two precise computations

$$
\begin{aligned}
\text { Recall: } & \quad \operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{N}\left\|x_{i}\right\|_{K}: K \subseteq P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)\right\}, \\
& \operatorname{vein}^{*}(K)=\inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x): K \subseteq \mathrm{M}(\mu)\right\} .
\end{aligned}
$$

Bezdek-Litvak:
 $$
\operatorname{vein}\left(B_{1}^{n}\right)=2 n
$$

In our case:

$$
\operatorname{vein}^{*}\left(B_{1}^{n}\right)=2 n
$$

Estimating vein* (K)

Two precise computations

$$
\begin{aligned}
\text { Recall: } \quad \operatorname{vein}(K) & =\inf \left\{\sum_{i=1}^{N}\left\|x_{i}\right\|_{K}: K \subseteq P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)\right\}, \\
\operatorname{vein}^{*}(K) & =\inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x): K \subseteq \mathrm{M}(\mu)\right\} .
\end{aligned}
$$

Bezdek-Litvak:

$$
\operatorname{vein}\left(B_{1}^{n}\right)=2 n
$$

Gluskin-Litvak:

$$
\sqrt{3} n^{3 / 2} \leq \operatorname{vein}\left(B_{2}^{n}\right) \leq 2 n^{3 / 2}
$$

In our case:

$$
\operatorname{vein}^{*}\left(B_{1}^{n}\right)=2 n
$$

Estimating vein* (K)

Two precise computations

$$
\begin{aligned}
& \text { Recall: } \quad \operatorname{vein}(K)=\inf \left\{\sum_{i=1}^{N}\left\|x_{i}\right\|_{K}: K \subseteq P=\operatorname{conv}\left(x_{1}, \ldots, x_{N}\right)\right\}, \\
& \quad \operatorname{vein}^{*}(K)=\inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x): K \subseteq \mathrm{M}(\mu)\right\} .
\end{aligned}
$$

Bezdek-Litvak:

$$
\operatorname{vein}\left(B_{1}^{n}\right)=2 n
$$

In our case:
$\operatorname{vein}^{*}\left(B_{1}^{n}\right)=2 n$

Gluskin-Litvak:

$$
\sqrt{3} n^{3 / 2} \leq \operatorname{vein}\left(B_{2}^{n}\right) \leq 2 n^{3 / 2}
$$

In our case:

$$
\operatorname{vein}^{*}\left(B_{2}^{n}\right)=\sqrt{2 \pi n}(1+o(1))
$$

Estimating vein* (K)

Theorem (Gluskin and Litvak, '08, '12)
Let K be a centrally symmetric convex body in \mathbb{R}^{n}. Then

$$
2 n=\operatorname{vein}\left(B_{1}^{n}\right) \leq \operatorname{vein}(K) \leq C_{1} \operatorname{vein}\left(B_{2}^{n}\right) \leq C_{2} n^{3 / 2} .
$$

Let K be a centrally symmetric convex body in \mathbb{R}^{n}. Then $c \sqrt{n} \leq c \operatorname{vein}^{*}\left(B_{2}^{n}\right) \leq \operatorname{vein}^{*}(K) \leq C_{1} \operatorname{vein}^{*}\left(B_{1}^{n}\right) \leq C_{2 n}$.

- Recall: upper bound is a consequence of our upper bound on $D_{n}^{*}(K)$.

Estimating vein* (K)

Theorem (Gluskin and Litvak, '08, '12)

Let K be a centrally symmetric convex body in \mathbb{R}^{n}. Then

$$
2 n=\operatorname{vein}\left(B_{1}^{n}\right) \leq \operatorname{vein}(K) \leq C_{1} \operatorname{vein}\left(B_{2}^{n}\right) \leq C_{2} n^{3 / 2}
$$

Theorem
Let K be a centrally symmetric convex body in \mathbb{R}^{n}. Then

$$
c \sqrt{n} \leq c \operatorname{vein}^{*}\left(B_{2}^{n}\right) \leq \operatorname{vein}^{*}(K) \leq C_{1} \operatorname{vein}^{*}\left(B_{1}^{n}\right) \leq C_{2} n .
$$

- Recall: upper bound is a consequence of our upper bound on $D_{n}^{*}(K)$.

Estimating vein* (K)

Theorem (Gluskin and Litvak, '08, '12)

Let K be a centrally symmetric convex body in \mathbb{R}^{n}. Then

$$
2 n=\operatorname{vein}\left(B_{1}^{n}\right) \leq \operatorname{vein}(K) \leq C_{1} \operatorname{vein}\left(B_{2}^{n}\right) \leq C_{2} n^{3 / 2}
$$

Theorem
Let K be a centrally symmetric convex body in \mathbb{R}^{n}. Then

$$
c \sqrt{n} \leq c \operatorname{vein}^{*}\left(B_{2}^{n}\right) \leq \operatorname{vein}^{*}(K) \leq C_{1} \operatorname{vein}^{*}\left(B_{1}^{n}\right) \leq C_{2} n .
$$

- Recall: upper bound is a consequence of our upper bound on $D_{n}^{*}(K)$.

Lower bound on vein* (K) : Sketch of the proof

- Fact $1: \exists T \in \mathrm{GL}_{n}(\mathbb{R})$ and a subspace $E \subseteq \mathbb{R}^{n}$ with $\operatorname{dim} E \geq n / 2$ s.t.

$$
B_{1}^{E} \subseteq P_{E}(T K) \subseteq C \sqrt{n} B_{1}^{E}
$$

Since vein* $(K)=\operatorname{vein}^{*}(T K)$, we may assume that $T=I d$.

- Fact 2: enough to consider finite discrete measures.
- Fact 3: vein* (K) $\leq \operatorname{vein}^{*}(L) d_{B M}(K, L)$
 Then $P_{E} K \subseteq \mathrm{M}(v)$.Moreover, $\|x\|_{K} \geq\left\|P_{E} X\right\|_{P_{E} K}$ implies

Lower bound on vein* (K) : Sketch of the proof

- Fact $1: \exists T \in \mathrm{GL}_{n}(\mathbb{R})$ and a subspace $E \subseteq \mathbb{R}^{n}$ with $\operatorname{dim} E \geq n / 2$ s.t.

$$
B_{1}^{E} \subseteq P_{E}(T K) \subseteq C \sqrt{n} B_{1}^{E}
$$

Since vein* $(K)=$ vein* $(T K)$, we may assume that $T=I d$.

- Fact 2: enough to consider finite discrete measures.
- Fact 3: vein* $(K) \leq \operatorname{vein}^{*}(L) d_{B M}(K, L)$
 Then $P_{E} K \subseteq \mathrm{M}(v)$. Moreover, $\|x\|_{K} \geq\left\|P_{E} x\right\|_{P_{E} K}$ implies

Lower bound on vein* (K) : Sketch of the proof

- Fact $1: \exists T \in \mathrm{GL}_{n}(\mathbb{R})$ and a subspace $E \subseteq \mathbb{R}^{n}$ with $\operatorname{dim} E \geq n / 2$ s.t.

$$
B_{1}^{E} \subseteq P_{E}(T K) \subseteq C \sqrt{n} B_{1}^{E}
$$

Since vein* $(K)=$ vein* $(T K)$, we may assume that $T=I d$.

- Fact 2: enough to consider finite discrete measures.
- Fact 3: vein* $(K) \leq \operatorname{vein}^{*}(L) d_{B M}(K, L)$
 Then $P_{E} K \subseteq \mathrm{M}(v)$.Moreover, $\|x\|_{K} \geq\left\|P_{E} X\right\|_{P_{E} K}$ implies

Lower bound on vein* (K) : Sketch of the proof

- Fact $1: \exists T \in \mathrm{GL}_{n}(\mathbb{R})$ and a subspace $E \subseteq \mathbb{R}^{n}$ with $\operatorname{dim} E \geq n / 2$ s.t.

$$
B_{1}^{E} \subseteq P_{E}(T K) \subseteq C \sqrt{n} B_{1}^{E}
$$

Since vein* $(K)=$ vein* $(T K)$, we may assume that $T=I d$.

- Fact 2: enough to consider finite discrete measures.
- Fact 3: vein* $(K) \leq \operatorname{vein}^{*}(L) d_{B M}(K, L)$.

Lower bound on vein* (K) : Sketch of the proof

- Fact $1: \exists T \in \mathrm{GL}_{n}(\mathbb{R})$ and a subspace $E \subseteq \mathbb{R}^{n}$ with $\operatorname{dim} E \geq n / 2$ s.t.

$$
B_{1}^{E} \subseteq P_{E}(T K) \subseteq C \sqrt{n} B_{1}^{E}
$$

Since vein* $(K)=$ vein* $(T K)$, we may assume that $T=I d$.

- Fact 2: enough to consider finite discrete measures.
- Fact 3: vein* $(K) \leq \operatorname{vein}^{*}(L) d_{B M}(K, L)$.

Proof: Suppse $\mu=\sum_{i=1}^{m} w_{i} \delta_{x_{i}}$ with $K \subseteq M(\mu)$.

Lower bound on vein* (K) : Sketch of the proof

- Fact $1: \exists T \in \mathrm{GL}_{n}(\mathbb{R})$ and a subspace $E \subseteq \mathbb{R}^{n}$ with $\operatorname{dim} E \geq n / 2$ s.t.

$$
B_{1}^{E} \subseteq P_{E}(T K) \subseteq C \sqrt{n} B_{1}^{E}
$$

Since vein* $(K)=$ vein* $(T K)$, we may assume that $T=I d$.

- Fact 2: enough to consider finite discrete measures.
- Fact 3: vein* $(K) \leq \operatorname{vein}^{*}(L) d_{B M}(K, L)$.

Proof: Suppse $\mu=\sum_{i=1}^{m} w_{i} \delta_{x_{i}}$ with $K \subseteq \mathrm{M}(\mu)$. Define $v=\sum_{i=1}^{m} w_{i} \delta_{P_{E} X_{i}}$. Then $P_{E} K \subseteq \mathrm{M}(v)$.

Lower bound on vein* (K) : Sketch of the proof

- Fact $1: \exists T \in \mathrm{GL}_{n}(\mathbb{R})$ and a subspace $E \subseteq \mathbb{R}^{n}$ with $\operatorname{dim} E \geq n / 2$ s.t.

$$
B_{1}^{E} \subseteq P_{E}(T K) \subseteq C \sqrt{n} B_{1}^{E}
$$

Since vein* $(K)=$ vein* $(T K)$, we may assume that $T=I d$.

- Fact 2: enough to consider finite discrete measures.
- Fact 3: vein* $(K) \leq \operatorname{vein}^{*}(L) d_{B M}(K, L)$.

Proof: Suppse $\mu=\sum_{i=1}^{m} w_{i} \delta_{x_{i}}$ with $K \subseteq \mathrm{M}(\mu)$. Define $v=\sum_{i=1}^{m} w_{i} \delta_{P_{E} x_{i}}$. Then $P_{E} K \subseteq \mathrm{M}(v)$. Moreover, $\|x\|_{K} \geq\left\|P_{E} x\right\|_{P_{E} K}$ implies

$$
\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x) \geq \int_{E}\|y\|_{P_{E} K} \mathrm{~d} v(y) \geq \operatorname{vein}^{*}\left(P_{E} K\right)
$$

Lower bound on vein* (K) : Sketch of the proof

- Fact $1: \exists T \in \mathrm{GL}_{n}(\mathbb{R})$ and a subspace $E \subseteq \mathbb{R}^{n}$ with $\operatorname{dim} E \geq n / 2$ s.t.

$$
B_{1}^{E} \subseteq P_{E}(T K) \subseteq C \sqrt{n} B_{1}^{E}
$$

Since vein* $(K)=$ vein* $(T K)$, we may assume that $T=I d$.

- Fact 2: enough to consider finite discrete measures.
- Fact 3: vein* $(K) \leq \operatorname{vein}^{*}(L) d_{B M}(K, L)$.

Proof: Suppse $\mu=\sum_{i=1}^{m} w_{i} \delta_{x_{i}}$ with $K \subseteq \mathrm{M}(\mu)$. Define $v=\sum_{i=1}^{m} w_{i} \delta_{P_{E} x_{i}}$. Then $P_{E} K \subseteq \mathrm{M}(v)$. Moreover, $\|x\|_{K} \geq\left\|P_{E} X\right\|_{P_{E} K}$ implies

$$
\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x) \geq \int_{E}\|y\|_{P_{E} K} \mathrm{~d} v(y) \geq \operatorname{vein}^{*}\left(P_{E} K\right)
$$

but

$$
\operatorname{vein}^{*}\left(P_{E} K\right) \geq \frac{\operatorname{vein}^{*}\left(B_{1}^{E}\right)}{d_{B M}\left(B_{1}^{E}, P_{E} K\right)} \geq \frac{2 \operatorname{dim} E}{C \sqrt{n}} \geq C \sqrt{n}
$$

Relation to centroid bodies

Proposition

We have $\inf _{K=-K} \operatorname{vein}^{*}(K)=2 \inf _{\mu} \int_{\mathbb{R}^{n}}\|x\|_{Z_{1}(\mu)} \mathrm{d} \mu(x)$.
\square
We have $\inf _{\mu} \int_{\mathbb{R}^{n}}\|x\|_{Z_{1}(\mu)} \mathrm{d} \mu(x) \geq C \sqrt{n}$.

Sketch of the proof:

- Suppose $K \subseteq M(\mu)$. By scaling the measure and adding an atom at the origin, we may assume that $\mu\left(\mathbb{R}^{n}\right)=2, \mu(\{0\})=1$. In other words, $\mu=v+\delta_{0}$ where v is a probability measure and $K \subseteq M\left(\nu+\delta_{0}\right)$.
- Since $K=-K$, we may also assume that v is symmetric. In this case, we have $\mathrm{M}\left(v+\delta_{0}\right)=\frac{1}{2} Z_{1}(v)$.

Relation to centroid bodies

Proposition

We have $\inf _{K=-K} \operatorname{vein}^{*}(K)=2 \inf _{\mu} \int_{\mathbb{R}^{n}}\|x\|_{Z_{1}(\mu)} \mathrm{d} \mu(x)$.
Corollary
We have $\inf _{\mu} \int_{\mathbb{R}^{n}}\|x\|_{Z_{1}(\mu)} \mathrm{d} \mu(x) \geq C \sqrt{n}$.

Sketch of the proof:

- Suppose $K \subseteq M(\mu)$. By scaling the measure and adding an atom at the origin, we may assume that $\mu\left(\mathbb{R}^{n}\right)=2, \mu(\{0\})=1$. In other words, $\mu=v+\delta_{0}$ where v is a probability measure and $K \subseteq \mathrm{M}\left(v+\delta_{0}\right)$.
- Since $K=-K$, we may also assume that v is symmetric. In this case, we have $\mathrm{M}\left(v+\delta_{0}\right)=\frac{1}{2} Z_{1}(v)$.

Relation to centroid bodies

Proposition

We have $\inf _{K=-K} \operatorname{vein}^{*}(K)=2 \inf _{\mu} \int_{\mathbb{R}^{n}}\|x\|_{Z_{1}(\mu)} \mathrm{d} \mu(x)$.

Corollary

We have $\inf _{\mu} \int_{\mathbb{R}^{n}}\|x\|_{Z_{1}(\mu)} \mathrm{d} \mu(x) \geq C \sqrt{n}$.
Sketch of the proof:

- Suppose $K \subseteq M(\mu)$. By scaling the measure and adding an atom at the origin, we may assume that $\mu\left(\mathbb{R}^{n}\right)=2, \mu(\{0\})=1$. In other words, $\mu=v+\delta_{0}$ where v is a probability measure and $K \subseteq \mathrm{M}\left(v+\delta_{0}\right)$.
- Since $K=-K$, we may also assume that V is symmetric. In this case we have $M\left(v+\delta_{0}\right)=\frac{1}{2} Z_{1}(v)$.

Relation to centroid bodies

Proposition

We have $\inf _{K=-K} \operatorname{vein}^{*}(K)=2 \inf _{\mu} \int_{\mathbb{R}^{n}}\|x\|_{Z_{1}(\mu)} \mathrm{d} \mu(x)$.

Corollary

We have $\inf _{\mu} \int_{\mathbb{R}^{n}}\|x\|_{z_{1}(\mu)} \mathrm{d} \mu(x) \geq C \sqrt{n}$.
Sketch of the proof:

- Suppose $K \subseteq \mathrm{M}(\mu)$. By scaling the measure and adding an atom at the origin, we may assume that $\mu\left(\mathbb{R}^{n}\right)=2, \mu(\{0\})=1$. In other words, $\mu=v+\delta_{0}$ where v is a probability measure and $K \subseteq \mathrm{M}\left(v+\delta_{0}\right)$.
- Since $K=-K$, we may also assume that v is symmetric. In this case, we have $\mathrm{M}\left(v+\delta_{0}\right)=\frac{1}{2} Z_{1}(v)$.

Relation to centroid bodies

- Thus,

$$
\begin{aligned}
\inf _{K} \operatorname{vein}^{*}(K) & =\inf _{K} \inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x): \mu \text { dis. sym., } K \subseteq \frac{1}{2} Z_{1}(\mu)\right\} \\
& \geq \inf _{K} \inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{\frac{1}{2} z_{1}(\mu)} \mathrm{d} \mu(x): \mu \text { dis. sym., } K \subseteq \frac{1}{2} z_{1}(\mu)\right\} \\
& \geq \inf _{\mu \text { dis. sym. }}\left\{\int_{\mathbb{R}^{n}}\|x\|_{\frac{1}{2}} z_{1}(\mu) \mathrm{d} \mu(x)\right\} \\
& \geq \inf _{\mu}\left\{\int_{\mathbb{R}^{n}}\|x\|_{\frac{1}{2}} z_{1}(\mu) \mathrm{d} \mu(x)\right\} \\
& \geq \inf _{\mu} \operatorname{vein}^{*}\left(\frac{1}{2} z_{1}(\mu)\right) \\
& \geq \inf _{K} \operatorname{vein}^{*}(K) .
\end{aligned}
$$

Relation to centroid bodies

- Thus,

$$
\begin{aligned}
\inf _{K} \operatorname{vein}^{*}(K) & =\inf _{K} \inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{K} \mathrm{~d} \mu(x): \mu \text { dis. sym., } K \subseteq \frac{1}{2} Z_{1}(\mu)\right\} \\
& \geq \inf _{K} \inf \left\{\int_{\mathbb{R}^{n}}\|x\|_{\frac{1}{2} z_{1}(\mu)} \mathrm{d} \mu(x): \mu \text { dis. sym., } K \subseteq \frac{1}{2} Z_{1}(\mu)\right\} \\
& \geq \inf _{\mu \text { dis. sym. }}\left\{\int_{\mathbb{R}^{n}}\|x\|_{\frac{1}{2}} z_{1}(\mu)\right. \\
& \mathrm{d} \mu(x)\} \\
& \geq \inf _{\mu}\left\{\int_{\mathbb{R}^{n}}\|x\|_{\frac{1}{2}} z_{1}(\mu)\right. \\
& \geq \inf _{\mu} \operatorname{vein}^{*}\left(\frac{1}{2} z_{1}(\mu)\right) \\
& \geq \inf _{K} \operatorname{vein}^{*}(K) .
\end{aligned}
$$

Thank you!

