Order statistics of vectors with dependent coordinates

Alexander Litvak

University of Alberta
based on a joint work with
K. Tikhomirov
(the paper "Order statistics of ..." available at arXiv and at http://www.math.ualberta.ca//alexandr/)

Banff, 2017

Order statistics

Given sequence of real numbers a_{1}, \ldots, a_{n} denote the k-th smallest one by

$$
k-\min _{1 \leq i \leq n} a_{i} .
$$

Order statistics

Given sequence of real numbers a_{1}, \ldots, a_{n} denote the k-th smallest one by

$$
k-\min _{1 \leq i \leq n} a_{i} .
$$

In particular,

$$
\text { 1- } \min _{1 \leq i \leq n} a_{i}=\min _{1 \leq i \leq n} a_{i} \text { and } n-\min _{1 \leq i \leq n} a_{i}=\max _{1 \leq i \leq n} a_{i} .
$$

Order statistics

Given sequence of real numbers a_{1}, \ldots, a_{n} denote the k-th smallest one by

$$
k-\min _{1 \leq i \leq n} a_{i} .
$$

In particular,

$$
\text { 1- } \min _{1 \leq i \leq n} a_{i}=\min _{1 \leq i \leq n} a_{i} \text { and } n-\min _{1 \leq i \leq n} a_{i}=\max _{1 \leq i \leq n} a_{i} .
$$

Similarly, denote the k-th largest number by

$$
k-\max _{1 \leq i \leq n} a_{i} .
$$

Thus,

$$
k-\max _{1 \leq i \leq n} a_{i}=(n-k+1)-\min _{1 \leq i \leq n} a_{i} .
$$

Order statistics

Given sequence of real numbers a_{1}, \ldots, a_{n} denote the k-th smallest one by

$$
k-\min _{1 \leq i \leq n} a_{i} .
$$

In particular,

$$
\text { 1- } \min _{1 \leq i \leq n} a_{i}=\min _{1 \leq i \leq n} a_{i} \text { and } n-\min _{1 \leq i \leq n} a_{i}=\max _{1 \leq i \leq n} a_{i} .
$$

Similarly, denote the k-th largest number by

$$
k-\max _{1 \leq i \leq n} a_{i} .
$$

Thus,

$$
k-\max _{1 \leq i \leq n} a_{i}=(n-k+1)-\min _{1 \leq i \leq n} a_{i} .
$$

Given sequence of random variables $\left\{\xi_{i}\right\}_{i \leq n}$ the sequence

$$
\left\{k-\min _{1 \leq i \leq n} \xi_{i}\right\}_{k \leq n}
$$

is the sequence of order statistics.

Order statistics in Asymptotic Geometric Analysis

Here $g_{1}, g_{2}, g_{3}, \ldots$ denote standard independent Gaussian variables.

Order statistics in Asymptotic Geometric Analysis

Here $g_{1}, g_{2}, g_{3}, \ldots$ denote standard independent Gaussian variables. Given convex body K,

$$
M_{K}=\int_{S^{n-1}}\|x\|_{K} d \sigma(x)
$$

Order statistics in Asymptotic Geometric Analysis

Here $g_{1}, g_{2}, g_{3}, \ldots$ denote standard independent Gaussian variables. Given convex body K,

$$
M_{K}=\int_{S^{n-1}}\|x\|_{K} d \sigma(x)=\frac{c_{n}}{\sqrt{n}} \mathbb{E}\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K} \quad\left(c_{n} \rightarrow 1\right) .
$$

Order statistics in Asymptotic Geometric Analysis

Here $g_{1}, g_{2}, g_{3}, \ldots$ denote standard independent Gaussian variables.
Given convex body K,

$$
M_{K}=\int_{S^{n-1}}\|x\|_{K} d \sigma(x)=\frac{c_{n}}{\sqrt{n}} \mathbb{E}\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K} \quad\left(c_{n} \rightarrow 1\right) .
$$

If $K=B_{\infty}^{n}$, then $\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K}=\max \left|g_{i}\right|$.

Order statistics in Asymptotic Geometric Analysis

Here $g_{1}, g_{2}, g_{3}, \ldots$ denote standard independent Gaussian variables.
Given convex body K,

$$
M_{K}=\int_{S^{n-1}}\|x\|_{K} d \sigma(x)=\frac{c_{n}}{\sqrt{n}} \mathbb{E}\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K} \quad\left(c_{n} \rightarrow 1\right) .
$$

If $K=B_{\infty}^{n}$, then $\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K}=\max \left|g_{i}\right|$. The behaviour of $\mathbb{E} \max \left|g_{1}\right|$ was used in many results, in particular in Milman's proof of the Dvoretzky theorem.

Order statistics in Asymptotic Geometric Analysis

Here $g_{1}, g_{2}, g_{3}, \ldots$ denote standard independent Gaussian variables.
Given convex body K,

$$
M_{K}=\int_{S^{n-1}}\|x\|_{K} d \sigma(x)=\frac{c_{n}}{\sqrt{n}} \mathbb{E}\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K} \quad\left(c_{n} \rightarrow 1\right) .
$$

If $K=B_{\infty}^{n}$, then $\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K}=\max \left|g_{i}\right|$. The behaviour of $\mathbb{E} \max \left|g_{1}\right|$ was used in many results, in particular in Milman's proof of the Dvoretzky theorem. The norm $\|x\|=\sum_{j=1}^{k} j$-max $\left|x_{i}\right|$, and thus, the expectation $\mathbb{E} \sum_{j=1}^{k} j$-max $\left|g_{i}\right|$, was used by Gluskin, Gúedon, Gordon, and other people, in particular, in the proof of the isomorphic Dvoretzky theorem (first established by Milman-Schechtman).

Order statistics in Asymptotic Geometric Analysis

Here $g_{1}, g_{2}, g_{3}, \ldots$ denote standard independent Gaussian variables.
Given convex body K,

$$
M_{K}=\int_{S^{n-1}}\|x\|_{K} d \sigma(x)=\frac{c_{n}}{\sqrt{n}} \mathbb{E}\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K} \quad\left(c_{n} \rightarrow 1\right) .
$$

If $K=B_{\infty}^{n}$, then $\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K}=\max \left|g_{i}\right|$. The behaviour of $\mathbb{E} \max \left|g_{1}\right|$ was used in many results, in particular in Milman's proof of the Dvoretzky theorem. The norm $\|x\|=\sum_{j=1}^{k} j$-max $\left|x_{i}\right|$, and thus, the expectation $\mathbb{E} \sum_{j=1}^{k} j$ - max $\left|g_{i}\right|$, was used by Gluskin, Gúedon, Gordon, and other people, in particular, in the proof of the isomorphic Dvoretzky theorem (first established by Milman-Schechtman).
In my work with Gordon, Schütt, and Werner, we studied norms (for a given fixed sequence a_{1}, \ldots, a_{N} in \mathbb{R}^{n}):

$$
\|x\|_{k q}=\left(\sum_{j=1}^{k} j-\max \left|\left\langle x, a_{i}\right\rangle\right|^{q}\right)^{1 / q}
$$

Order statistics in Asymptotic Geometric Analysis

Here $g_{1}, g_{2}, g_{3}, \ldots$ denote standard independent Gaussian variables.
Given convex body K,

$$
M_{K}=\int_{S^{n-1}}\|x\|_{K} d \sigma(x)=\frac{c_{n}}{\sqrt{n}} \mathbb{E}\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K} \quad\left(c_{n} \rightarrow 1\right) .
$$

If $K=B_{\infty}^{n}$, then $\left\|\left(g_{1}, g_{2}, \ldots, g_{n}\right)\right\|_{K}=\max \left|g_{i}\right|$. The behaviour of $\mathbb{E} \max \left|g_{1}\right|$ was used in many results, in particular in Milman's proof of the Dvoretzky theorem. The norm $\|x\|=\sum_{j=1}^{k} j$-max $\left|x_{i}\right|$, and thus, the expectation $\mathbb{E} \sum_{j=1}^{k} j$ - max $\left|g_{i}\right|$, was used by Gluskin, Gúedon, Gordon, and other people, in particular, in the proof of the isomorphic Dvoretzky theorem (first established by Milman-Schechtman).
In my work with Gordon, Schütt, and Werner, we studied norms (for a given fixed sequence a_{1}, \ldots, a_{N} in \mathbb{R}^{n}):

$$
\|x\|_{k q}=\left(\sum_{j=1}^{k} j-\max \left|\left\langle x, a_{i}\right\rangle\right|^{q}\right)^{1 / q}
$$

In all such examples maximal order statistics appear naturally,

Mallat-Zeitouni conjecture

Order statistics play essential role in Statistics and applications. In particular, the following Conjecture is important in Image Compression.

Mallat-Zeitouni conjecture

Order statistics play essential role in Statistics and applications. In particular, the following Conjecture is important in Image Compression.

Conjecture 1 (Mallat-Zeitouni, 2000).

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be an n-dimensional random Gaussian vector with independent centered coordinates (with possibly different variances). Let T be an orthogonal transformation of \mathbb{R}^{n} and $Y:=T(X)$. Then every $k \leq n$,

$$
\mathbb{E} \sum_{j=1}^{k} j-\min _{i \leq n} X_{i}^{2} \leq \mathbb{E} \sum_{j=1}^{k} j-\min _{i \leq n} Y_{i}^{2}
$$

Mallat-Zeitouni conjecture

Order statistics play essential role in Statistics and applications. In particular, the following Conjecture is important in Image Compression.

Conjecture 1 (Mallat-Zeitouni, 2000).

Let $X=\left(X_{1}, \ldots, X_{n}\right)$ be an n-dimensional random Gaussian vector with independent centered coordinates (with possibly different variances). Let T be an orthogonal transformation of \mathbb{R}^{n} and $Y:=T(X)$. Then every $k \leq n$,

$$
\mathbb{E} \sum_{j=1}^{k} j-\min _{i \leq n} X_{i}^{2} \leq \mathbb{E} \sum_{j=1}^{k} j-\min _{i \leq n} Y_{i}^{2}
$$

Our main result: this conjecture holds up to an absolute positive constant C, namely

$$
\mathbb{E} \sum_{j=1}^{k} j-\min _{i \leq n} X_{i}^{2} \leq C \mathbb{E} \sum_{j=1}^{k} j-\min _{i \leq n} Y_{i}^{2}
$$

A stronger conjecture

In their work, Mallat-Zeitouni showed that Conjecture 1 would follow from

Conjecture 2 (Mallat-Zeitouni, 2000).

Let $\left\{g_{i}\right\}_{i \leq n},\left\{h_{i}\right\}_{i \leq n}$ be sequences of $\mathcal{N}(0,1)$ random variables such that g_{i} 's are independent. Then for every $x \in \mathbb{R}^{n}$ and every $k \leq n$ one has

$$
\mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{2} \leq \mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{2}
$$

A stronger conjecture

In their work, Mallat-Zeitouni showed that Conjecture 1 would follow from

Conjecture 2 (Mallat-Zeitouni, 2000).

Let $\left\{g_{i}\right\}_{i \leq n},\left\{h_{i}\right\}_{i \leq n}$ be sequences of $\mathcal{N}(0,1)$ random variables such that g_{i} 's are independent. Then for every $x \in \mathbb{R}^{n}$ and every $k \leq n$ one has

$$
\mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{2} \leq \mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{2} .
$$

Equivalently, for every $m \leq n$ one has

$$
\mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{2} \geq \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{2}
$$

A stronger conjecture

In their work, Mallat-Zeitouni showed that Conjecture 1 would follow from

Conjecture 2 (Mallat-Zeitouni, 2000).

Let $\left\{g_{i}\right\}_{i \leq n},\left\{h_{i}\right\}_{i \leq n}$ be sequences of $\mathcal{N}(0,1)$ random variables such that g_{i} 's are independent. Then for every $x \in \mathbb{R}^{n}$ and every $k \leq n$ one has

$$
\mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{2} \leq \mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{2} .
$$

Equivalently, for every $m \leq n$ one has

$$
\mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{2} \geq \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{2}
$$

Šidák (1967), Gluskin (1989): $\quad \forall p>0 \quad \mathbb{E} \max _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p} \geq \mathbb{E} \max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{p}$.

A stronger conjecture

In their work, Mallat-Zeitouni showed that Conjecture 1 would follow from

Conjecture 2 (Mallat-Zeitouni, 2000).

Let $\left\{g_{i}\right\}_{i \leq n},\left\{h_{i}\right\}_{i \leq n}$ be sequences of $\mathcal{N}(0,1)$ random variables such that g_{i} 's are independent. Then for every $x \in \mathbb{R}^{n}$ and every $k \leq n$ one has

$$
\mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{2} \leq \mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{2} .
$$

Equivalently, for every $m \leq n$ one has

$$
\mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{2} \geq \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{2}
$$

Šidák (1967), Gluskin (1989): $\quad \forall p>0 \quad \mathbb{E} \max _{1 \leq i \leq n}\left|x_{i} g_{i}\right|^{p} \geq \mathbb{E} \max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{p}$. Thus, both conjectures hold for $k=n-1$.

Known results

Van Handel (2011) noticed that Conjecture 2 is false even with $n=3, k=1$.

Known results

Van Handel (2011) noticed that Conjecture 2 is false even with $n=3, k=1$. This does not disprove Conjecture 1.

Known results

Van Handel (2011) noticed that Conjecture 2 is false even with $n=3, k=1$. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Known results

Van Handel (2011) noticed that Conjecture 2 is false even with $n=3, k=1$. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_{1}, \ldots, f_{n} be independent copies of a random variable f with $\mathbb{E}|f|<\infty$ Let h_{1}, \ldots, h_{n} be copies of f. Let $x \in \mathbb{R}^{n}$. Then

$$
26 \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} f_{i}\right| \geq \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|
$$

Known results

Van Handel (2011) noticed that Conjecture 2 is false even with $n=3, k=1$. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_{1}, \ldots, f_{n} be independent copies of a random variable f with $\mathbb{E}|f|<\infty$ Let h_{1}, \ldots, h_{n} be copies of f. Let $x \in \mathbb{R}^{n}$. Then

$$
26 \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} f_{i}\right| \geq \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|
$$

Essentially used that the sum above is a norm of a vector $\left(x_{1} f_{1}, \ldots, x_{n} f_{n}\right)$.

Known results

Van Handel (2011) noticed that Conjecture 2 is false even with $n=3, k=1$. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_{1}, \ldots, f_{n} be independent copies of a random variable f with $\mathbb{E}|f|<\infty$ Let h_{1}, \ldots, h_{n} be copies of f. Let $x \in \mathbb{R}^{n}$. Then

$$
26 \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} f_{i}\right| \geq \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|
$$

Essentially used that the sum above is a norm of a vector $\left(x_{1} f_{1}, \ldots, x_{n} f_{n}\right)$. Proved for larger class of norms (for Orlicz norms)

Known results

Van Handel (2011) noticed that Conjecture 2 is false even with $n=3, k=1$. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_{1}, \ldots, f_{n} be independent copies of a random variable f with $\mathbb{E}|f|<\infty$ Let h_{1}, \ldots, h_{n} be copies of f. Let $x \in \mathbb{R}^{n}$. Then

$$
26 \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} f_{i}\right| \geq \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|
$$

Essentially used that the sum above is a norm of a vector $\left(x_{1} f_{1}, \ldots, x_{n} f_{n}\right)$.
Proved for larger class of norms (for Orlicz norms)
Further generalizations by Montgomery-Smith and by Junge.

Known results

Van Handel (2011) noticed that Conjecture 2 is false even with $n=3, k=1$. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_{1}, \ldots, f_{n} be independent copies of a random variable f with $\mathbb{E}|f|<\infty$ Let h_{1}, \ldots, h_{n} be copies of f. Let $x \in \mathbb{R}^{n}$. Then

$$
26 \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} f_{i}\right| \geq \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|
$$

Essentially used that the sum above is a norm of a vector $\left(x_{1} f_{1}, \ldots, x_{n} f_{n}\right)$.
Proved for larger class of norms (for Orlicz norms)
Further generalizations by Montgomery-Smith and by Junge.
What to do with smallest order statistics?

Known results

Van Handel (2011) noticed that Conjecture 2 is false even with $n=3, k=1$. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_{1}, \ldots, f_{n} be independent copies of a random variable f with $\mathbb{E}|f|<\infty$ Let h_{1}, \ldots, h_{n} be copies of f. Let $x \in \mathbb{R}^{n}$. Then

$$
26 \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} f_{i}\right| \geq \mathbb{E} \sum_{j=1}^{m} j-\max _{1 \leq i \leq n}\left|x_{i} h_{i}\right|
$$

Essentially used that the sum above is a norm of a vector $\left(x_{1} f_{1}, \ldots, x_{n} f_{n}\right)$.
Proved for larger class of norms (for Orlicz norms)
Further generalizations by Montgomery-Smith and by Junge.
What to do with smallest order statistics?
It turns out that it is easier to work with individual statistics than with sums.

Known results

We say that a random variable f satisfies (α, β)-condition if every $t>0$

$$
\mathbb{P}(|f| \leq t) \leq \alpha t \quad \text { and } \quad \mathbb{P}(|f| \geq t) \leq \exp (-\beta t) .
$$

Theorem 4 (Gordon, L, Schütt, Werner, 2005, 2006).

Let f_{i} 's be independent copies of a random variable f satisfying (α, β)-condition. Let $p>0$. Then for every $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{gathered}
\frac{1}{6 \alpha}\left(\frac{6}{7}\right)^{1 / p} \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}} \leq\left(\mathbb{E} k-\min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p}\right)^{1 / p} \\
\leq \frac{6}{\beta} \max \{p, \ln (k+1)\} \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}}
\end{gathered}
$$

Known results

We say that a random variable f satisfies (α, β)-condition if every $t>0$

$$
\mathbb{P}(|f| \leq t) \leq \alpha t \quad \text { and } \quad \mathbb{P}(|f| \geq t) \leq \exp (-\beta t) .
$$

Theorem 4 (Gordon, L, Schütt, Werner, 2005, 2006).

Let f_{i} 's be independent copies of a random variable f satisfying (α, β)-condition. Let $p>0$. Then for every $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{gathered}
\frac{1}{6 \alpha}\left(\frac{6}{7}\right)^{1 / p} \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}} \leq\left(\mathbb{E} k-\min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p}\right)^{1 / p} \\
\leq \frac{6}{\beta} \max \{p, \ln (k+1)\} \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}}
\end{gathered}
$$

Moreover, for $k=1$ the lower bound does not require independence,

Known results

We say that a random variable f satisfies (α, β)-condition if every $t>0$

$$
\mathbb{P}(|f| \leq t) \leq \alpha t \quad \text { and } \quad \mathbb{P}(|f| \geq t) \leq \exp (-\beta t) .
$$

Theorem 4 (Gordon, L, Schütt, Werner, 2005, 2006).

Let f_{i} 's be independent copies of a random variable f satisfying (α, β)-condition. Let $p>0$. Then for every $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{gathered}
\frac{1}{6 \alpha}\left(\frac{6}{7}\right)^{1 / p} \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}} \leq\left(\mathbb{E} k-\min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p}\right)^{1 / p} \\
\leq \frac{6}{\beta} \max \{p, \ln (k+1)\} \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}}
\end{gathered}
$$

Moreover, for $k=1$ the lower bound does not require independence, in particular,

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p} \leq C_{p} \mathbb{E} \min _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{p} .
$$

where h_{i} 's are (dependent) copies of f. (In the Gaussian case, $C_{p}=\Gamma(2+p)$).

Known results

We say that a random variable f satisfies (α, β)-condition if every $t>0$

$$
\mathbb{P}(|f| \leq t) \leq \alpha t \quad \text { and } \quad \mathbb{P}(|f| \geq t) \leq \exp (-\beta t) .
$$

Theorem 4 (Gordon, L, Schütt, Werner, 2005, 2006).

Let f_{i} 's be independent copies of a random variable f satisfying (α, β)-condition. Let $p>0$. Then for every $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$,

$$
\begin{gathered}
\frac{1}{6 \alpha}\left(\frac{6}{7}\right)^{1 / p} \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}} \leq\left(\mathbb{E} k-\min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p}\right)^{1 / p} \\
\leq \frac{6}{\beta} \max \{p, \ln (k+1)\} \max _{1 \leq j \leq k} \frac{k+1-j}{\sum_{i=j}^{n} 1 / x_{i}}
\end{gathered}
$$

Moreover, for $k=1$ the lower bound does not require independence, in particular,

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p} \leq C_{p} \mathbb{E} \min _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{p} .
$$

where h_{i} 's are (dependent) copies of f. (In the Gaussian case, $C_{p}=\Gamma(2+p)$). This complements Šidák's result.

New results, sums

Using GLSW technique, one can prove

Theorem 5 (LT 2016).

Let f_{i} 's be independent copies of a random variable f satisfying (α, β)-condition. Let $0<x_{1} \leq x_{2} \leq \cdots \leq x_{n}$. Denote

$$
b_{j}:=\sum_{i=j}^{n} 1 / x_{i} \quad \text { and } \quad B:=\sum_{j=1}^{k} \frac{(k-j+1)^{p}}{b_{j}^{p}} .
$$

Then

$$
\frac{1}{2}\left(\frac{1}{16 \alpha}\right)^{p} B \leq \mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p} \leq 3\left(\frac{4}{\beta}\right)^{p} \Gamma(1+p) B
$$

New results, sums

For the case of dependent variables we use quantiles of "averaged" distributions (this idea goes back to Sen (1970)).

New results, sums

For the case of dependent variables we use quantiles of "averaged" distributions (this idea goes back to Sen (1970)).

Let ξ be a r.v. with distribution $F(t)=F_{\xi}(t)=\mathbb{P}(\xi \leq t)$. The quantile of order $r \in[0,1]$ is a number $q(r)=q_{F}(r)=q_{\xi}(r)$ satisfying

$$
\mathbb{P}\{\xi<q(r)\} \leq r \quad \text { and } \quad \mathbb{P}\{\xi \leq q(r)\} \geq r .
$$

New results, sums

For the case of dependent variables we use quantiles of "averaged" distributions (this idea goes back to Sen (1970)).

Let ξ be a r.v. with distribution $F(t)=F_{\xi}(t)=\mathbb{P}(\xi \leq t)$. The quantile of order $r \in[0,1]$ is a number $q(r)=q_{F}(r)=q_{\xi}(r)$ satisfying

$$
\mathbb{P}\{\xi<q(r)\} \leq r \quad \text { and } \quad \mathbb{P}\{\xi \leq q(r)\} \geq r .
$$

The following claim provides simple lower bounds on quantiles.

New results, sums

For the case of dependent variables we use quantiles of "averaged" distributions (this idea goes back to Sen (1970)).

Let ξ be a r.v. with distribution $F(t)=F_{\xi}(t)=\mathbb{P}(\xi \leq t)$. The quantile of order $r \in[0,1]$ is a number $q(r)=q_{F}(r)=q_{\xi}(r)$ satisfying

$$
\mathbb{P}\{\xi<q(r)\} \leq r \quad \text { and } \quad \mathbb{P}\{\xi \leq q(r)\} \geq r .
$$

The following claim provides simple lower bounds on quantiles.
Claim. Let $k \leq n$ and $0<x_{1} \leq \ldots \leq x_{n}$. For $j \leq n$, set $b_{j}:=\sum_{i=j}^{n} 1 / x_{i}$. Let $\xi_{i}, i \leq n$, be (possibly dependent) random variables satisfying the α-condition for some $\alpha>0$, and let $F_{i}, i \leq n$, be the distributions of $\left|x_{i} \xi_{i}\right|$. Denote

$$
F:=\frac{1}{n} \sum_{i=1}^{n} F_{i} \quad \text { and } \quad q:=q_{F}\left(\frac{k-1 / 2}{n}\right) .
$$

Then

$$
q \geq \frac{1}{2 \alpha} \max _{1 \leq j \leq k} \frac{k-j+1}{b_{j}}
$$

Low bound

We need another condition. We say that the distribution F of a non-negative r.v. satisfies (A, δ)-condition for $A>1, \delta \in(0,1)$ if

$$
F(t) \geq 2 F(t / A) \quad \text { whenever } \quad F(t) \leq \delta .
$$

Low bound

We need another condition. We say that the distribution F of a non-negative r.v. satisfies (A, δ)-condition for $A>1, \delta \in(0,1)$ if

$$
F(t) \geq 2 F(t / A) \quad \text { whenever } \quad F(t) \leq \delta
$$

Theorem 6 (LT 2016).

Let $\alpha>0, \delta \in(0,1), A>1,1 \leq k \leq n$ and $0<x_{1} \leq \ldots \leq x_{n}$. For $j \leq n$, set $b_{j}:=\sum_{i=j}^{n} 1 / x_{i}$. Further, let $\xi_{i}, i \leq n$, be (possibly dependent) random variables satisfying the α-condition and (A, δ)-condition. Then

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \frac{\delta}{2 A \alpha} \max _{1 \leq j \leq k} \frac{k-j+1}{b_{j}}
$$

Low bound

We need another condition. We say that the distribution F of a non-negative r.v. satisfies (A, δ)-condition for $A>1, \delta \in(0,1)$ if

$$
F(t) \geq 2 F(t / A) \quad \text { whenever } \quad F(t) \leq \delta
$$

Theorem 6 (LT 2016).

Let $\alpha>0, \delta \in(0,1), A>1,1 \leq k \leq n$ and $0<x_{1} \leq \ldots \leq x_{n}$. For $j \leq n$, set $b_{j}:=\sum_{i=j}^{n} 1 / x_{i}$. Further, let $\xi_{i}, i \leq n$, be (possibly dependent) random variables satisfying the α-condition and (A, δ)-condition. Then

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \frac{\delta}{2 A \alpha} \max _{1 \leq j \leq k} \frac{k-j+1}{b_{j}} .
$$

Recall that Theorem 5 says that if f_{i} 's are independent copies of a random variable f satisfying (α, β)-condition Then

$$
\mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p} \approx \sum_{j=1}^{k} \frac{(k-j+1)^{p}}{b_{j}^{p}} .
$$

Comparison

Theorem 7 (LT 2016).

If f satisfies (α, β)-condition and (A, δ)-condition, f_{i} 's are independent copies of f, h_{i} 's are (dependent) copies of a random variable f then for all $p>0$,

$$
\mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p} \leq 6\left(\frac{32 A \alpha}{\delta \beta}\right)^{p} \Gamma(1+p) \mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{p}
$$

(in the Gaussian case the constant is $6(C p)^{p}$).

Comparison

Theorem 7 (LT 2016).

If f satisfies (α, β)-condition and (A, δ)-condition, f_{i} 's are independent copies of f, h_{i} 's are (dependent) copies of a random variable f then for all $p>0$,

$$
\mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} f_{i}\right|^{p} \leq 6\left(\frac{32 A \alpha}{\delta \beta}\right)^{p} \Gamma(1+p) \mathbb{E} \sum_{j=1}^{k} j-\min _{1 \leq i \leq n}\left|x_{i} h_{i}\right|^{p}
$$

(in the Gaussian case the constant is $6(C p)^{p}$).

This implies the initial Mallat-Zeitouni conjecture with an absolute constant.

Remark: Gaussian case

Let ξ_{1}, \ldots, ξ_{n} be standard (possibly dependent) Gaussian random variables. When

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|\xi_{i}\right|
$$

is minimized?

Remark: Gaussian case

Let ξ_{1}, \ldots, ξ_{n} be standard (possibly dependent) Gaussian random variables. When

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|\xi_{i}\right|
$$

is minimized?
Natural to believe: in the case of independent variables g_{1}, \ldots, g_{n}. Recall, GLSW:

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|g_{i}\right| \leq 2 \mathbb{E} \min _{1 \leq i \leq n}\left|\xi_{i}\right|
$$

(compare also with the maximizer for the expectation of maximum).

Remark: Gaussian case

Let ξ_{1}, \ldots, ξ_{n} be standard (possibly dependent) Gaussian random variables. When

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|\xi_{i}\right|
$$

is minimized?
Natural to believe: in the case of independent variables g_{1}, \ldots, g_{n}. Recall, GLSW:

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|g_{i}\right| \leq 2 \mathbb{E} \min _{1 \leq i \leq n}\left|\xi_{i}\right|
$$

(compare also with the maximizer for the expectation of maximum).
However Van Handel's example shows that it is not true for $n=3$.

Remark: Gaussian case

Let ξ_{1}, \ldots, ξ_{n} be standard (possibly dependent) Gaussian random variables. When

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|\xi_{i}\right|
$$

is minimized?
Natural to believe: in the case of independent variables g_{1}, \ldots, g_{n}. Recall, GLSW:

$$
\mathbb{E} \min _{1 \leq i \leq n}\left|g_{i}\right| \leq 2 \mathbb{E} \min _{1 \leq i \leq n}\left|\xi_{i}\right|
$$

(compare also with the maximizer for the expectation of maximum).
However Van Handel's example shows that it is not true for $n=3$.
It is natural to conjecture that the minimum attends when for all $i \neq j$,

$$
\mathbb{E} \xi_{i} \xi_{j}=\frac{1}{n-1}
$$

that is, when ξ_{1}, \ldots, ξ_{n} form a vertex set for the regular simplex in L_{2}.

Some ideas used in the lower bound

The proof is modelled on the case of uniformly distributed on $[0,1]$ random variables.

Some ideas used in the lower bound

The proof is modelled on the case of uniformly distributed on $[0,1]$ random variables. Key ingredients: 1. Work with individual order statistics (as before)

Some ideas used in the lower bound

The proof is modelled on the case of uniformly distributed on $[0,1]$ random variables. Key ingredients: 1. Work with individual order statistics (as before)
2. Estimate medians in terms of quantiles

Some ideas used in the lower bound

The proof is modelled on the case of uniformly distributed on $[0,1]$ random variables.
Key ingredients: 1. Work with individual order statistics (as before)
2. Estimate medians in terms of quantiles 3. Use truncations

Some ideas used in the lower bound

The proof is modelled on the case of uniformly distributed on $[0,1]$ random variables. Key ingredients: 1. Work with individual order statistics (as before)
2. Estimate medians in terms of quantiles 3. Use truncations

We show that under (A, δ)-condition, denoting

$$
t_{0}:=\min _{i \leq n} \sup \left\{t>0: F_{\left|\xi_{i}\right|}(t) \leq \delta\right\}, \quad \eta_{i}:=\min \left(\left|\xi_{i}\right|, t_{0}\right), i \leq n,
$$

and

$$
F=\frac{1}{n} \sum_{i=1}^{n} F_{x_{i} \eta_{i}}
$$

one has

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right) .
$$

Some ideas used in the lower bound

The proof is modelled on the case of uniformly distributed on $[0,1]$ random variables. Key ingredients: 1. Work with individual order statistics (as before)
2. Estimate medians in terms of quantiles 3. Use truncations

We show that under (A, δ)-condition, denoting

$$
t_{0}:=\min _{i \leq n} \sup \left\{t>0: F_{\left|\xi_{i}\right|}(t) \leq \delta\right\}, \quad \eta_{i}:=\min \left(\left|\xi_{i}\right|, t_{0}\right), i \leq n,
$$

and

$$
F=\frac{1}{n} \sum_{i=1}^{n} F_{x_{i} \eta_{i}},
$$

one has

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right) .
$$

Truncation is needed:

Example

Want:

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right) .
$$

Example

Want:

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right) .
$$

Let g_{1}, \ldots, g_{n} be standard independent Gaussian random variables and $\xi_{i}=g_{1}, i \leq n$.

Example

Want:

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right) .
$$

Let g_{1}, \ldots, g_{n} be standard independent Gaussian random variables and $\xi_{i}=g_{1}, i \leq n$. Denote

$$
G:=\frac{1}{n} \sum_{i=1}^{n} F_{\left|x_{i} i_{i}\right|}=\frac{1}{n} \sum_{i=1}^{n} F_{\left|x_{i} \xi_{i}\right|} .
$$

Example

Want:

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right) .
$$

Let g_{1}, \ldots, g_{n} be standard independent Gaussian random variables and $\xi_{i}=g_{1}, i \leq n$. Denote

$$
G:=\frac{1}{n} \sum_{i=1}^{n} F_{\left|x_{i} i_{i}\right|}=\frac{1}{n} \sum_{i=1}^{n} F_{\left|x_{i} \xi_{i}\right|} .
$$

Take $x_{1}=\ldots=x_{k}=1, x_{k+1}=\ldots x_{n}=n^{2}$.

Example

Want:

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right) .
$$

Let g_{1}, \ldots, g_{n} be standard independent Gaussian random variables and $\xi_{i}=g_{1}, i \leq n$. Denote

$$
G:=\frac{1}{n} \sum_{i=1}^{n} F_{\left|x_{i} z_{i}\right|}=\frac{1}{n} \sum_{i=1}^{n} F_{\left|x_{i} \xi_{i}\right|} .
$$

Take $x_{1}=\ldots=x_{k}=1, x_{k+1}=\ldots x_{n}=n^{2}$. Direct computations show that

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right)=\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|g_{1}\right|\right) \approx \text { const }
$$

Example

Want:

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right) .
$$

Let g_{1}, \ldots, g_{n} be standard independent Gaussian random variables and $\xi_{i}=g_{1}, i \leq n$. Denote

$$
G:=\frac{1}{n} \sum_{i=1}^{n} F_{\left|x_{i} z_{i}\right|}=\frac{1}{n} \sum_{i=1}^{n} F_{\left|x_{i} \xi_{i}\right|} .
$$

Take $x_{1}=\ldots=x_{k}=1, x_{k+1}=\ldots x_{n}=n^{2}$. Direct computations show that

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right)=\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|g_{1}\right|\right) \approx \text { const }
$$

while

$$
q_{G}\left(\frac{k-1 / 2}{n}\right) \approx \operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} g_{i}\right|\right) \approx \sqrt{\ln k}
$$

Proof

We want to estimate the median of k - $\min x_{i} \eta_{i}$.

Proof

We want to estimate the median of k - $\min x_{i} \eta_{i}$. Note that for $s>0$ the event

$$
\left\{k-\min _{1 \leq i \leq n} x_{i} \eta_{i} \geq s\right\}
$$

coincides with the event

$$
\left\{\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right|<k\right\} .
$$

Proof

We want to estimate the median of k - $\min x_{i} \eta_{i}$. Note that for $s>0$ the event

$$
\left\{k-\min _{1 \leq i \leq n} x_{i} \eta_{i} \geq s\right\}
$$

coincides with the event

$$
\left\{\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right|<k\right\} .
$$

Since

$$
t_{0}:=\min _{i \leq n} \sup \left\{t>0: F_{\left|\xi_{i}\right|}(t) \leq \delta\right\}, \quad \eta_{i}:=\min \left(\left|\xi_{i}\right|, t_{0}\right), i \leq n,
$$

we have $F_{\eta_{i}}(t)=F_{\left|\xi_{i}\right|}(t) \leq \delta$ for $t<t_{0}$ and $F_{\eta_{i}}(t)=1$ for $t \geq t_{0}$.

Proof

We want to estimate the median of k - $\min x_{i} \eta_{i}$. Note that for $s>0$ the event

$$
\left\{k-\min _{1 \leq i \leq n} x_{i} \eta_{i} \geq s\right\}
$$

coincides with the event

$$
\left\{\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right|<k\right\} .
$$

Since

$$
t_{0}:=\min _{i \leq n} \sup \left\{t>0: F_{\left|\xi_{i}\right|}(t) \leq \delta\right\}, \quad \eta_{i}:=\min \left(\left|\xi_{i}\right|, t_{0}\right), i \leq n,
$$

we have $F_{\eta_{i}}(t)=F_{\left|\xi_{i}\right|}(t) \leq \delta$ for $t<t_{0}$ and $F_{\eta_{i}}(t)=1$ for $t \geq t_{0}$.
Fix some positive $s<\frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right)$ and denote $I:=\left\{i \leq n: F_{i}(A s)=1\right\}$.

Proof

We want to estimate the median of $k-\min x_{i} \eta_{i}$. Note that for $s>0$ the event

$$
\left\{k-\min _{1 \leq i \leq n} x_{i} \eta_{i} \geq s\right\}
$$

coincides with the event

$$
\left\{\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right|<k\right\} .
$$

Since

$$
t_{0}:=\min _{i \leq n} \sup \left\{t>0: F_{\left|\xi_{i}\right|}(t) \leq \delta\right\}, \quad \eta_{i}:=\min \left(\left|\xi_{i}\right|, t_{0}\right), i \leq n,
$$

we have $F_{\eta_{i}}(t)=F_{\left|\xi_{i}\right|}(t) \leq \delta$ for $t<t_{0}$ and $F_{\eta_{i}}(t)=1$ for $t \geq t_{0}$.
Fix some positive $s<\frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right)$ and denote $I:=\left\{i \leq n: F_{i}(A s)=1\right\}$.
Then

$$
\sum_{i \leq n} F_{i}(A s)=n F(A s)<k-1 / 2,
$$

Proof

We want to estimate the median of $k-\min x_{i} \eta_{i}$. Note that for $s>0$ the event

$$
\left\{k-\min _{1 \leq i \leq n} x_{i} \eta_{i} \geq s\right\}
$$

coincides with the event

$$
\left\{\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right|<k\right\} .
$$

Since

$$
t_{0}:=\min _{i \leq n} \sup \left\{t>0: F_{\left|\xi_{i}\right|}(t) \leq \delta\right\}, \quad \eta_{i}:=\min \left(\left|\xi_{i}\right|, t_{0}\right), i \leq n,
$$

we have $F_{\eta_{i}}(t)=F_{\left|\xi_{i}\right|}(t) \leq \delta$ for $t<t_{0}$ and $F_{\eta_{i}}(t)=1$ for $t \geq t_{0}$.
Fix some positive $s<\frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right)$ and denote $I:=\left\{i \leq n: F_{i}(A s)=1\right\}$.
Then

$$
\sum_{i \leq n} F_{i}(A s)=n F(A s)<k-1 / 2,
$$

hence $|I|<k$,

Proof

We want to estimate the median of $k-\min x_{i} \eta_{i}$. Note that for $s>0$ the event

$$
\left\{k-\min _{1 \leq i \leq n} x_{i} \eta_{i} \geq s\right\}
$$

coincides with the event

$$
\left\{\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right|<k\right\} .
$$

Since

$$
t_{0}:=\min _{i \leq n} \sup \left\{t>0: F_{\left|\xi_{i}\right|}(t) \leq \delta\right\}, \quad \eta_{i}:=\min \left(\left|\xi_{i}\right|, t_{0}\right), i \leq n,
$$

we have $F_{\eta_{i}}(t)=F_{\left|\xi_{i}\right|}(t) \leq \delta$ for $t<t_{0}$ and $F_{\eta_{i}}(t)=1$ for $t \geq t_{0}$.
Fix some positive $s<\frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right)$ and denote $I:=\left\{i \leq n: F_{i}(A s)=1\right\}$.
Then

$$
\sum_{i \leq n} F_{i}(A s)=n F(A s)<k-1 / 2,
$$

hence $|I|<k$, and for $i \notin I, F_{i}(A s) \leq \delta$.

Proof

We want to estimate the median of $k-\min x_{i} \eta_{i}$. Note that for $s>0$ the event

$$
\left\{k-\min _{1 \leq i \leq n} x_{i} \eta_{i} \geq s\right\}
$$

coincides with the event

$$
\left\{\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right|<k\right\} .
$$

Since

$$
t_{0}:=\min _{i \leq n} \sup \left\{t>0: F_{\left|\xi_{i}\right|}(t) \leq \delta\right\}, \quad \eta_{i}:=\min \left(\left|\xi_{i}\right|, t_{0}\right), i \leq n,
$$

we have $F_{\eta_{i}}(t)=F_{\left|\xi_{i}\right|}(t) \leq \delta$ for $t<t_{0}$ and $F_{\eta_{i}}(t)=1$ for $t \geq t_{0}$.
Fix some positive $s<\frac{1}{A} q_{F}\left(\frac{k-1 / 2}{n}\right)$ and denote $I:=\left\{i \leq n: F_{i}(A s)=1\right\}$.
Then

$$
\sum_{i \leq n} F_{i}(A s)=n F(A s)<k-1 / 2,
$$

hence $|I|<k$, and for $i \notin I, F_{i}(A s) \leq \delta$. Applying (A, δ)-condition,

Proof

$$
\begin{gathered}
\mathbb{E}\left|\left\{i \in I^{c}: x_{i} \eta_{i}<s\right\}\right|=\mathbb{E} \sum_{i \in I^{c}} \chi_{\left\{x_{i} \eta_{i}<s\right\}} \leq \sum_{i \in I^{c}} F_{i}(s) \\
\leq \frac{1}{2} \sum_{i \in I^{c}} F_{i}(A s)=\frac{n F(A s)-|I|}{2}<\frac{k-|I|}{2} .
\end{gathered}
$$

Proof

$$
\begin{gathered}
\mathbb{E}\left|\left\{i \in I^{c}: x_{i} \eta_{i}<s\right\}\right|=\mathbb{E} \sum_{i \in I^{c}} \chi_{\left\{x_{i} \eta_{i}<s\right\}} \leq \sum_{i \in I^{c}} F_{i}(s) \\
\leq \frac{1}{2} \sum_{i \in I^{c}} F_{i}(A s)=\frac{n F(A s)-|I|}{2}<\frac{k-|I|}{2} .
\end{gathered}
$$

Now we apply Markov's inequality: $\mathbb{P}\left(\left|\left\{i \in I^{c}: x_{i} \eta_{i}<s\right\}\right| \geq k-|I|\right) \leq \frac{1}{2}$,

Proof

$$
\begin{gathered}
\mathbb{E}\left|\left\{i \in I^{c}: x_{i} \eta_{i}<s\right\}\right|=\mathbb{E} \sum_{i \in I^{c}} \chi_{\left\{x_{i} \eta_{i}<s\right\}} \leq \sum_{i \in I^{c}} F_{i}(s) \\
\leq \frac{1}{2} \sum_{i \in I^{c}} F_{i}(A s)=\frac{n F(A s)-|I|}{2}<\frac{k-|I|}{2} .
\end{gathered}
$$

Now we apply Markov's inequality: $\mathbb{P}\left(\left|\left\{i \in I^{c}: x_{i} \eta_{i}<s\right\}\right| \geq k-|I|\right) \leq \frac{1}{2}$, hence

$$
\mathbb{P}\left(\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right| \geq k\right) \leq \frac{1}{2}
$$

Proof

$$
\begin{gathered}
\mathbb{E}\left|\left\{i \in I^{c}: x_{i} \eta_{i}<s\right\}\right|=\mathbb{E} \sum_{i \in I^{c}} \chi_{\left\{x_{i} \eta_{i}<s\right\}} \leq \sum_{i \in I^{c}} F_{i}(s) \\
\leq \frac{1}{2} \sum_{i \in I^{c}} F_{i}(A s)=\frac{n F(A s)-|I|}{2}<\frac{k-|I|}{2} .
\end{gathered}
$$

Now we apply Markov's inequality: $\mathbb{P}\left(\left|\left\{i \in I^{c}: x_{i} \eta_{i}<s\right\}\right| \geq k-|I|\right) \leq \frac{1}{2}$, hence

$$
\mathbb{P}\left(\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right| \geq k\right) \leq \frac{1}{2}
$$

Therefore

$$
\mathbb{P}\left(k-\min _{1 \leq i \leq n} x_{i} \eta_{i} \geq s\right)=\mathbb{P}\left(\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right|<k\right) \geq \frac{1}{2}
$$

Proof

$$
\begin{gathered}
\mathbb{E}\left|\left\{i \in I^{c}: x_{i} \eta_{i}<s\right\}\right|=\mathbb{E} \sum_{i \in I^{c}} \chi_{\left\{x_{i} \eta_{i}<s\right\}} \leq \sum_{i \in I^{c}} F_{i}(s) \\
\leq \frac{1}{2} \sum_{i \in I^{c}} F_{i}(A s)=\frac{n F(A s)-|I|}{2}<\frac{k-|I|}{2} .
\end{gathered}
$$

Now we apply Markov's inequality: $\mathbb{P}\left(\left|\left\{i \in I^{c}: x_{i} \eta_{i}<s\right\}\right| \geq k-|I|\right) \leq \frac{1}{2}$, hence

$$
\mathbb{P}\left(\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right| \geq k\right) \leq \frac{1}{2}
$$

Therefore

$$
\mathbb{P}\left(k-\min _{1 \leq i \leq n} x_{i} \eta_{i} \geq s\right)=\mathbb{P}\left(\left|\left\{i \leq n: x_{i} \eta_{i}<s\right\}\right|<k\right) \geq \frac{1}{2}
$$

that is

$$
\operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \xi_{i}\right|\right) \geq \operatorname{Med}\left(k-\min _{1 \leq i \leq n}\left|x_{i} \eta_{i}\right|\right) \geq s
$$

