Order statistics of vectors with dependent coordinates

Alexander Litvak

University of Alberta

based on a joint work with

K. Tikhomirov

(the paper "Order statistics of ..." available at arXiv and at http://www.math.ualberta.ca/~alexandr/)

Banff, 2017

Given sequence of real numbers a_1, \ldots, a_n denote the k-th smallest one by

 $k\text{-}\min_{1\leq i\leq n}a_i.$

-

Given sequence of real numbers a_1, \ldots, a_n denote the k-th smallest one by

 $k-\min_{1\leq i\leq n}a_i.$

In particular,

$$1-\min_{1\leq i\leq n}a_i=\min_{1\leq i\leq n}a_i \quad \text{and} \quad n-\min_{1\leq i\leq n}a_i=\max_{1\leq i\leq n}a_i.$$

3

Given sequence of real numbers a_1, \ldots, a_n denote the k-th smallest one by

 $k-\min_{1\leq i\leq n}a_i.$

In particular,

$$1-\min_{1\leq i\leq n}a_i=\min_{1\leq i\leq n}a_i \quad \text{and} \quad n-\min_{1\leq i\leq n}a_i=\max_{1\leq i\leq n}a_i.$$

Similarly, denote the *k*-th largest number by

 $k - \max_{1 \le i \le n} a_i.$

Thus,

$$k\operatorname{-}\max_{1\leq i\leq n}a_i=(n-k+1)\operatorname{-}\min_{1\leq i\leq n}a_i.$$

- (E

Given sequence of real numbers a_1, \ldots, a_n denote the k-th smallest one by

 $k\text{-}\min_{1\leq i\leq n}a_i.$

In particular,

$$1-\min_{1\leq i\leq n}a_i=\min_{1\leq i\leq n}a_i \quad \text{and} \quad n-\min_{1\leq i\leq n}a_i=\max_{1\leq i\leq n}a_i.$$

Similarly, denote the *k*-th largest number by

 $k-\max_{1\leq i\leq n}a_i.$

Thus,

$$k\operatorname{-}\max_{1\leq i\leq n}a_i=(n-k+1)\operatorname{-}\min_{1\leq i\leq n}a_i.$$

Given sequence of random variables $\{\xi_i\}_{i \le n}$ the sequence

$$\{k-\min_{1\leq i\leq n}\xi_i\}_{k\leq n}$$

is the sequence of order statistics.

Here $g_1, g_2, g_3, ...$ denote standard independent Gaussian variables.

Here $g_1, g_2, g_3, ...$ denote standard independent Gaussian variables. Given convex body *K*,

$$M_K = \int_{S^{n-1}} \|x\|_K \, d\sigma(x)$$

Here $g_1, g_2, g_3, ...$ denote standard independent Gaussian variables. Given convex body *K*,

$$M_{K} = \int_{S^{n-1}} \|x\|_{K} \, d\sigma(x) = \frac{c_{n}}{\sqrt{n}} \mathbb{E}\|(g_{1}, g_{2}, ..., g_{n})\|_{K} \quad (c_{n} \to 1).$$

Here $g_1, g_2, g_3, ...$ denote standard independent Gaussian variables. Given convex body *K*,

$$M_{K} = \int_{S^{n-1}} \|x\|_{K} \, d\sigma(x) = \frac{c_{n}}{\sqrt{n}} \mathbb{E}\|(g_{1}, g_{2}, ..., g_{n})\|_{K} \quad (c_{n} \to 1).$$

If $K = B_{\infty}^{n}$, then $||(g_1, g_2, ..., g_n)||_{K} = \max |g_i|$.

Here $g_1, g_2, g_3, ...$ denote standard independent Gaussian variables. Given convex body *K*,

$$M_{K} = \int_{S^{n-1}} \|x\|_{K} \, d\sigma(x) = \frac{c_{n}}{\sqrt{n}} \mathbb{E}\|(g_{1}, g_{2}, ..., g_{n})\|_{K} \quad (c_{n} \to 1).$$

If $K = B_{\infty}^{n}$, then $||(g_1, g_2, ..., g_n)||_{K} = \max |g_i|$. The behaviour of $\mathbb{E} \max |g_1|$ was used in many results, in particular in Milman's proof of the Dvoretzky theorem.

Here $g_1, g_2, g_3, ...$ denote standard independent Gaussian variables. Given convex body *K*,

$$M_{K} = \int_{S^{n-1}} \|x\|_{K} \, d\sigma(x) = \frac{c_{n}}{\sqrt{n}} \mathbb{E}\|(g_{1}, g_{2}, ..., g_{n})\|_{K} \quad (c_{n} \to 1).$$

If $K = B_{\infty}^{n}$, then $||(g_{1}, g_{2}, ..., g_{n})||_{K} = \max |g_{i}|$. The behaviour of $\mathbb{E} \max |g_{1}|$ was used in many results, in particular in Milman's proof of the Dvoretzky theorem. The norm $||x|| = \sum_{j=1}^{k} j \cdot \max |x_{i}|$, and thus, the expectation $\mathbb{E} \sum_{j=1}^{k} j \cdot \max |g_{i}|$, was used by Gluskin, Gúedon, Gordon, and other people, in particular, in the proof of the isomorphic Dvoretzky theorem (first established by Milman-Schechtman).

Here $g_1, g_2, g_3, ...$ denote standard independent Gaussian variables. Given convex body *K*,

$$M_{K} = \int_{S^{n-1}} \|x\|_{K} \, d\sigma(x) = \frac{c_{n}}{\sqrt{n}} \mathbb{E}\|(g_{1}, g_{2}, ..., g_{n})\|_{K} \quad (c_{n} \to 1).$$

If $K = B_{\infty}^{n}$, then $||(g_{1}, g_{2}, ..., g_{n})||_{K} = \max |g_{i}|$. The behaviour of $\mathbb{E} \max |g_{1}|$ was used in many results, in particular in Milman's proof of the Dvoretzky theorem. The norm $||x|| = \sum_{j=1}^{k} j \cdot \max |x_{i}|$, and thus, the expectation $\mathbb{E} \sum_{j=1}^{k} j \cdot \max |g_{i}|$, was used by Gluskin, Gúedon, Gordon, and other people, in particular, in the proof of the isomorphic Dvoretzky theorem (first established by Milman-Schechtman).

In my work with Gordon, Schütt, and Werner, we studied norms (for a given fixed sequence $a_1, ..., a_N$ in \mathbb{R}^n):

$$||x||_{kq} = \left(\sum_{j=1}^{k} j - \max |\langle x, a_i \rangle|^q\right)^{1/q}.$$

Here $g_1, g_2, g_3, ...$ denote standard independent Gaussian variables. Given convex body *K*,

$$M_{K} = \int_{S^{n-1}} \|x\|_{K} \, d\sigma(x) = \frac{c_{n}}{\sqrt{n}} \mathbb{E}\|(g_{1}, g_{2}, ..., g_{n})\|_{K} \quad (c_{n} \to 1).$$

If $K = B_{\infty}^{n}$, then $||(g_{1}, g_{2}, ..., g_{n})||_{K} = \max |g_{i}|$. The behaviour of $\mathbb{E} \max |g_{1}|$ was used in many results, in particular in Milman's proof of the Dvoretzky theorem. The norm $||x|| = \sum_{j=1}^{k} j \cdot \max |x_{i}|$, and thus, the expectation $\mathbb{E} \sum_{j=1}^{k} j \cdot \max |g_{i}|$, was used by Gluskin, Gúedon, Gordon, and other people, in particular, in the proof of the isomorphic Dvoretzky theorem (first established by Milman-Schechtman).

In my work with Gordon, Schütt, and Werner, we studied norms (for a given fixed sequence $a_1, ..., a_N$ in \mathbb{R}^n):

$$||x||_{kq} = \left(\sum_{j=1}^{k} j - \max |\langle x, a_i \rangle|^q\right)^{1/q}.$$

In all such examples **maximal** order statistics appear naturally, a set as

Mallat-Zeitouni conjecture

Order statistics play essential role in Statistics and applications. In particular, the following Conjecture is important in **Image Compression**.

Mallat-Zeitouni conjecture

Order statistics play essential role in Statistics and applications. In particular, the following Conjecture is important in **Image Compression**.

Conjecture 1 (Mallat-Zeitouni, 2000).

Let $X = (X_1, ..., X_n)$ be an *n*-dimensional random Gaussian vector with independent centered coordinates (with possibly different variances). Let *T* be an orthogonal transformation of \mathbb{R}^n and Y := T(X). Then every $k \le n$,

$$\mathbb{E}\sum_{j=1}^{k} j \operatorname{-} \min_{i \leq n} X_i^2 \leq \mathbb{E}\sum_{j=1}^{k} j \operatorname{-} \min_{i \leq n} Y_i^2.$$

Order statistics play essential role in Statistics and applications. In particular, the following Conjecture is important in **Image Compression**.

Conjecture 1 (Mallat-Zeitouni, 2000).

Let $X = (X_1, ..., X_n)$ be an *n*-dimensional random Gaussian vector with independent centered coordinates (with possibly different variances). Let *T* be an orthogonal transformation of \mathbb{R}^n and Y := T(X). Then every $k \le n$,

$$\mathbb{E}\sum_{j=1}^{k} j \operatorname{-} \min_{i \leq n} X_i^2 \leq \mathbb{E}\sum_{j=1}^{k} j \operatorname{-} \min_{i \leq n} Y_i^2.$$

Our main result: this conjecture holds up to an absolute positive constant C, namely

$$\mathbb{E}\sum_{j=1}^{k} j \operatorname{-} \min_{i \leq n} X_i^2 \leq C \mathbb{E}\sum_{j=1}^{k} j \operatorname{-} \min_{i \leq n} Y_i^2.$$

In their work, Mallat-Zeitouni showed that Conjecture 1 would follow from

Conjecture 2 (Mallat-Zeitouni, 2000).

Let $\{g_i\}_{i \leq n}$, $\{h_i\}_{i \leq n}$ be sequences of $\mathcal{N}(0, 1)$ random variables such that g_i 's are independent. Then for every $x \in \mathbb{R}^n$ and every $k \leq n$ one has

$$\mathbb{E}\sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i g_i|^2 \le \mathbb{E}\sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i h_i|^2.$$

In their work, Mallat-Zeitouni showed that Conjecture 1 would follow from

Conjecture 2 (Mallat-Zeitouni, 2000).

Let $\{g_i\}_{i \leq n}$, $\{h_i\}_{i \leq n}$ be sequences of $\mathcal{N}(0, 1)$ random variables such that g_i 's are independent. Then for every $x \in \mathbb{R}^n$ and every $k \leq n$ one has

$$\mathbb{E}\sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i g_i|^2 \le \mathbb{E}\sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i h_i|^2.$$

Equivalently, for every $m \le n$ one has

$$\mathbb{E}\sum_{j=1}^{m} j - \max_{1 \le i \le n} |x_i g_i|^2 \ge \mathbb{E}\sum_{j=1}^{m} j - \max_{1 \le i \le n} |x_i h_i|^2.$$

In their work, Mallat-Zeitouni showed that Conjecture 1 would follow from

Conjecture 2 (Mallat-Zeitouni, 2000).

Let $\{g_i\}_{i \leq n}$, $\{h_i\}_{i \leq n}$ be sequences of $\mathcal{N}(0, 1)$ random variables such that g_i 's are independent. Then for every $x \in \mathbb{R}^n$ and every $k \leq n$ one has

$$\mathbb{E}\sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i g_i|^2 \le \mathbb{E}\sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i h_i|^2.$$

Equivalently, for every $m \le n$ one has

$$\mathbb{E}\sum_{j=1}^{m} j - \max_{1 \le i \le n} |x_i g_i|^2 \ge \mathbb{E}\sum_{j=1}^{m} j - \max_{1 \le i \le n} |x_i h_i|^2.$$

Šidák (1967), Gluskin (1989): $\forall p > 0 \quad \mathbb{E} \max_{1 \le i \le n} |x_i g_i|^p \ge \mathbb{E} \max_{1 \le i \le n} |x_i h_i|^p$.

In their work, Mallat-Zeitouni showed that Conjecture 1 would follow from

Conjecture 2 (Mallat-Zeitouni, 2000).

Let $\{g_i\}_{i \leq n}$, $\{h_i\}_{i \leq n}$ be sequences of $\mathcal{N}(0, 1)$ random variables such that g_i 's are independent. Then for every $x \in \mathbb{R}^n$ and every $k \leq n$ one has

$$\mathbb{E}\sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i g_i|^2 \le \mathbb{E}\sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i h_i|^2.$$

Equivalently, for every $m \le n$ one has

$$\mathbb{E}\sum_{j=1}^{m} j - \max_{1 \le i \le n} |x_i g_i|^2 \ge \mathbb{E}\sum_{j=1}^{m} j - \max_{1 \le i \le n} |x_i h_i|^2.$$

Šidák (1967), Gluskin (1989): $\forall p > 0 \quad \mathbb{E} \max_{1 \le i \le n} |x_i g_i|^p \ge \mathbb{E} \max_{1 \le i \le n} |x_i h_i|^p$. Thus, both conjectures hold for k = n - 1.

Van Handel (2011) noticed that Conjecture 2 is false even with n = 3, k = 1.

3

Van Handel (2011) noticed that Conjecture 2 is false even with n = 3, k = 1. This does not disprove Conjecture 1.

Van Handel (2011) noticed that Conjecture 2 is false even with n = 3, k = 1. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Van Handel (2011) noticed that Conjecture 2 is false even with n = 3, k = 1. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_1, \ldots, f_n be independent copies of a random variable f with $\mathbb{E}|f| < \infty$ Let h_1, \ldots, h_n be copies of f. Let $x \in \mathbb{R}^n$. Then

$$26 \mathbb{E} \sum_{j=1}^{m} j \cdot \max_{1 \le i \le n} |x_i f_i| \ge \mathbb{E} \sum_{j=1}^{m} j \cdot \max_{1 \le i \le n} |x_i h_i|.$$

Van Handel (2011) noticed that Conjecture 2 is false even with n = 3, k = 1. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_1, \ldots, f_n be independent copies of a random variable f with $\mathbb{E}|f| < \infty$ Let h_1, \ldots, h_n be copies of f. Let $x \in \mathbb{R}^n$. Then

$$26 \mathbb{E} \sum_{j=1}^{m} j \cdot \max_{1 \le i \le n} |x_i f_i| \ge \mathbb{E} \sum_{j=1}^{m} j \cdot \max_{1 \le i \le n} |x_i h_i|.$$

Essentially used that the sum above is a norm of a vector (x_1f_1, \ldots, x_nf_n) .

Van Handel (2011) noticed that Conjecture 2 is false even with n = 3, k = 1. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_1, \ldots, f_n be independent copies of a random variable f with $\mathbb{E}|f| < \infty$ Let h_1, \ldots, h_n be copies of f. Let $x \in \mathbb{R}^n$. Then

$$26 \mathbb{E} \sum_{j=1}^{m} j \cdot \max_{1 \le i \le n} |x_i f_i| \ge \mathbb{E} \sum_{j=1}^{m} j \cdot \max_{1 \le i \le n} |x_i h_i|.$$

Essentially used that the sum above is a norm of a vector (x_1f_1, \ldots, x_nf_n) . Proved for larger class of norms (for Orlicz norms)

Van Handel (2011) noticed that Conjecture 2 is false even with n = 3, k = 1. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_1, \ldots, f_n be independent copies of a random variable f with $\mathbb{E}|f| < \infty$ Let h_1, \ldots, h_n be copies of f. Let $x \in \mathbb{R}^n$. Then

$$26 \mathbb{E} \sum_{j=1}^m j \cdot \max_{1 \le i \le n} |x_i f_i| \ge \mathbb{E} \sum_{j=1}^m j \cdot \max_{1 \le i \le n} |x_i h_i|.$$

Essentially used that the sum above is a norm of a vector (x_1f_1, \ldots, x_nf_n) . Proved for larger class of norms (for Orlicz norms) Further generalizations by Montgomery-Smith and by Junge.

Van Handel (2011) noticed that Conjecture 2 is false even with n = 3, k = 1. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_1, \ldots, f_n be independent copies of a random variable f with $\mathbb{E}|f| < \infty$ Let h_1, \ldots, h_n be copies of f. Let $x \in \mathbb{R}^n$. Then

$$26 \mathbb{E} \sum_{j=1}^m j \cdot \max_{1 \le i \le n} |x_i f_i| \ge \mathbb{E} \sum_{j=1}^m j \cdot \max_{1 \le i \le n} |x_i h_i|.$$

Essentially used that the sum above is a norm of a vector (x_1f_1, \ldots, x_nf_n) . Proved for larger class of norms (for Orlicz norms) Further generalizations by Montgomery-Smith and by Junge. What to do with smallest order statistics?

Van Handel (2011) noticed that Conjecture 2 is false even with n = 3, k = 1. This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).

Let f_1, \ldots, f_n be independent copies of a random variable f with $\mathbb{E}|f| < \infty$ Let h_1, \ldots, h_n be copies of f. Let $x \in \mathbb{R}^n$. Then

$$26 \mathbb{E} \sum_{j=1}^m j \cdot \max_{1 \le i \le n} |x_i f_i| \ge \mathbb{E} \sum_{j=1}^m j \cdot \max_{1 \le i \le n} |x_i h_i|.$$

Essentially used that the sum above is a norm of a vector (x_1f_1, \ldots, x_nf_n) .

Proved for larger class of norms (for Orlicz norms)

Further generalizations by Montgomery-Smith and by Junge.

What to do with smallest order statistics?

It turns out that it is easier to work with individual statistics than with sums.

We say that a random variable f satisfies (α, β) -condition if every t > 0 $\mathbb{P}(|f| \le t) \le \alpha t$ and $\mathbb{P}(|f| \ge t) \le \exp(-\beta t)$.

Theorem 4 (Gordon, L, Schütt, Werner, 2005, 2006).

Let f_i 's be independent copies of a random variable f satisfying (α, β) -condition. Let p > 0. Then for every $0 < x_1 \le x_2 \le \cdots \le x_n$,

$$\frac{1}{6\alpha} \left(\frac{6}{7}\right)^{1/p} \max_{1 \le j \le k} \frac{k+1-j}{\sum_{i=j}^{n} 1/x_i} \le \left(\mathbb{E} \ k - \min_{1 \le i \le n} |x_i f_i|^p\right)^{1/p}$$
$$\le \frac{6}{\beta} \max\{p, \ln(k+1)\} \max_{1 \le j \le k} \frac{k+1-j}{\sum_{i=j}^{n} 1/x_i}.$$

We say that a random variable f satisfies (α, β) -condition if every t > 0 $\mathbb{P}(|f| \le t) \le \alpha t$ and $\mathbb{P}(|f| \ge t) \le \exp(-\beta t)$.

Theorem 4 (Gordon, L, Schütt, Werner, 2005, 2006).

Let f_i 's be independent copies of a random variable f satisfying (α, β) -condition. Let p > 0. Then for every $0 < x_1 \le x_2 \le \cdots \le x_n$,

$$\frac{1}{6\alpha} \left(\frac{6}{7}\right)^{1/p} \max_{1 \le j \le k} \frac{k+1-j}{\sum_{i=j}^{n} 1/x_i} \le \left(\mathbb{E} \ k - \min_{1 \le i \le n} |x_i f_i|^p\right)^{1/p} \\ \le \frac{6}{\beta} \max\{p, \ln(k+1)\} \max_{1 \le j \le k} \frac{k+1-j}{\sum_{i=j}^{n} 1/x_i}.$$

Moreover, for k = 1 the lower bound does not require independence,

We say that a random variable f satisfies (α, β) -condition if every t > 0 $\mathbb{P}(|f| \le t) \le \alpha t$ and $\mathbb{P}(|f| \ge t) \le \exp(-\beta t)$.

Theorem 4 (Gordon, L, Schütt, Werner, 2005, 2006).

Let f_i 's be independent copies of a random variable f satisfying (α, β) -condition. Let p > 0. Then for every $0 < x_1 \le x_2 \le \cdots \le x_n$,

$$\frac{1}{6\alpha} \left(\frac{6}{7}\right)^{1/p} \max_{1 \le j \le k} \frac{k+1-j}{\sum_{i=j}^{n} 1/x_i} \le \left(\mathbb{E} k - \min_{1 \le i \le n} |x_i f_i|^p\right)^{1/p} \\ \le \frac{6}{\beta} \max\{p, \ln(k+1)\} \max_{1 \le j \le k} \frac{k+1-j}{\sum_{i=j}^{n} 1/x_i}.$$

Moreover, for k = 1 the lower bound does not require independence, in particular,

$$\mathbb{E} \min_{1 \le i \le n} |x_i f_i|^p \le C_p \mathbb{E} \min_{1 \le i \le n} |x_i h_i|^p.$$

where h_i 's are (dependent) copies of f. (In the Gaussian case, $C_p = \Gamma(2 + p)$).

(ロ) (四) (ヨ) (ヨ) (ヨ)

We say that a random variable f satisfies (α, β) -condition if every t > 0 $\mathbb{P}(|f| \le t) \le \alpha t$ and $\mathbb{P}(|f| \ge t) \le \exp(-\beta t)$.

Theorem 4 (Gordon, L, Schütt, Werner, 2005, 2006).

Let f_i 's be independent copies of a random variable f satisfying (α, β) -condition. Let p > 0. Then for every $0 < x_1 \le x_2 \le \cdots \le x_n$,

$$\frac{1}{6\alpha} \left(\frac{6}{7}\right)^{1/p} \max_{1 \le j \le k} \frac{k+1-j}{\sum_{i=j}^{n} 1/x_i} \le \left(\mathbb{E} k - \min_{1 \le i \le n} |x_i f_i|^p\right)^{1/p} \\ \le \frac{6}{\beta} \max\{p, \ln(k+1)\} \max_{1 \le j \le k} \frac{k+1-j}{\sum_{i=j}^{n} 1/x_i}.$$

Moreover, for k = 1 the lower bound does not require independence, in particular,

$$\mathbb{E} \min_{1 \le i \le n} |x_i f_i|^p \le C_p \mathbb{E} \min_{1 \le i \le n} |x_i h_i|^p.$$

where h_i 's are (dependent) copies of f. (In the Gaussian case, $C_p = \Gamma(2 + p)$). This complements Šidák's result.

Using GLSW technique, one can prove

Theorem 5 (LT 2016).

Let f_i 's be independent copies of a random variable f satisfying (α, β) -condition. Let $0 < x_1 \le x_2 \le \cdots \le x_n$. Denote

$$b_j := \sum_{i=j}^n 1/x_i$$
 and $B := \sum_{j=1}^k \frac{(k-j+1)^p}{b_j^p}.$

Then

$$\frac{1}{2}\left(\frac{1}{16\alpha}\right)^p B \leq \mathbb{E} \sum_{j=1}^k j \cdot \min_{1 \leq i \leq n} |x_i f_i|^p \leq 3 \left(\frac{4}{\beta}\right)^p \Gamma(1+p) B.$$

New results, sums

For the case of dependent variables we use quantiles of "averaged" distributions (this idea goes back to Sen (1970)).

New results, sums

For the case of dependent variables we use quantiles of "averaged" distributions (this idea goes back to Sen (1970)).

Let ξ be a r.v. with distribution $F(t) = F_{\xi}(t) = \mathbb{P}(\xi \le t)$. The quantile of order $r \in [0, 1]$ is a number $q(r) = q_F(r) = q_{\xi}(r)$ satisfying

 $\mathbb{P}\left\{\xi < q(r)\right\} \leq r \quad \text{ and } \quad \mathbb{P}\left\{\xi \leq q(r)\right\} \geq r.$
New results, sums

For the case of dependent variables we use quantiles of "averaged" distributions (this idea goes back to Sen (1970)).

Let ξ be a r.v. with distribution $F(t) = F_{\xi}(t) = \mathbb{P}(\xi \le t)$. The quantile of order $r \in [0, 1]$ is a number $q(r) = q_F(r) = q_{\xi}(r)$ satisfying

 $\mathbb{P}\left\{\xi < q(r)\right\} \leq r \quad \text{ and } \quad \mathbb{P}\left\{\xi \leq q(r)\right\} \geq r.$

The following claim provides simple lower bounds on quantiles.

New results, sums

For the case of dependent variables we use quantiles of "averaged" distributions (this idea goes back to Sen (1970)).

Let ξ be a r.v. with distribution $F(t) = F_{\xi}(t) = \mathbb{P}(\xi \le t)$. The quantile of order $r \in [0, 1]$ is a number $q(r) = q_F(r) = q_{\xi}(r)$ satisfying

$$\mathbb{P}\left\{\xi < q(r)\right\} \leq r \quad \text{ and } \quad \mathbb{P}\left\{\xi \leq q(r)\right\} \geq r.$$

The following claim provides simple lower bounds on quantiles.

Claim. Let $k \le n$ and $0 < x_1 \le ... \le x_n$. For $j \le n$, set $b_j := \sum_{i=j}^n 1/x_i$. Let ξ_i , $i \le n$, be (possibly dependent) random variables satisfying the α -condition for some $\alpha > 0$, and let F_i , $i \le n$, be the distributions of $|x_i\xi_i|$. Denote

$$F:=rac{1}{n}\sum_{i=1}^n F_i$$
 and $q:=q_F\left(rac{k-1/2}{n}
ight).$

Then

$$q \ge \frac{1}{2\alpha} \max_{1 \le j \le k} \frac{k - j + 1}{b_j}$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Low bound

We need another condition. We say that the distribution F of a non-negative r.v. satisfies (A, δ) -condition for A > 1, $\delta \in (0, 1)$ if

 $F(t) \ge 2F(t/A)$ whenever $F(t) \le \delta$.

ヨトィヨト

Low bound

We need another condition. We say that the distribution *F* of a non-negative r.v. satisfies (A, δ) -condition for $A > 1, \delta \in (0, 1)$ if

 $F(t) \ge 2F(t/A)$ whenever $F(t) \le \delta$.

Theorem 6 (LT 2016).

Let $\alpha > 0$, $\delta \in (0, 1)$, A > 1, $1 \le k \le n$ and $0 < x_1 \le ... \le x_n$. For $j \le n$, set $b_j := \sum_{i=j}^n 1/x_i$. Further, let ξ_i , $i \le n$, be (possibly dependent) random variables satisfying the α -condition and (A, δ) -condition. Then

$$\operatorname{Med}\left(k\operatorname{-}\min_{1\leq i\leq n}|x_i\xi_i|\right)\geq \frac{\delta}{2A\alpha}\,\max_{1\leq j\leq k}\frac{k-j+1}{b_j}$$

Low bound

We need another condition. We say that the distribution *F* of a non-negative r.v. satisfies (A, δ) -condition for A > 1, $\delta \in (0, 1)$ if

 $F(t) \ge 2F(t/A)$ whenever $F(t) \le \delta$.

Theorem 6 (LT 2016).

Let $\alpha > 0$, $\delta \in (0, 1)$, A > 1, $1 \le k \le n$ and $0 < x_1 \le ... \le x_n$. For $j \le n$, set $b_j := \sum_{i=j}^n 1/x_i$. Further, let ξ_i , $i \le n$, be (possibly dependent) random variables satisfying the α -condition and (A, δ) -condition. Then

$$\operatorname{Med}\left(k\operatorname{-}\min_{1\leq i\leq n}|x_i\xi_i|\right)\geq \frac{\delta}{2A\alpha}\,\max_{1\leq j\leq k}\frac{k-j+1}{b_j}$$

Recall that Theorem 5 says that if f_i 's are independent copies of a random variable f satisfying (α, β) -condition Then

$$\mathbb{E} \sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i f_i|^p \approx \sum_{j=1}^{k} \frac{(k-j+1)^p}{b_j^p}.$$

Theorem 7 (LT 2016).

If f satisfies (α, β) -condition and (A, δ) -condition, f_i 's are independent copies of f, h_i 's are (dependent) copies of a random variable f then for all p > 0,

$$\mathbb{E}\sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i f_i|^p \le 6 \left(\frac{32A\alpha}{\delta\beta}\right)^p \Gamma(1+p) \mathbb{E}\sum_{j=1}^{k} j - \min_{1 \le i \le n} |x_i h_i|^p$$

(in the Gaussian case the constant is 6 $(Cp)^p$).

Theorem 7 (LT 2016).

If f satisfies (α, β) -condition and (A, δ) -condition, f_i 's are independent copies of f, h_i 's are (dependent) copies of a random variable f then for all p > 0,

$$\mathbb{E}\sum_{j=1}^{k} j \operatorname{-} \min_{1 \leq i \leq n} |x_i f_i|^p \leq 6 \left(\frac{32A\alpha}{\delta\beta}\right)^p \Gamma(1+p) \mathbb{E}\sum_{j=1}^{k} j \operatorname{-} \min_{1 \leq i \leq n} |x_i h_i|^p$$

(in the Gaussian case the constant is 6 $(Cp)^p$).

This implies the initial Mallat-Zeitouni conjecture with an absolute constant.

Let $\xi_1, ..., \xi_n$ be standard (possibly dependent) Gaussian random variables. When

$\mathbb{E} \min_{1 \le i \le n} |\xi_i|$

is minimized?

∃ ► < ∃</p>

Let $\xi_1, ..., \xi_n$ be standard (possibly dependent) Gaussian random variables. When

 $\mathbb{E} \min_{1 \le i \le n} |\xi_i|$

is minimized?

Natural to believe: in the case of independent variables $g_1, ..., g_n$. Recall, GLSW:

$$\mathbb{E} \min_{1 \le i \le n} |g_i| \le 2 \mathbb{E} \min_{1 \le i \le n} |\xi_i|$$

(compare also with the maximizer for the expectation of maximum).

Let $\xi_1, ..., \xi_n$ be standard (possibly dependent) Gaussian random variables. When

 $\mathbb{E} \min_{1 \le i \le n} |\xi_i|$

is minimized?

Natural to believe: in the case of independent variables $g_1, ..., g_n$. Recall, GLSW:

$$\mathbb{E} \min_{1 \le i \le n} |g_i| \le 2 \mathbb{E} \min_{1 \le i \le n} |\xi_i|$$

(compare also with the maximizer for the expectation of maximum).

However Van Handel's example shows that it is not true for n = 3.

Let $\xi_1, ..., \xi_n$ be standard (possibly dependent) Gaussian random variables. When

 $\mathbb{E} \min_{1 \le i \le n} |\xi_i|$

is minimized?

Natural to believe: in the case of independent variables $g_1, ..., g_n$. Recall, GLSW:

$$\mathbb{E} \min_{1 \le i \le n} |g_i| \le 2 \mathbb{E} \min_{1 \le i \le n} |\xi_i|$$

(compare also with the maximizer for the expectation of maximum). However Van Handel's example shows that it is not true for n = 3.

It is natural to conjecture that the minimum attends when for all $i \neq j$,

$$\mathbb{E}\xi_i\xi_j=\frac{1}{n-1},$$

that is, when $\xi_1, ..., \xi_n$ form a vertex set for the regular simplex in L_2 .

Some ideas used in the lower bound

The proof is modelled on the case of uniformly distributed on [0, 1] random variables.

The proof is modelled on the case of uniformly distributed on [0, 1] random variables. Key ingredients: **1.** Work with individual order statistics (as before) The proof is modelled on the case of uniformly distributed on [0, 1] random variables. Key ingredients: **1.** Work with individual order statistics (as before) **2.** Estimate medians in terms of quantiles The proof is modelled on the case of uniformly distributed on [0, 1] random variables.Key ingredients: 1. Work with individual order statistics (as before)2. Estimate medians in terms of quantiles 3. Use truncations

Some ideas used in the lower bound

The proof is modelled on the case of uniformly distributed on [0, 1] random variables.
Key ingredients: 1. Work with individual order statistics (as before)
2. Estimate medians in terms of quantiles 3. Use truncations

We show that under (A, δ) -condition, denoting

$$t_0 := \min_{i \le n} \sup\{t > 0 : F_{|\xi_i|}(t) \le \delta\}, \quad \eta_i := \min(|\xi_i|, t_0), \ i \le n,$$

and

$$F=\frac{1}{n}\sum_{i=1}^n F_{x_i\eta_i},$$

one has

$$\operatorname{Med}\left(k\operatorname{-}\min_{1\leq i\leq n}|x_i\xi_i|\right)\geq \frac{1}{A}q_F\left(\frac{k-1/2}{n}\right)$$

The proof is modelled on the case of uniformly distributed on [0, 1] random variables.Key ingredients: 1. Work with individual order statistics (as before)2. Estimate medians in terms of quantiles 3. Use truncations

We show that under (A, δ) -condition, denoting

$$t_0 := \min_{i \le n} \sup\{t > 0 : F_{|\xi_i|}(t) \le \delta\}, \quad \eta_i := \min(|\xi_i|, t_0), \ i \le n,$$

and

$$F=\frac{1}{n}\sum_{i=1}^n F_{x_i\eta_i},$$

one has

$$\operatorname{Med}\left(k\operatorname{-}\min_{1\leq i\leq n}|x_i\xi_i|\right)\geq \frac{1}{A}q_F\left(\frac{k-1/2}{n}\right)$$

Truncation is needed:

Want:

$$\operatorname{Med}\left(k - \min_{1 \leq i \leq n} |x_i \xi_i|\right) \geq \frac{1}{A} q_F\left(\frac{k-1/2}{n}\right).$$

<ロ> <同> <同> <同> < 同> < 同>

Want:

$$\operatorname{Med}\left(k - \min_{1 \le i \le n} |x_i \xi_i|\right) \ge \frac{1}{A} q_F\left(\frac{k-1/2}{n}\right).$$

Let $g_1, ..., g_n$ be standard independent Gaussian random variables and $\xi_i = g_1, i \leq n$.

Want:

$$\operatorname{Med}\left(k - \min_{1 \le i \le n} |x_i \xi_i|\right) \ge \frac{1}{A} q_F\left(\frac{k - 1/2}{n}\right).$$

Let $g_1, ..., g_n$ be standard independent Gaussian random variables and $\xi_i = g_1, i \leq n$. Denote

$$G := rac{1}{n} \sum_{i=1}^n F_{|x_i g_i|} = rac{1}{n} \sum_{i=1}^n F_{|x_i \xi_i|}$$

Want:

$$\operatorname{Med}\left(k - \min_{1 \leq i \leq n} |x_i \xi_i|\right) \geq \frac{1}{A} q_F\left(\frac{k - 1/2}{n}\right).$$

Let $g_1, ..., g_n$ be standard independent Gaussian random variables and $\xi_i = g_1, i \leq n$. Denote

$$G := rac{1}{n} \sum_{i=1}^n F_{|x_i g_i|} = rac{1}{n} \sum_{i=1}^n F_{|x_i \xi_i|}.$$

Take $x_1 = \ldots = x_k = 1$, $x_{k+1} = \ldots x_n = n^2$.

・ ロ ト ・ 同 ト ・ 三 ト ・ 三

Want:

$$\operatorname{Med}\left(k - \min_{1 \le i \le n} |x_i \xi_i|\right) \ge \frac{1}{A} q_F\left(\frac{k - 1/2}{n}\right).$$

Let $g_1, ..., g_n$ be standard independent Gaussian random variables and $\xi_i = g_1, i \leq n$. Denote

$$G := rac{1}{n} \sum_{i=1}^n F_{|x_i g_i|} = rac{1}{n} \sum_{i=1}^n F_{|x_i \xi_i|}.$$

Take $x_1 = \ldots = x_k = 1$, $x_{k+1} = \ldots x_n = n^2$. Direct computations show that

$$\operatorname{Med}\left(k\operatorname{-}\min_{1\leq i\leq n}|x_i\xi_i|\right) = \operatorname{Med}\left(k\operatorname{-}\min_{1\leq i\leq n}|g_1|\right) \approx const$$

Want:

$$\operatorname{Med}\left(k - \min_{1 \leq i \leq n} |x_i \xi_i|\right) \geq \frac{1}{A} q_F\left(\frac{k - 1/2}{n}\right).$$

Let $g_1, ..., g_n$ be standard independent Gaussian random variables and $\xi_i = g_1, i \leq n$. Denote

$$G := rac{1}{n} \sum_{i=1}^n F_{|x_i g_i|} = rac{1}{n} \sum_{i=1}^n F_{|x_i \xi_i|}.$$

Take $x_1 = \ldots = x_k = 1$, $x_{k+1} = \ldots x_n = n^2$. Direct computations show that

$$\operatorname{Med}\left(k\operatorname{-}\min_{1\leq i\leq n}|x_i\xi_i|\right) = \operatorname{Med}\left(k\operatorname{-}\min_{1\leq i\leq n}|g_1|\right) \approx const$$

while

$$q_G\left(\frac{k-1/2}{n}\right) \approx \operatorname{Med}\left(k - \min_{1 \le i \le n} |x_i g_i|\right) \approx \sqrt{\ln k}$$

We want to estimate the median of $k - \min x_i \eta_i$.

<ロ> <同> <同> <同> < 同> < 同

We want to estimate the median of *k*-min $x_i\eta_i$. Note that for s > 0 the event

 $\{k-\min_{1\leq i\leq n}x_i\eta_i\geq s\}$

coincides with the event

$$\{|\{i \le n : x_i \eta_i < s\}| < k\}.$$

▶ ∢ ≣

We want to estimate the median of *k*-min $x_i\eta_i$. Note that for s > 0 the event

 $\{k\text{-}\min_{1\leq i\leq n}x_i\eta_i\geq s\}$

coincides with the event

$$\{|\{i \le n : x_i \eta_i < s\}| < k\}.$$

Since

$$t_0 := \min_{i \le n} \sup\{t > 0 : F_{|\xi_i|}(t) \le \delta\}, \qquad \eta_i := \min(|\xi_i|, t_0), \ i \le n,$$

we have $F_{\eta_i}(t) = F_{|\xi_i|}(t) \le \delta$ for $t < t_0$ and $F_{\eta_i}(t) = 1$ for $t \ge t_0$.

• □ ▶ • • □ ▶ • • □ ▶

We want to estimate the median of $k - \min x_i \eta_i$. Note that for s > 0 the event

 $\{k\text{-}\min_{1\leq i\leq n}x_i\eta_i\geq s\}$

coincides with the event

$$\{|\{i \le n : x_i\eta_i < s\}| < k\}.$$

Since

$$t_0 := \min_{i \le n} \sup\{t > 0 : F_{|\xi_i|}(t) \le \delta\}, \qquad \eta_i := \min(|\xi_i|, t_0), \ i \le n,$$

we have $F_{\eta_i}(t) = F_{|\xi_i|}(t) \le \delta$ for $t < t_0$ and $F_{\eta_i}(t) = 1$ for $t \ge t_0$. Fix some positive $s < \frac{1}{A} q_F\left(\frac{k-1/2}{n}\right)$ and denote $I := \{i \le n : F_i(As) = 1\}$.

We want to estimate the median of $k - \min x_i \eta_i$. Note that for s > 0 the event

 $\{k\text{-}\min_{1\leq i\leq n}x_i\eta_i\geq s\}$

coincides with the event

$$\{|\{i \le n : x_i\eta_i < s\}| < k\}.$$

Since

$$t_0 := \min_{i \le n} \sup\{t > 0 : F_{|\xi_i|}(t) \le \delta\}, \qquad \eta_i := \min(|\xi_i|, t_0), \ i \le n,$$

we have $F_{\eta_i}(t) = F_{|\xi_i|}(t) \le \delta$ for $t < t_0$ and $F_{\eta_i}(t) = 1$ for $t \ge t_0$. Fix some positive $s < \frac{1}{A} q_F\left(\frac{k-1/2}{n}\right)$ and denote $I := \{i \le n : F_i(As) = 1\}$. Then

$$\sum_{i \le n} F_i(As) = nF(As) < k - 1/2,$$

We want to estimate the median of *k*-min $x_i \eta_i$. Note that for s > 0 the event

 $\{k\text{-}\min_{1\leq i\leq n}x_i\eta_i\geq s\}$

coincides with the event

$$\{|\{i \le n : x_i\eta_i < s\}| < k\}.$$

Since

$$t_0 := \min_{i \le n} \sup\{t > 0 : F_{|\xi_i|}(t) \le \delta\}, \qquad \eta_i := \min(|\xi_i|, t_0), \ i \le n,$$

we have $F_{\eta_i}(t) = F_{|\xi_i|}(t) \le \delta$ for $t < t_0$ and $F_{\eta_i}(t) = 1$ for $t \ge t_0$. Fix some positive $s < \frac{1}{A} q_F\left(\frac{k-1/2}{n}\right)$ and denote $I := \{i \le n : F_i(As) = 1\}$. Then

$$\sum_{i \le n} F_i(As) = nF(As) < k - 1/2,$$

hence |I| < k,

We want to estimate the median of *k*-min $x_i \eta_i$. Note that for s > 0 the event

 $\{k\text{-}\min_{1\leq i\leq n}x_i\eta_i\geq s\}$

coincides with the event

$$\{|\{i \le n : x_i\eta_i < s\}| < k\}.$$

Since

$$t_0 := \min_{i \le n} \sup\{t > 0 : F_{|\xi_i|}(t) \le \delta\}, \qquad \eta_i := \min(|\xi_i|, t_0), \ i \le n,$$

we have $F_{\eta_i}(t) = F_{|\xi_i|}(t) \le \delta$ for $t < t_0$ and $F_{\eta_i}(t) = 1$ for $t \ge t_0$. Fix some positive $s < \frac{1}{A} q_F\left(\frac{k-1/2}{n}\right)$ and denote $I := \{i \le n : F_i(As) = 1\}$. Then

$$\sum_{i \le n} F_i(As) = nF(As) < k - 1/2,$$

hence |I| < k, and for $i \notin I$, $F_i(As) \le \delta$.

We want to estimate the median of *k*-min $x_i \eta_i$. Note that for s > 0 the event

 $\{k\text{-}\min_{1\leq i\leq n}x_i\eta_i\geq s\}$

coincides with the event

$$\{|\{i \le n : x_i\eta_i < s\}| < k\}.$$

Since

$$t_0 := \min_{i \le n} \sup\{t > 0 : F_{|\xi_i|}(t) \le \delta\}, \qquad \eta_i := \min(|\xi_i|, t_0), \ i \le n,$$

we have $F_{\eta_i}(t) = F_{|\xi_i|}(t) \le \delta$ for $t < t_0$ and $F_{\eta_i}(t) = 1$ for $t \ge t_0$. Fix some positive $s < \frac{1}{A} q_F\left(\frac{k-1/2}{n}\right)$ and denote $I := \{i \le n : F_i(As) = 1\}$. Then

$$\sum_{i \le n} F_i(As) = nF(As) < k - 1/2,$$

hence |I| < k, and for $i \notin I$, $F_i(As) \le \delta$. Applying (A, δ) -condition,

$$\mathbb{E}|\{i \in I^{c} : x_{i}\eta_{i} < s\}| = \mathbb{E}\sum_{i \in I^{c}} \chi_{\{x_{i}\eta_{i} < s\}} \leq \sum_{i \in I^{c}} F_{i}(s)$$
$$\leq \frac{1}{2}\sum_{i \in I^{c}} F_{i}(As) = \frac{nF(As) - |I|}{2} < \frac{k - |I|}{2}.$$

< ロ > < 四 > < 回 > < 回 > < 回 > <

$$\mathbb{E}|\{i \in I^c : x_i\eta_i < s\}| = \mathbb{E}\sum_{i \in I^c} \chi_{\{x_i\eta_i < s\}} \le \sum_{i \in I^c} F_i(s)$$
$$\le \frac{1}{2}\sum_{i \in I^c} F_i(As) = \frac{nF(As) - |I|}{2} < \frac{k - |I|}{2}.$$

Now we apply Markov's inequality: $\mathbb{P}(|\{i \in I^c : x_i \eta_i < s\}| \ge k - |I|) \le \frac{1}{2}$,

イロト イポト イヨト イヨト

$$\mathbb{E}|\{i \in I^{c} : x_{i}\eta_{i} < s\}| = \mathbb{E}\sum_{i \in I^{c}} \chi_{\{x_{i}\eta_{i} < s\}} \leq \sum_{i \in I^{c}} F_{i}(s)$$
$$\leq \frac{1}{2}\sum_{i \in I^{c}} F_{i}(As) = \frac{nF(As) - |I|}{2} < \frac{k - |I|}{2}.$$

Now we apply Markov's inequality: $\mathbb{P}(|\{i \in I^c : x_i \eta_i < s\}| \ge k - |I|) \le \frac{1}{2}$, hence

$$\mathbb{P}\big(|\{i \le n : x_i\eta_i < s\}| \ge k\big) \le \frac{1}{2}.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

$$\mathbb{E}|\{i \in I^{c} : x_{i}\eta_{i} < s\}| = \mathbb{E}\sum_{i \in I^{c}} \chi_{\{x_{i}\eta_{i} < s\}} \leq \sum_{i \in I^{c}} F_{i}(s)$$
$$\leq \frac{1}{2}\sum_{i \in I^{c}} F_{i}(As) = \frac{nF(As) - |I|}{2} < \frac{k - |I|}{2}.$$

Now we apply Markov's inequality: $\mathbb{P}(|\{i \in I^c : x_i \eta_i < s\}| \ge k - |I|) \le \frac{1}{2}$, hence

$$\mathbb{P}\big(|\{i \leq n : x_i\eta_i < s\}| \geq k\big) \leq \frac{1}{2}.$$

Therefore

$$\mathbb{P}\left(k-\min_{1\leq i\leq n} x_i\eta_i\geq s\right)=\mathbb{P}\left(|\{i\leq n\,:\,x_i\eta_i< s\}|< k\right)\geq \frac{1}{2},$$

イロト イポト イヨト イヨト

$$\mathbb{E}|\{i \in I^{c} : x_{i}\eta_{i} < s\}| = \mathbb{E}\sum_{i \in I^{c}} \chi_{\{x_{i}\eta_{i} < s\}} \leq \sum_{i \in I^{c}} F_{i}(s)$$
$$\leq \frac{1}{2}\sum_{i \in I^{c}} F_{i}(As) = \frac{nF(As) - |I|}{2} < \frac{k - |I|}{2}.$$

Now we apply Markov's inequality: $\mathbb{P}(|\{i \in I^c : x_i \eta_i < s\}| \ge k - |I|) \le \frac{1}{2}$, hence

$$\mathbb{P}\big(|\{i \leq n : x_i\eta_i < s\}| \geq k\big) \leq \frac{1}{2}.$$

Therefore

$$\mathbb{P}\big(k\text{-}\min_{1\leq i\leq n} x_i\eta_i\geq s\big)=\mathbb{P}\big(|\{i\leq n\,:\,x_i\eta_i< s\}|< k\big)\geq \frac{1}{2},$$

that is

$$\operatorname{Med}\left(k\operatorname{-}\min_{1\leq i\leq n}|x_i\xi_i|\right)\geq \operatorname{Med}\left(k\operatorname{-}\min_{1\leq i\leq n}|x_i\eta_i|\right)\geq s.$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト