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Order statistics

Given sequence of real numbers a1, . . . , an denote the k-th smallest one by

k- min
1≤i≤n

ai.

In particular,

1- min
1≤i≤n

ai = min
1≤i≤n

ai and n- min
1≤i≤n

ai = max
1≤i≤n

ai.

Similarly, denote the k-th largest number by

k- max
1≤i≤n

ai.

Thus,
k- max

1≤i≤n
ai = (n− k + 1)- min

1≤i≤n
ai.

Given sequence of random variables {ξi}i≤n the sequence

{k- min
1≤i≤n

ξi}k≤n

is the sequence of order statistics.
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Order statistics in Asymptotic Geometric Analysis

Here g1, g2, g3, ... denote standard independent Gaussian variables.

Given convex body K,

MK =

∫
Sn−1
‖x‖K dσ(x) =

cn√
n
E‖(g1, g2, ..., gn)‖K (cn → 1).

If K = Bn
∞, then ‖(g1, g2, ..., gn)‖K = max |gi|. The behaviour of Emax |g1| was

used in many results, in particular in Milman’s proof of the Dvoretzky theorem.
The norm ‖x‖ =

∑k
j=1 j- max |xi|, and thus, the expectation E

∑k
j=1 j- max |gi|,

was used by Gluskin, Gúedon, Gordon, and other people, in particular, in the proof of
the isomorphic Dvoretzky theorem (first established by Milman-Schechtman).

In my work with Gordon, Schütt, and Werner, we studied norms (for a given fixed
sequence a1, ..., aN in Rn):

‖x‖kq =
( k∑

j=1

j- max |〈x, ai〉|q
)1/q

.

In all such examples maximal order statistics appear naturally.
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Mallat-Zeitouni conjecture

Order statistics play essential role in Statistics and applications. In particular, the
following Conjecture is important in Image Compression.

Conjecture 1 (Mallat-Zeitouni, 2000).
Let X = (X1, . . . ,Xn) be an n-dimensional random Gaussian vector with independent
centered coordinates (with possibly different variances). Let T be an orthogonal
transformation of Rn and Y := T(X). Then every k ≤ n,

E
k∑

j=1

j- min
i≤n

Xi
2 ≤ E

k∑
j=1

j- min
i≤n

Yi
2.

Our main result: this conjecture holds up to an absolute positive constant C, namely

E
k∑

j=1

j- min
i≤n

Xi
2 ≤ C E

k∑
j=1

j- min
i≤n

Yi
2.
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A stronger conjecture

In their work, Mallat-Zeitouni showed that Conjecture 1 would follow from

Conjecture 2 (Mallat-Zeitouni, 2000).
Let {gi}i≤n, {hi}i≤n be sequences of N (0, 1) random variables such that gi’s are
independent. Then for every x ∈ Rn and every k ≤ n one has

E
k∑

j=1

j- min
1≤i≤n

|xigi|2 ≤ E
k∑

j=1

j- min
1≤i≤n

|xihi|2.

Equivalently, for every m ≤ n one has

E
m∑

j=1

j- max
1≤i≤n

|xigi|2 ≥ E
m∑

j=1

j- max
1≤i≤n

|xihi|2.

Šidák (1967), Gluskin (1989): ∀p > 0 Emax1≤i≤n |xigi|p ≥ Emax1≤i≤n |xihi|p.
Thus, both conjectures hold for k = n− 1.
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Known results

Van Handel (2011) noticed that Conjecture 2 is false even with n = 3, k = 1.

This does not disprove Conjecture 1.

One may try to prove Conjecture 2 with absolute constants in the corresponding
inequalities (note, two inequalities are not equivalent, if we put absolute constants).

Theorem 3 (Gordon, L, Schütt, Werner, 2002).
Let f1, . . . , fn be independent copies of a random variable f with E|f | <∞ Let
h1, . . . , hn be copies of f . Let x ∈ Rn. Then

26E
m∑

j=1

j- max
1≤i≤n

|xifi| ≥ E
m∑

j=1

j- max
1≤i≤n

|xihi|.

Essentially used that the sum above is a norm of a vector (x1f1, . . . , xnfn).
Proved for larger class of norms (for Orlicz norms)
Further generalizations by Montgomery-Smith and by Junge.
What to do with smallest order statistics?
It turns out that it is easier to work with individual statistics than with sums.
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h1, . . . , hn be copies of f . Let x ∈ Rn. Then

26E
m∑

j=1

j- max
1≤i≤n

|xifi| ≥ E
m∑

j=1

j- max
1≤i≤n

|xihi|.

Essentially used that the sum above is a norm of a vector (x1f1, . . . , xnfn).
Proved for larger class of norms (for Orlicz norms)
Further generalizations by Montgomery-Smith and by Junge.

What to do with smallest order statistics?
It turns out that it is easier to work with individual statistics than with sums.
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Known results

We say that a random variable f satisfies (α, β)-condition if every t > 0

P (|f | ≤ t) ≤ αt and P (|f | ≥ t) ≤ exp(−βt).

Theorem 4 (Gordon, L, Schütt, Werner, 2005, 2006).
Let fi’s be independent copies of a random variable f satisfying (α, β)-condition.
Let p > 0. Then for every 0 < x1 ≤ x2 ≤ · · · ≤ xn,

1
6α

(
6
7

)1/p

max
1≤j≤k

k + 1− j∑n
i=j 1/xi

≤
(
E k- min

1≤i≤n
|xifi|p

)1/p

≤ 6
β

max{p, ln(k + 1)} max
1≤j≤k

k + 1− j∑n
i=j 1/xi

.

Moreover, for k = 1 the lower bound does not require independence, in particular,

E min
1≤i≤n

|xifi|p ≤ Cp E min
1≤i≤n

|xihi|p.

where hi’s are (dependent) copies of f . (In the Gaussian case, Cp = Γ(2 + p)).
This complements Šidák’s result.
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New results, sums

Using GLSW technique, one can prove

Theorem 5 (LT 2016).
Let fi’s be independent copies of a random variable f satisfying (α, β)-condition. Let
0 < x1 ≤ x2 ≤ · · · ≤ xn. Denote

bj :=

n∑
i=j

1/xi and B :=

k∑
j=1

(k − j + 1)p

bj
p .

Then
1
2

(
1

16α

)p

B ≤ E
k∑

j=1

j- min
1≤i≤n

|xifi|p ≤ 3
(

4
β

)p

Γ(1 + p) B.
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New results, sums

For the case of dependent variables we use quantiles of “averaged” distributions
(this idea goes back to Sen (1970)).

Let ξ be a r.v. with distribution F(t) = Fξ(t) = P(ξ ≤ t). The quantile of order
r ∈ [0, 1] is a number q(r) = qF(r) = qξ(r) satisfying

P {ξ < q(r)} ≤ r and P {ξ ≤ q(r)} ≥ r.

The following claim provides simple lower bounds on quantiles.

Claim. Let k ≤ n and 0 < x1 ≤ . . . ≤ xn. For j ≤ n, set bj :=
∑n

i=j 1/xi. Let ξi, i ≤ n,
be (possibly dependent) random variables satisfying the α-condition for some α > 0,
and let Fi, i ≤ n, be the distributions of |xiξi|. Denote

F :=
1
n

n∑
i=1

Fi and q := qF

(
k − 1/2

n

)
.

Then
q ≥ 1

2α
max

1≤j≤k

k − j + 1
bj

.
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Low bound

We need another condition. We say that the distribution F of a non-negative r.v.
satisfies (A, δ)-condition for A > 1, δ ∈ (0, 1) if

F(t) ≥ 2F(t/A) whenever F(t) ≤ δ.

Theorem 6 (LT 2016).
Let α > 0, δ ∈ (0, 1), A > 1, 1 ≤ k ≤ n and 0 < x1 ≤ . . . ≤ xn. For j ≤ n, set
bj :=

∑n
i=j 1/xi. Further, let ξi, i ≤ n, be (possibly dependent) random variables

satisfying the α-condition and (A, δ)-condition. Then

Med
(

k- min
1≤i≤n

|xiξi|
)
≥ δ

2Aα
max

1≤j≤k

k − j + 1
bj

.

Recall that Theorem 5 says that if fi’s are independent copies of a random variable f
satisfying (α, β)-condition Then

E
k∑

j=1

j- min
1≤i≤n

|xifi|p ≈
k∑

j=1

(k − j + 1)p

bj
p .
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Comparison

Theorem 7 (LT 2016).
If f satisfies (α, β)-condition and (A, δ)-condition, fi’s are independent copies of f ,
hi’s are (dependent) copies of a random variable f then for all p > 0,

E
k∑

j=1

j- min
1≤i≤n

|xifi|p ≤ 6
(

32Aα
δβ

)p

Γ(1 + p) E
k∑

j=1

j- min
1≤i≤n

|xihi|p

(in the Gaussian case the constant is 6 (Cp)
p).

This implies the initial Mallat-Zeitouni conjecture with an absolute constant.

Alexander Litvak (Univ. of Alberta) Order statistics of vectors with dependent coordinates BIRS, 2017 11 / 16



Comparison

Theorem 7 (LT 2016).
If f satisfies (α, β)-condition and (A, δ)-condition, fi’s are independent copies of f ,
hi’s are (dependent) copies of a random variable f then for all p > 0,

E
k∑

j=1

j- min
1≤i≤n

|xifi|p ≤ 6
(

32Aα
δβ

)p

Γ(1 + p) E
k∑

j=1

j- min
1≤i≤n

|xihi|p

(in the Gaussian case the constant is 6 (Cp)
p).

This implies the initial Mallat-Zeitouni conjecture with an absolute constant.

Alexander Litvak (Univ. of Alberta) Order statistics of vectors with dependent coordinates BIRS, 2017 11 / 16



Remark: Gaussian case

Let ξ1, ..., ξn be standard (possibly dependent) Gaussian random variables. When

E min
1≤i≤n

|ξi|

is minimized?

Natural to believe: in the case of independent variables g1, ..., gn. Recall, GLSW:

E min
1≤i≤n

|gi| ≤ 2E min
1≤i≤n

|ξi|

(compare also with the maximizer for the expectation of maximum).
However Van Handel’s example shows that it is not true for n = 3.

It is natural to conjecture that the minimum attends when for all i 6= j,

Eξiξj =
1

n− 1
,

that is, when ξ1, ..., ξn form a vertex set for the regular simplex in L2.
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Some ideas used in the lower bound

The proof is modelled on the case of uniformly distributed on [0, 1] random variables.

Key ingredients: 1. Work with individual order statistics (as before)
2. Estimate medians in terms of quantiles 3. Use truncations

We show that under (A, δ)-condition, denoting

t0 := min
i≤n

sup{t > 0 : F|ξi|(t) ≤ δ}, ηi := min(|ξi|, t0), i ≤ n,

and

F =
1
n

n∑
i=1

Fxiηi ,

one has

Med
(

k- min
1≤i≤n

|xiξi|
)
≥ 1

A
qF

(
k − 1/2

n

)
.

Truncation is needed:
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Example

Want:

Med
(

k- min
1≤i≤n

|xiξi|
)
≥ 1

A
qF

(
k − 1/2

n

)
.

Let g1, ..., gn be standard independent Gaussian random variables and ξi = g1, i ≤ n.
Denote

G :=
1
n

n∑
i=1

F|xigi| =
1
n

n∑
i=1

F|xiξi|.

Take x1 = . . . = xk = 1, xk+1 = . . . xn = n2. Direct computations show that

Med
(

k- min
1≤i≤n

|xiξi|
)

= Med
(

k- min
1≤i≤n

|g1|
)
≈ const

while

qG

(
k − 1/2

n

)
≈ Med

(
k- min

1≤i≤n
|xigi|

)
≈
√

ln k
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Proof

We want to estimate the median of k- min xiηi.

Note that for s > 0 the event

{k- min
1≤i≤n

xiηi ≥ s}

coincides with the event
{|{i ≤ n : xiηi < s}| < k}.

Since

t0 := min
i≤n

sup{t > 0 : F|ξi|(t) ≤ δ}, ηi := min(|ξi|, t0), i ≤ n,

we have Fηi(t) = F|ξi|(t) ≤ δ for t < t0 and Fηi(t) = 1 for t ≥ t0.

Fix some positive s < 1
A qF

(
k−1/2

n

)
and denote I := {i ≤ n : Fi(As) = 1}.

Then ∑
i≤n

Fi(As) = nF(As) < k − 1/2,

hence |I| < k, and for i 6∈ I, Fi(As) ≤ δ. Applying (A, δ)-condition,
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Proof

E|{i ∈ Ic : xiηi < s}| = E
∑
i∈Ic

χ{xiηi<s} ≤
∑
i∈Ic

Fi(s)

≤ 1
2

∑
i∈Ic

Fi(As) =
nF(As)− |I|

2
<

k − |I|
2

.

Now we apply Markov’s inequality: P
(
|{i ∈ Ic : xiηi < s}| ≥ k − |I|

)
≤ 1

2 ,
hence

P
(
|{i ≤ n : xiηi < s}| ≥ k

)
≤ 1

2
.

Therefore

P
(
k- min

1≤i≤n
xiηi ≥ s

)
= P

(
|{i ≤ n : xiηi < s}| < k

)
≥ 1

2
,

that is

Med
(

k- min
1≤i≤n

|xiξi|
)
≥ Med

(
k- min

1≤i≤n
|xiηi|

)
≥ s.
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