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Motivation

We consider the problem of constructing an approximation of a random variable Y by a
function of a set of random variables X = (X, ..., Xy), using samples of (X, Y), when

@ the samples of (X, Y) can be generated from adaptively chosen samples of X
(active learning),

@ there exists a deterministic function u such that

Y = u(X).
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Motivation

In practice, Y could be the output of a numerical model (computer code) and X a set of
input parameters modelling uncertainties on the model, with known probability
distribution.

The approximation can then be used as a predictive surrogate model.

When the generation of one sample requires a costly numerical simulation (or
experiment), only a few samples are available.

Low-dimensional structures of functions have to be exploited (e.g., low effective
dimensionality, anisotropy, sparsity, low rank).
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Tensor spaces of multivariate functions

Assume X, has probability law u, with support X, .

Let H, a Hilbert space of functions defined on X, typically L2 (X,) or a reproducing
kernel Hilbert space (RKHS) in L2, (X,).

We consider multivariate functions defined on X = X x ... X X4 that are elements of
the tensor Hilbert space
H1®...QHs =H

equipped with the canonical norm.
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a-rank of higher-order tensors

For a non-empty subset o of D = {1,...,d} and a“ = D \ «, a tensor u € H can be
identified with an order-two tensor

Ma(u) S Ha ®H(yc7

where
My = QH, CRY,

vep
The a-rank of u is defined by

rankq(u) = rank(Mq(v)),

which is the minimal integer r, such that

T

u(x) = Z V;?(Xa)W/?C (xac)

k=1
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a-ranks and related tensor formats

@ For T a collection of subsets of D, we define the T-rank of a tensor v as the tuple

rankr(v) = {ranka(v)}aer-
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a-ranks and related tensor formats

@ For T a collection of subsets of D, we define the T-rank of a tensor v as the tuple

rankr(v) = {ranka(v)}aer-

@ The set of tensors with T-rank bounded by r = (ra)acT is

7,7 ={veH: rankr(v) < r} = ﬂ {v e H ranka(v) < ra},

acT

and is called a tensor format.
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a-ranks and related tensor formats

@ For T a collection of subsets of D, we define the T-rank of a tensor v as the tuple

rankr(v) = {ranka(v)}aer-

@ The set of tensors with T-rank bounded by r = (ra)acT is
7,7 ={veH: rankr(v) < r} = ﬂ {v e H ranka(v) < ra},
a€eT

and is called a tensor format.
@ Tree-based tensor formats correspond to a tree-structured T

{1,2,3,4,5}

{1,2,3,4,5}
{1,2,3,4}
{1,2,3,4,5}

omo o N
{1,2}

{1y {23 {3} {4 {5}
Tucker

{2y {3}
Hierarchical Tucker

{1y {2}
Tensor Train
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Tree-based tensor formats

@ A tensor in 7,7 admits a multilinear parametrization with parameters {P* }aeTuiny
forming a tree network of low order tensors.

o Storage complexity scales as O(dR*™) where R is the maximal a-rank and s is the
arity of the tree.

@ Corresponds to a deep (sum-product) network with depth bounded by d — 1.

e 7, is weakly closed (and therefore proximinal).
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Principal subspaces

For a subset of variables «, a multivariate function u(xi, ..., x4) is identified with a
bivariate function u € Ho ® Hac which admits a singular value decomposition

rankq (u)

U(Xar Xae) = D TRV (xa) Ve (Xac)

k=1

The subspace of a-principal components

Uo = span{vi’,..., v, }

I

is solution of
min  |lu—"Py,ull=min |u—v|
dim(Ua )=ro rankq (v)<rq

where Py, = Py, ® idac is the orthogonal projection onto U, ® Hac.
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Higher-order principal component analysis for tree-based formats

Let T be a tree-structured collection of subsets of 2°

For all « in T, we will determine subspaces U, that are approximations of a-principal
subspaces of u in low-dimensional subspaces V,, of functions defined on X,.

Anthony Nouy Ecole Centrale de Nantes 10



Higher-order principal component analysis for tree-based formats
For each o € T, U, is defined as the ro-dimensional a-principal subspace of an
approximation of u

uo =Py, u

o for S(a) = 0 (leaf node), V., is a given approximation space in H. (e.g.,
polynomials, wavelets, ...),

o for S(a) # 0 (interior node), Vo = @ gcsa Us-

Anthony Nouy Ecole Centrale de Nantes

11



Higher-order principal component analysis for tree-based formats

We finally obtain an approximation u* by projecting u onto the tensor space ®a€5 (D) Ua

= I Pu.u

aeS(D)
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Learning algorithm based on principal component analysis

For a feasible algorithm using samples,

@ orthogonal projections Py, on subspaces W, (U, or V) are replaced by oblique
projections Zy,, using samples (e.g. interpolation or least-squares projection),

@ principal subspaces U, of u, = Zv, u are estimated using samples of the V,-valued

random variable
uﬂ('7 Xac)

With interpolation, this requires the evaluation of u at the dim(V,) x N, points
{0, x5) %0 €Ty, 1 < k < No}

where 'y, C X, is a unisolvent set of points for V,, (magic points), and the xKe are
i.i.d. samples of X,e.

Anthony Nouy Ecole Centrale de Nantes 13



Properties of the algorithm

Theorem (Prescribed rank)

For a given T-rank, if the subspaces U, are such that

Pusta —ua|| < C  min  |lv—ual
rankq (V) <rq

holds with probability higher than 1 — n, then we obtain an approximation u* such that

lu* — ul®> < NC°#T min ||v —u|® + A max ||u— Py, ul]?
veT,T 1<v<d

holds with probability higher than 1 — n# T, with A and A depending on the properties of
the oblique projection operators.

About complexity: If N, = r, for all @ € T, then the total number of evaluations N is
equal to the storage complexity S of the resulting approximation u* € 7,
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Properties of the algorithm

Theorem (Fixed precision)

Let €,€ > 0. If the subspaces U, are determined such that

€
[Puq tla = uall < \/ﬁllua\l

holds with probability higher than 1 — n, and if the approximation spaces V,,, 1 <v < d,
are such that
[Py, u—ull < é€ul,

then we obtain an approximation u* such that
lu* — ul® < (N + &) u]?

holds with probability higher than 1 — n#T, with A and A depending on the properties of
the oblique projection operators.
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lllustration of tensor recovery: Henon-Heiles potential

d - 5 d—1
0.2 2 2 \2 : B
u(X) = g +02I21:(XX, X7) + 6 ,_1(Xl + X207 X~ U(-1,1),
{1,2,3,4,5}
{1,2,3,4}
ranka(u) = 3 for all v in (1,2,3} o
T={{1},{1,2},...,{1,...,d-1}} (1,2}

{1} {2}

Then u can be exactly represented in the tensor train format 7,” with T-rank
r=(3,...,3)

3 3

1,2) 1,2,3 1,...,d

:EZ Z v Ve D ) viie D () vl (x)
1=1 k=1 kg—1=1

with univariate polynomial functions of degree 4.
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lllustration of tensor recovery: Henon-Heiles potential

Table: Approximation with prescribed T-rank r = (3,...,3) and polynomial degree 4 for
different values of d and v = Nu/ra.

vy=1
d 5 10 20 50 100
e(u*) x 10™ | [1.0;234.2] | [1.5;67.5] | [2.5;79.9] | [6.6;62.8] | [15.7;175.1]
S=N 165 390 840 2190 4440
v =10
d 5 10 20 50 100
e(u*) x 10| [0.1,0.4] | [0.2;0.4] | [0.3;0.4] | [0.4;0.7] [0.6;0.8]
S 165 390 840 2190 4440
N 1515 3765 8265 21765 44265
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lllustration for approximation: Borehole function

The Borehole function models water flow through a borehole:

27 Tu(Hu — H,
u(X) = L — ) —0 X = (rwslog(r), Tuy Huy iy Hiy L, Ku)
In(r/rw) (1 T nmz ke T ?7)

w radius of borehole (m) N(n =0.10,0 = 0.0161812)
r radius of influence (m) LN(p =7.71,0 = 1.0056)
T,  transmissivity of upper aquifer (m?2/yr) U(63070, 115600)

H,  potentiometric head of upper aquifer (m)  U(990,1110)

T,  transmissivity of lower aquifer (m?/yr) U(63.1,116)

H, potentiometric head of lower aquifer (m)  U(700,820)

L length of borehole (m) U(1120, 1680)

Ky  hydraulic conductivity of borehole (m/yr)  U(9855, 12045)
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lllustration for approximation: Borehole function

Approximation in hierarchical Tucker format with a linearly structured tree:

{1,2,3,4,5}

{1,2,3,4}

{1,2,3} {5}
T:{{l}a7{d}7{172}17{171d_1}} (1,2}

{1} {2}
n g M,2 n,.., d—1
*x (1) (d) (1,2) ~(1,2,3) (1,...,d-1)
u = Z T Z Z T Z Viy (Xl) Vi (Xd)CilJzJQ Ckz,f3,‘<3 T de—Zvid—lnkd—l
=1 ig=lky=1 kg_1=1

with polynomial functions v,-(:) eV, =P,
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lllustration for approximation: Borehole function

Table: Approximation with prescribed precision €, adaptive degree p(e) = log;o(¢™*), and
N. = dim(V4). Confidence intervals for relative error e(u*), storage complexity S and
number of evaluations M for different ¢, and average ranks.

€ E(u*) N S [r{l},...,r{d},r{lyg},...,r{l 7777 d—l}]
1077 [ [1.8;2.7] x 107 * [39, 39] [23,23] n,1,1,1,1,1,1,1,1,1,1,1,1,1]
1072 [ [0.3;4.0] x 1072 | [88,100] [41, 46] 1,1,1,1,1,1,1,1,1,2,1,2,1,1]
107% [ [0.8;1.9] x 10~% | [159, 186] [61,78] 2,1,1,2,2,1,1,1,1,2,2,2,1,1]
107* | [2.5;5.6] x 10~° | [328,328] | [141,141] | [2,2,2,3,3,2,2,2,1,2,2,2,2,2]
107° [ [0.6;1.6] x 10~° | [444,472] | [166,178] | [2,2,2,4,4,2,2,2,1,2,2,2,2,2]
107° | [3.1;5.7] x 10°° | [596,664] | [204,241] | [3,2,2,4,5,3,2,2,2,2,2,2,2,2]
1077 [ [1.0;6.3] x 107 | [1042,1267] | [374,429] | [4,3,4,6,5,3,3,3,2,2,3,2,2,2]
1078 [ [1.1;7.1] x 1078 | [1567,1567] | [512,512] | [4,3,4,7,6,3,3,3,2,2,3,2,3,3]
1077 [ [0.2;4.9] x 10 % | [1719,1854] | [534, 560] [4,4,4,8,6,3,3,3,2,2,3,2,3,3]
10710 [ [0.3;1.9] x 1077 | [2482,2828] | [774,838] | [5,4,6,10,7,4,3,3,2,2,3,2,3,3]
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Conclusions

The proposed algorithm
@ provides an approximation of a function in tree-based format using evaluations of
the function at a structured and adapted set of points,
@ provides a stable approximation with prescribed rank, with a number of samples N
equal to (or of the order of) the number of parameters,

@ provides an approximation with almost the desired precision.

What should be done:
@ Control norms of projections and statistical estimations of principal subspaces for
obtaining a certified approximation.
@ Provide a priori estimations of the complexity for certain classes of functions.
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Tree-based tensor formats |

The minimal subspace UT"(u) of u is the smallest subspace such that
Ma(u) € US™ (1) @ Hae
and rank, (1) = dim(UT"(u)).

@ Any tensor v is such that

v e ® uT™(v)

a€eS(D)

with S(D) a partition of D, and

U(Tin( ® Umln(

BES(a

for any o C D with non trivial partition S(«).
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Tree-based tensor formats Il

e For a tensor v € 7,7 with rankr(v) = r, let {cpf(z) i _; be bases of the minimal
subspace UT™(v). The tensor v then admits a hierarchical representation

= Y Pha)ecso ® oL,

1<ka <fo aes
aeS(D)
with
«
Phe = Pku (k) pes(a ® 90;(5
1<kg<rg Bes
BES(a)

Anthony Nouy Ecole Centrale de Nantes 24



Partial interpolation of tensors

For a subspace W, in H,, we define a unisolvent set of points Ny, in X, (magic points)
and the associated interpolation operator /iy, onto W, defined for v € R¥e by

Iw,v(xa) = v(Xa) Vxa € Tw,.

We then define the corresponding partial interpolation operator Zw, = lw, ® idac
defined for u € RY by

Tw, u(Xas-) = U(Xa,*) Yxa € Tw,.

If the minimal subspace Ug’i"(u)_ is a RKHS, then Iy, is continuous from UT"(u) to W,
and Zy, is continuous from U7"(u) ® Hae to Wa ® Hac, so that

IWL\ ue Wy ®Hac.
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Statistical estimation of principal components

For o € T, consider u, = Zy, u.
For || - || the L2 (X)-norm, the a-principal subspace of u, is solution of
; 2
gt E ([l Xac) = P ia( Xe )l )

where uq (-, Xac) is interpreted as a V,,-valued random variable.

It can be estimated by the solution of

mm Z Hua( erc /PUu ua(-,X(lic)HgHa
ra Ne

dim(Us )=

where the xXc are i.i.d. samples of X,c.
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Complexity

@ The storage complexity (number of parameters) of a tensor in T NVis

S = Z fe H rg + Z ro dim(\V,

a€(TU{D})\L(T) BES(a) a€eL(T)

@ The total number of evaluations of the function required by the algorithm is

N= " Nodim(Va)+ > Na J] ms+ H rs,

acL(T) aeT\L(T) BeS(a) BeS(D

where N, is the number of samples used for estimating the r, a-principal
components of u,, taken such that

fo < N

o If N, = r,, for all a, then
N=S.

Anthony Nouy Ecole Centrale de Nantes

27



About the constants

If oblique projections Iy, and Iy, were orthogonal projections, the constants A and A
would be equal to 1.

These constants A and A depend on

H/VaHugf"(u)—ma and |ly, — PUaHug;'f"(u)—ma
that depend on the properties of oblique projection operators restricted to minimal
subspaces of u.
Case of tensor recovery
Assume that UT"(u) C V., for all leaves o (no discretization error).

If for all o € T, the set of N samples u(-,xkc) contains rank, (u) linearly independent
functions, then U, = UJ"(u).

The constants A =1, and A =1 (i.e. same stability than the ideal algorithm).
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