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Motivation

We consider the problem of constructing an approximation of a random variable Y by a
function of a set of random variables X = (X1, . . . ,Xd), using samples of (X ,Y ), when

the samples of (X ,Y ) can be generated from adaptively chosen samples of X
(active learning),

there exists a deterministic function u such that

Y = u(X ).
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Motivation

In practice, Y could be the output of a numerical model (computer code) and X a set of
input parameters modelling uncertainties on the model, with known probability
distribution.

The approximation can then be used as a predictive surrogate model.

When the generation of one sample requires a costly numerical simulation (or
experiment), only a few samples are available.

Low-dimensional structures of functions have to be exploited (e.g., low effective
dimensionality, anisotropy, sparsity, low rank).
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Tensor spaces of multivariate functions

Assume Xν has probability law µν with support Xν .

Let Hν a Hilbert space of functions defined on Xν , typically L2
µν (Xν) or a reproducing

kernel Hilbert space (RKHS) in L2
µν (Xν).

We consider multivariate functions defined on X = X1 × . . .×Xd that are elements of
the tensor Hilbert space

H1 ⊗ . . .⊗Hd := H

equipped with the canonical norm.
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α-rank of higher-order tensors

For a non-empty subset α of D = {1, . . . , d} and αc = D \ α, a tensor u ∈ H can be
identified with an order-two tensor

Mα(u) ∈ Hα ⊗Hαc ,

where
Hβ =

⊗
ν∈β

Hν ⊂ RXβ .

The α-rank of u is defined by

rankα(u) = rank(Mα(u)),

which is the minimal integer rα such that

u(x) =

rα∑
k=1

vαk (xα)wαc

k (xαc )
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α-ranks and related tensor formats

For T a collection of subsets of D, we define the T -rank of a tensor v as the tuple

rankT (v) = {rankα(v)}α∈T .

The set of tensors with T -rank bounded by r = (rα)α∈T is

T T
r = {v ∈ H : rankT (v) ≤ r} =

⋂
α∈T

{v ∈ H : rankα(v) ≤ rα},

and is called a tensor format.
Tree-based tensor formats correspond to a tree-structured T
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Tree-based tensor formats

A tensor in T T
r admits a multilinear parametrization with parameters {pα}α∈T∪{D}

forming a tree network of low order tensors.

pD

p{1,2,3}

p{1} p{2,3}

p{2} p{3}

p{4,5}

p{4} p{5}

Storage complexity scales as O(dR s+1) where R is the maximal α-rank and s is the
arity of the tree.

Corresponds to a deep (sum-product) network with depth bounded by d − 1.

T T
r is weakly closed (and therefore proximinal).
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Principal subspaces

For a subset of variables α, a multivariate function u(x1, . . . , xd) is identified with a
bivariate function u ∈ Hα ⊗Hαc which admits a singular value decomposition

u(xα, xαc ) =

rankα(u)∑
k=1

σαk v
α
k (xα)vα

c

k (xαc )

The subspace of α-principal components

Uα = span{vα1 , . . . , vαrα}

is solution of
min

dim(Uα)=rα
‖u − PUαu‖ = min

rankα(v)≤rα
‖u − v‖

where PUα = PUα ⊗ idαc is the orthogonal projection onto Uα ⊗Hαc .
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Higher-order principal component analysis for tree-based formats

Let T be a tree-structured collection of subsets of 2D

For all α in T , we will determine subspaces Uα that are approximations of α-principal
subspaces of u in low-dimensional subspaces Vα of functions defined on Xα.
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Higher-order principal component analysis for tree-based formats

For each α ∈ T , Uα is defined as the rα-dimensional α-principal subspace of an
approximation of u

uα = PVαu

for S(α) = ∅ (leaf node), Vα is a given approximation space in Hα (e.g.,
polynomials, wavelets, ...),

for S(α) 6= ∅ (interior node), Vα =
⊗

β∈S(α) Uβ .
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Higher-order principal component analysis for tree-based formats

We finally obtain an approximation u? by projecting u onto the tensor space
⊗

α∈S(D) Uα

u? =
∏

α∈S(D)

PUαu
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Learning algorithm based on principal component analysis

For a feasible algorithm using samples,

1 orthogonal projections PWα on subspaces Wα (Uα or Vα) are replaced by oblique
projections IWα using samples (e.g. interpolation or least-squares projection),

2 principal subspaces Uα of uα = IVαu are estimated using samples of the Vα-valued
random variable

uα(·,Xαc )

With interpolation, this requires the evaluation of u at the dim(Vα)× Nα points

{(xα, xk
αc ) : xα ∈ ΓVα , 1 ≤ k ≤ Nα}

where ΓVα ⊂ Xα is a unisolvent set of points for Vα (magic points), and the xk
αc are

i.i.d. samples of Xαc .
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Properties of the algorithm

Theorem (Prescribed rank)

For a given T -rank, if the subspaces Uα are such that

‖PUαuα − uα‖ ≤ C min
rankα(v)≤rα

‖v − uα‖

holds with probability higher than 1− η, then we obtain an approximation u? such that

‖u? − u‖2 ≤ Λ2C 2#T min
v∈T T

r

‖v − u‖2 + Λ̃2 max
1≤ν≤d

‖u − PVνu‖
2

holds with probability higher than 1− η#T , with Λ and Λ̃ depending on the properties of
the oblique projection operators.

About complexity: If Nα = rα for all α ∈ T , then the total number of evaluations N is
equal to the storage complexity S of the resulting approximation u? ∈ T T

r .
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Properties of the algorithm

Theorem (Fixed precision)

Let ε, ε̃ ≥ 0. If the subspaces Uα are determined such that

‖PUαuα − uα‖ ≤
ε√
#T
‖uα‖

holds with probability higher than 1− η, and if the approximation spaces Vν , 1 ≤ ν ≤ d ,
are such that

‖PVνu − u‖ ≤ ε̃‖u‖,

then we obtain an approximation u? such that

‖u? − u‖2 ≤ (Λ2ε2 + Λ̃2ε̃2)‖u‖2

holds with probability higher than 1− η#T , with Λ and Λ̃ depending on the properties of
the oblique projection operators.
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Illustration of tensor recovery: Henon-Heiles potential

u(X ) =
1

2

d∑
i=1

X 2
i + 0.2

d−1∑
i=1

(XiX
2
i+1 − X 3

i ) +
0.22

16

d−1∑
i=1

(X 2
i + X 2

i+1)2, Xi ∼ U(−1, 1),

rankα(u) = 3 for all α in

T = {{1}, {1, 2}, . . . , {1, . . . , d−1}}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

Then u can be exactly represented in the tensor train format T T
r with T -rank

r = (3, . . . , 3)

u =
3∑

k1=1

3∑
k2=1

. . .
3∑

kd−1=1

v
(1)
1,k1

(x1)v
(1,2)
k1,k2

(x2)v
(1,2,3)
k2,k3

(x3) . . . v
(1,...,d)
kd−1,1

(xd)

with univariate polynomial functions of degree 4.
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Illustration of tensor recovery: Henon-Heiles potential

Table: Approximation with prescribed T -rank r = (3, . . . , 3) and polynomial degree 4 for
different values of d and γ = Nα/rα.

γ = 1
d 5 10 20 50 100

ε(u?)× 1014 [1.0; 234.2] [1.5; 67.5] [2.5; 79.9] [6.6; 62.8] [15.7; 175.1]
S = N 165 390 840 2190 4440

γ = 10
d 5 10 20 50 100

ε(u?)× 1014 [0.1; 0.4] [0.2; 0.4] [0.3; 0.4] [0.4; 0.7] [0.6; 0.8]
S 165 390 840 2190 4440
N 1515 3765 8265 21765 44265
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Illustration for approximation: Borehole function

The Borehole function models water flow through a borehole:

u(X ) =
2πTu(Hu − Hl)

ln(r/rw )
(

1 + 2LTu
ln(r/rw )r2

wKw
+ Tu

Tl

) , X = (rw , log(r),Tu,Hu,Tl ,Hl , L,Kw )

rw radius of borehole (m) N(µ = 0.10, σ = 0.0161812)
r radius of influence (m) LN(µ = 7.71, σ = 1.0056)
Tu transmissivity of upper aquifer (m2/yr) U(63070, 115600)
Hu potentiometric head of upper aquifer (m) U(990, 1110)
Tl transmissivity of lower aquifer (m2/yr) U(63.1, 116)
Hl potentiometric head of lower aquifer (m) U(700, 820)
L length of borehole (m) U(1120, 1680)
Kw hydraulic conductivity of borehole (m/yr) U(9855, 12045)
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Illustration for approximation: Borehole function

Approximation in hierarchical Tucker format with a linearly structured tree:

T = {{1}, . . . , {d}, {1, 2}, . . . , {1, . . . , d−1}}

{1, 2, 3, 4, 5}

{1, 2, 3, 4}

{1, 2, 3}

{1, 2}

{1} {2}

{3}

{4}

{5}

u? =

r1∑
i1=1

. . .

rd∑
id=1

r1,2∑
k2=1

. . .

r1,...,d−1∑
kd−1=1

v
(1)
i1

(x1) . . . v
(d)
id

(xd)C
(1,2)
i1,i2,k2

C
(1,2,3)
k2,i3,k3

. . .C
(1,...,d−1)
kd−2,id−1,kd−1

C
(1,...,d)
kd−1,id

with polynomial functions v
(ν)
iν
∈ Vν = Pq.
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Illustration for approximation: Borehole function

Table: Approximation with prescribed precision ε, adaptive degree p(ε) = log10(ε−1), and
Nα = dim(Vα). Confidence intervals for relative error ε(u?), storage complexity S and
number of evaluations M for different ε, and average ranks.

ε ε(u?) N S [r{1}, . . . , r{d}, r{1,2}, . . . , r{1,...,d−1}]

10−1 [1.8; 2.7]× 10−1 [39, 39] [23, 23] [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

10−2 [0.3; 4.0]× 10−2 [88, 100] [41, 46] [1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1]

10−3 [0.8; 1.9]× 10−3 [159, 186] [61, 78] [2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1]

10−4 [2.5; 5.6]× 10−5 [328, 328] [141, 141] [2, 2, 2, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2]

10−5 [0.6; 1.6]× 10−5 [444, 472] [166, 178] [2, 2, 2, 4, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2]

10−6 [3.1; 5.7]× 10−6 [596, 664] [204, 241] [3, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2]

10−7 [1.0; 6.3]× 10−7 [1042, 1267] [374, 429] [4, 3, 4, 6, 5, 3, 3, 3, 2, 2, 3, 2, 2, 2]

10−8 [1.1; 7.1]× 10−8 [1567, 1567] [512, 512] [4, 3, 4, 7, 6, 3, 3, 3, 2, 2, 3, 2, 3, 3]

10−9 [0.2; 4.9]× 10−8 [1719, 1854] [534, 560] [4, 4, 4, 8, 6, 3, 3, 3, 2, 2, 3, 2, 3, 3]

10−10 [0.3; 1.9]× 10−9 [2482, 2828] [774, 838] [5, 4, 6, 10, 7, 4, 3, 3, 2, 2, 3, 2, 3, 3]
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Conclusions

The proposed algorithm

provides an approximation of a function in tree-based format using evaluations of
the function at a structured and adapted set of points,

provides a stable approximation with prescribed rank, with a number of samples N
equal to (or of the order of) the number of parameters,

provides an approximation with almost the desired precision.

What should be done:

Control norms of projections and statistical estimations of principal subspaces for
obtaining a certified approximation.

Provide a priori estimations of the complexity for certain classes of functions.
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Tree-based tensor formats I

The minimal subspace Umin
α (u) of u is the smallest subspace such that

Mα(u) ∈ Umin
α (u)⊗Hαc

and rankα(u) = dim(Umin
α (u)).

Any tensor v is such that

v ∈
⊗

α∈S(D)

Umin
α (v)

with S(D) a partition of D, and

Umin
α (v) ⊂

⊗
β∈S(α)

Umin
β (v)

for any α ( D with non trivial partition S(α).
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Tree-based tensor formats II

For a tensor v ∈ T T
r with rankT (v) = r , let {ϕ(α)

kα
}rαkα=1 be bases of the minimal

subspace Umin
α (v). The tensor v then admits a hierarchical representation

v =
∑

1≤kα≤rα
α∈S(D)

pD
(kα)α∈S(D)

⊗
α∈S(D)

ϕαkα ,

with

ϕαkα =
∑

1≤kβ≤rβ
β∈S(α)

pαkα,(kβ )β∈S(α)

⊗
β∈S(α)

ϕβkβ
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Partial interpolation of tensors

For a subspace Wα in Hα, we define a unisolvent set of points ΓWα in Xα (magic points)
and the associated interpolation operator IWα onto Wα defined for v ∈ RXα by

IWαv(xα) = v(xα) ∀xα ∈ ΓWα .

We then define the corresponding partial interpolation operator IWα = IWα ⊗ idαc

defined for u ∈ RX by

IWαu(xα, ·) = u(xα, ·) ∀xα ∈ ΓWα .

If the minimal subspace Umin
α (u) is a RKHS, then IWα is continuous from Umin

α (u) to Wα

and IWα is continuous from Umin
α (u)⊗Hαc to Wα ⊗Hαc , so that

IWαu ∈Wα ⊗Hαc .
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Statistical estimation of principal components

For α ∈ T , consider uα = IVαu.

For ‖ · ‖ the L2
µ(X )-norm, the α-principal subspace of uα is solution of

min
dim(Uα)=rα

E
(
‖uα(·,Xαc )− PUαuα(·,Xαc )‖2

L2
µα

(Xα)

)
,

where uα(·,Xαc ) is interpreted as a Vα-valued random variable.

It can be estimated by the solution of

min
dim(Uα)=rα

1

Nα

Nα∑
k=1

‖uα(·, xk
αc )− PUαuα(·, xk

αc )‖2
Hα

where the xk
αc are i.i.d. samples of Xαc .
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Complexity

The storage complexity (number of parameters) of a tensor in T T
r ∩ V is

S =
∑

α∈(T∪{D})\L(T )

rα
∏

β∈S(α)

rβ +
∑

α∈L(T )

rα dim(Vα).

The total number of evaluations of the function required by the algorithm is

N =
∑

α∈L(T )

Nα dim(Vα) +
∑

α∈T\L(T )

Nα
∏

β∈S(α)

rβ +
∏

β∈S(D)

rβ ,

where Nα is the number of samples used for estimating the rα α-principal
components of uα, taken such that

rα ≤ Nα

If Nα = rα for all α, then
N = S .
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About the constants

If oblique projections IUα and IVα were orthogonal projections, the constants Λ and Λ̃
would be equal to 1.

These constants Λ and Λ̃ depend on

‖IVα‖Umin
α (u)→Hα and ‖IUα − PUα‖Umin

α (u)→Hα

that depend on the properties of oblique projection operators restricted to minimal
subspaces of u.

Case of tensor recovery

Assume that Umin
α (u) ⊂ Vα for all leaves α (no discretization error).

If for all α ∈ T , the set of Nα samples u(·, xk
αc ) contains rankα(u) linearly independent

functions, then Uα = Umin
α (u).

The constants Λ = 1, and Λ̃ = 1 (i.e. same stability than the ideal algorithm).
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