Principal component analysis for the approximation of high-dimensional functions in tree-based tensor formats

Anthony Nouy
Ecole Centrale de Nantes, LMJL

Supported by the ANR (CHORUS project)

Motivation

We consider the problem of constructing an approximation of a random variable Y by a function of a set of random variables $X=\left(X_{1}, \ldots, X_{d}\right)$, using samples of (X, Y), when

- the samples of (X, Y) can be generated from adaptively chosen samples of X (active learning),
- there exists a deterministic function u such that

$$
Y=u(X)
$$

Motivation

In practice, Y could be the output of a numerical model (computer code) and X a set of input parameters modelling uncertainties on the model, with known probability distribution.

The approximation can then be used as a predictive surrogate model.
When the generation of one sample requires a costly numerical simulation (or experiment), only a few samples are available.

Low-dimensional structures of functions have to be exploited (e.g., low effective dimensionality, anisotropy, sparsity, low rank).

Outline

(1) Tree-based tensor formats
(2) Principal component analysis in tree-based tensor formats

Outline

(1) Tree-based tensor formats
(2) Principal component analysis in tree-based tensor formats

Tensor spaces of multivariate functions

Assume X_{ν} has probability law μ_{ν} with support \mathcal{X}_{ν}.
Let \mathcal{H}_{ν} a Hilbert space of functions defined on \mathcal{X}_{ν}, typically $L_{\mu_{\nu}}^{2}\left(\mathcal{X}_{\nu}\right)$ or a reproducing kernel Hilbert space (RKHS) in $L_{\mu_{\nu}}^{2}\left(\mathcal{X}_{\nu}\right)$.

We consider multivariate functions defined on $\mathcal{X}=\mathcal{X}_{1} \times \ldots \times \mathcal{X}_{d}$ that are elements of the tensor Hilbert space

$$
\mathcal{H}_{1} \otimes \ldots \otimes \mathcal{H}_{d}:=\mathcal{H}
$$

equipped with the canonical norm.

α-rank of higher-order tensors

For a non-empty subset α of $D=\{1, \ldots, d\}$ and $\alpha^{c}=D \backslash \alpha$, a tensor $u \in \mathcal{H}$ can be identified with an order-two tensor

$$
\mathcal{M}_{\alpha}(u) \in \mathcal{H}_{\alpha} \otimes \mathcal{H}_{\alpha^{c}}
$$

where

$$
\mathcal{H}_{\beta}=\bigotimes_{\nu \in \beta} \mathcal{H}_{\nu} \subset \mathbb{R}^{\mathcal{X}_{\beta}}
$$

The α-rank of u is defined by

$$
\operatorname{rank}_{\alpha}(u)=\operatorname{rank}\left(\mathcal{M}_{\alpha}(u)\right)
$$

which is the minimal integer r_{α} such that

$$
u(x)=\sum_{k=1}^{r_{\alpha}} v_{k}^{\alpha}\left(x_{\alpha}\right) w_{k}^{\alpha^{c}}\left(x_{\alpha^{c}}\right)
$$

α-ranks and related tensor formats

- For T a collection of subsets of D, we define the T-rank of a tensor v as the tuple

$$
\operatorname{rank}_{T}(v)=\left\{\operatorname{rank}_{\alpha}(v)\right\}_{\alpha \in T}
$$

α-ranks and related tensor formats

- For T a collection of subsets of D, we define the T-rank of a tensor v as the tuple

$$
\operatorname{rank}_{T}(v)=\left\{\operatorname{rank}_{\alpha}(v)\right\}_{\alpha \in T}
$$

- The set of tensors with T-rank bounded by $r=\left(r_{\alpha}\right)_{\alpha \in T}$ is

$$
\mathcal{T}_{r}^{T}=\left\{v \in \mathcal{H}: \operatorname{rank}_{T}(v) \leq r\right\}=\bigcap_{\alpha \in T}\left\{v \in \mathcal{H}: \operatorname{rank}_{\alpha}(v) \leq r_{\alpha}\right\}
$$

and is called a tensor format.

α-ranks and related tensor formats

- For T a collection of subsets of D, we define the T-rank of a tensor v as the tuple

$$
\operatorname{rank}_{T}(v)=\left\{\operatorname{rank}_{\alpha}(v)\right\}_{\alpha \in T}
$$

- The set of tensors with T-rank bounded by $r=\left(r_{\alpha}\right)_{\alpha \in T}$ is

$$
\mathcal{T}_{r}^{T}=\left\{v \in \mathcal{H}: \operatorname{rank}_{T}(v) \leq r\right\}=\bigcap_{\alpha \in T}\left\{v \in \mathcal{H}: \operatorname{rank}_{\alpha}(v) \leq r_{\alpha}\right\}
$$

and is called a tensor format.

- Tree-based tensor formats correspond to a tree-structured T

Tensor Train

Hierarchical Tucker

Tree-based tensor formats

- A tensor in \mathcal{T}_{r}^{\top} admits a multilinear parametrization with parameters $\left\{p^{\alpha}\right\}_{\alpha \in T \cup\{D\}}$ forming a tree network of low order tensors.

- Storage complexity scales as $O\left(d R^{s+1}\right)$ where R is the maximal α-rank and s is the arity of the tree.
- Corresponds to a deep (sum-product) network with depth bounded by $d-1$.
- $\mathcal{T}_{r}{ }^{T}$ is weakly closed (and therefore proximinal).

Outline

(1) Tree-based tensor formats
(2) Principal component analysis in tree-based tensor formats

Principal subspaces

For a subset of variables α, a multivariate function $u\left(x_{1}, \ldots, x_{d}\right)$ is identified with a bivariate function $u \in \mathcal{H}_{\alpha} \otimes \mathcal{H}_{\alpha^{c}}$ which admits a singular value decomposition

$$
u\left(x_{\alpha}, x_{\alpha^{c}}\right)=\sum_{k=1}^{\operatorname{rank}_{\alpha}(u)} \sigma_{k}^{\alpha} v_{k}^{\alpha}\left(x_{\alpha}\right) v_{k}^{\alpha^{c}}\left(x_{\alpha^{c}}\right)
$$

The subspace of α-principal components

$$
U_{\alpha}=\operatorname{span}\left\{v_{1}^{\alpha}, \ldots, v_{r_{\alpha}}^{\alpha}\right\}
$$

is solution of

$$
\min _{\operatorname{dim}\left(U_{\alpha}\right)=r_{\alpha}}\left\|u-\mathcal{P} U_{\alpha} u\right\|=\min _{\operatorname{rank}_{\alpha}(v) \leq r_{\alpha}}\|u-v\|
$$

where $\mathcal{P} U_{\alpha}=P U_{\alpha} \otimes i d_{\alpha^{c}}$ is the orthogonal projection onto $U_{\alpha} \otimes \mathcal{H}_{\alpha^{c}}$.

Higher-order principal component analysis for tree-based formats

Let T be a tree-structured collection of subsets of 2^{D}

For all α in T, we will determine subspaces U_{α} that are approximations of α-principal subspaces of u in low-dimensional subspaces V_{α} of functions defined on \mathcal{X}_{α}.

Higher-order principal component analysis for tree-based formats

For each $\alpha \in T, U_{\alpha}$ is defined as the r_{α}-dimensional α-principal subspace of an approximation of u

$$
u_{\alpha}=\mathcal{P}_{V_{\alpha}} u
$$

- for $S(\alpha)=\emptyset$ (leaf node), V_{α} is a given approximation space in \mathcal{H}_{α} (e.g., polynomials, wavelets, ...),

- for $S(\alpha) \neq \emptyset$ (interior node), $V_{\alpha}=\bigotimes_{\beta \in S(\alpha)} U_{\beta}$.

Higher-order principal component analysis for tree-based formats

We finally obtain an approximation u^{\star} by projecting u onto the tensor space $\bigotimes_{\alpha \in S(D)} U_{\alpha}$

$$
u^{\star}=\prod_{\alpha \in S(D)} \mathcal{P} U_{\alpha} u
$$

Learning algorithm based on principal component analysis

For a feasible algorithm using samples,
(1) orthogonal projections $\mathcal{P} W_{\alpha}$ on subspaces $W_{\alpha}\left(U_{\alpha}\right.$ or $\left.V_{\alpha}\right)$ are replaced by oblique projections $\mathcal{I}_{W_{\alpha}}$ using samples (e.g. interpolation or least-squares projection),
(2) principal subspaces U_{α} of $u_{\alpha}=\mathcal{I}_{V_{\alpha}} u$ are estimated using samples of the V_{α}-valued random variable

$$
u_{\alpha}\left(\cdot, X_{\alpha^{c}}\right)
$$

With interpolation, this requires the evaluation of u at the $\operatorname{dim}\left(V_{\alpha}\right) \times N_{\alpha}$ points

$$
\left\{\left(x_{\alpha}, x_{\alpha^{c}}^{k}\right): x_{\alpha} \in \Gamma_{v_{\alpha}}, 1 \leq k \leq N_{\alpha}\right\}
$$

where $\Gamma_{V_{\alpha}} \subset \mathcal{X}_{\alpha}$ is a unisolvent set of points for V_{α} (magic points), and the $x_{\alpha^{c}}^{k}$ are i.i.d. samples of $X_{\alpha^{c}}$.

Properties of the algorithm

Theorem (Prescribed rank)

For a given T-rank, if the subspaces U_{α} are such that

$$
\left\|\mathcal{P} U_{\alpha} u_{\alpha}-u_{\alpha}\right\| \leq C \min _{\operatorname{rank}_{\alpha}(v) \leq r_{\alpha}}\left\|v-u_{\alpha}\right\|
$$

holds with probability higher than $1-\eta$, then we obtain an approximation u^{\star} such that

$$
\left\|u^{\star}-u\right\|^{2} \leq \Lambda^{2} C^{2} \# T \min _{v \in \mathcal{T}_{r}^{T}}\|v-u\|^{2}+\tilde{\Lambda}^{2} \max _{1 \leq \nu \leq d}\left\|u-\mathcal{P}{V_{\nu}} u\right\|^{2}
$$

holds with probability higher than $1-\eta \# T$, with Λ and $\tilde{\Lambda}$ depending on the properties of the oblique projection operators.

About complexity: If $N_{\alpha}=r_{\alpha}$ for all $\alpha \in T$, then the total number of evaluations N is equal to the storage complexity S of the resulting approximation $u^{\star} \in \mathcal{T}_{r}{ }^{\top}$.

Properties of the algorithm

Theorem (Fixed precision)

Let $\epsilon, \tilde{\epsilon} \geq 0$. If the subspaces U_{α} are determined such that

$$
\left\|\mathcal{P}{u_{\alpha}} u_{\alpha}-u_{\alpha}\right\| \leq \frac{\epsilon}{\sqrt{\# T}}\left\|u_{\alpha}\right\|
$$

holds with probability higher than $1-\eta$, and if the approximation spaces $V_{\nu}, 1 \leq \nu \leq d$, are such that

$$
\left\|\mathcal{P} v_{\nu} u-u\right\| \leq \tilde{\epsilon}\|u\|
$$

then we obtain an approximation u^{\star} such that

$$
\left\|u^{\star}-u\right\|^{2} \leq\left(\Lambda^{2} \epsilon^{2}+\tilde{\Lambda}^{2} \tilde{\epsilon}^{2}\right)\|u\|^{2}
$$

holds with probability higher than $1-\eta \# T$, with Λ and $\tilde{\Lambda}$ depending on the properties of the oblique projection operators.

Illustration of tensor recovery: Henon-Heiles potential

$$
u(X)=\frac{1}{2} \sum_{i=1}^{d} X_{i}^{2}+0.2 \sum_{i=1}^{d-1}\left(X_{i} X_{i+1}^{2}-X_{i}^{3}\right)+\frac{0.2^{2}}{16} \sum_{i=1}^{d-1}\left(X_{i}^{2}+X_{i+1}^{2}\right)^{2}, \quad X_{i} \sim U(-1,1),
$$

$\operatorname{rank}_{\alpha}(u)=3$ for all α in

$$
T=\{\{1\},\{1,2\}, \ldots,\{1, \ldots, d-1\}\}
$$

Then u can be exactly represented in the tensor train format \mathcal{T}_{r}^{\top} with T-rank $r=(3, \ldots, 3)$

$$
u=\sum_{k_{1}=1}^{3} \sum_{k_{2}=1}^{3} \ldots \sum_{k_{d-1}=1}^{3} v_{1, k_{1}}^{(1)}\left(x_{1}\right) v_{k_{1}, k_{2}}^{(1,2)}\left(x_{2}\right) v_{k_{2}, k_{3}}^{(1,2,3)}\left(x_{3}\right) \ldots v_{k_{d-1}, 1}^{(1, \ldots, d)}\left(x_{d}\right)
$$

with univariate polynomial functions of degree 4.

Illustration of tensor recovery: Henon-Heiles potential

Table: Approximation with prescribed T-rank $r=(3, \ldots, 3)$ and polynomial degree 4 for different values of d and $\gamma=N_{\alpha} / r_{\alpha}$.

$\gamma=1$					
d	5	10	20	50	100
$\varepsilon\left(u^{\star}\right) \times 10^{14}$	$[1.0 ; 234.2]$	$[1.5 ; 67.5]$	$[2.5 ; 79.9]$	$[6.6 ; 62.8]$	$[15.7 ; 175.1]$
$S=N$	165	390	840	2190	4440
$\gamma=10$					
d	5	10	20	50	100
$\varepsilon\left(u^{\star}\right) \times 10^{14}$	$[0.1 ; 0.4]$	$[0.2 ; 0.4]$	$[0.3 ; 0.4]$	$[0.4 ; 0.7]$	$[0.6 ; 0.8]$
S	165	390	840	2190	4440
N	1515	3765	8265	21765	44265

Illustration for approximation: Borehole function

The Borehole function models water flow through a borehole:

$$
u(X)=\frac{2 \pi T_{u}\left(H_{u}-H_{l}\right)}{\ln \left(r / r_{w}\right)\left(1+\frac{2 L T_{u}}{\ln \left(r / r_{w}\right) r_{w}^{2} K_{w}}+\frac{T_{u}}{T_{l}}\right)}, \quad X=\left(r_{w}, \log (r), T_{u}, H_{u}, T_{l}, H_{l}, L, K_{w}\right)
$$

r_{w}	radius of borehole (m)	$N(\mu=0.10, \sigma=0.0161812)$
r	radius of influence (m)	$L N(\mu=7.71, \sigma=1.0056)$
T_{u}	transmissivity of upper aquifer $\left(\mathrm{m}^{2} / \mathrm{yr}\right)$	$U(63070,115600)$
H_{u}	potentiometric head of upper aquifer (m)	$U(990,1110)$
T_{l}	transmissivity of lower aquifer $\left(\mathrm{m}^{2} / \mathrm{yr}\right)$	$U(63.1,116)$
H_{l}	potentiometric head of lower aquifer (m)	$U(700,820)$
L	length of borehole (m)	$U(1120,1680)$
K_{w}	hydraulic conductivity of borehole $(\mathrm{m} / \mathrm{yr})$	$U(9855,12045)$

Illustration for approximation: Borehole function

Approximation in hierarchical Tucker format with a linearly structured tree:

$u^{\star}=\sum_{i_{1}=1}^{r_{1}} \ldots \sum_{i_{d}=1}^{r_{d}} \sum_{k_{2}=1}^{r_{1,2}} \ldots \sum_{k_{d-1}=1}^{r_{1}, \ldots, d-1} v_{i_{1}}^{(1)}\left(x_{1}\right) \ldots v_{i_{d}}^{(d)}\left(x_{d}\right) C_{i_{1}, i_{2}, k_{2}}^{(1,2)} C_{k_{2}, i_{3}, k_{3}}^{(1,2,3)} \ldots C_{k_{d-2}, i_{d-1}, k_{d-1}}^{(1, \ldots, d-1)} C_{k_{d-1}, i_{d}}^{(1, \ldots, d)}$ with polynomial functions $v_{i_{\nu}}^{(\nu)} \in V_{\nu}=\mathbb{P}_{q}$.

Illustration for approximation: Borehole function

Table: Approximation with prescribed precision ϵ, adaptive degree $p(\epsilon)=\log _{10}\left(\epsilon^{-1}\right)$, and $N_{\alpha}=\operatorname{dim}\left(V_{\alpha}\right)$. Confidence intervals for relative error $\varepsilon\left(u^{\star}\right)$, storage complexity S and number of evaluations M for different ϵ, and average ranks.

ϵ	$\varepsilon\left(u^{\star}\right)$	N	S	$\left[r_{\{1\}}, \ldots, r_{\{d\}}, r_{\{1,2\}}, \ldots, r_{\{1, \ldots, d-1\}}\right]$
10^{-1}	$[1.8 ; 2.7] \times 10^{-1}$	$[39,39]$	$[23,23]$	$[1,1,1,1,1,1,1,1,1,1,1,1,1,1]$
10^{-2}	$[0.3 ; 4.0] \times 10^{-2}$	$[88,100]$	$[41,46]$	$[1,1,1,1,1,1,1,1,1,2,1,2,1,1]$
10^{-3}	$[0.8 ; 1.9] \times 10^{-3}$	$[159,186]$	$[61,78]$	$[2,1,1,2,2,1,1,1,1,2,2,2,1,1]$
10^{-4}	$[2.5 ; 5.6] \times 10^{-5}$	$[328,328]$	$[141,141]$	$[2,2,2,3,3,2,2,2,1,2,2,2,2,2]$
10^{-5}	$[0.6 ; 1.6] \times 10^{-5}$	$[444,472]$	$[166,178]$	$[2,2,2,4,4,2,2,2,1,2,2,2,2,2]$
10^{-6}	$[3.1 ; 5.7] \times 10^{-6}$	$[596,664]$	$[204,241]$	$[3,2,2,4,5,3,2,2,2,2,2,2,2,2]$
10^{-7}	$[1.0 ; 6.3] \times 10^{-7}$	$[1042,1267]$	$[374,429]$	$[4,3,4,6,5,3,3,3,2,2,3,2,2,2]$
10^{-8}	$[1.1 ; 7.1] \times 10^{-8}$	$[1567,1567]$	$[512,512]$	$[4,3,4,7,6,3,3,3,2,2,3,2,3,3]$
10^{-9}	$[0.2 ; 4.9] \times 10^{-8}$	$[1719,1854]$	$[534,560]$	$[4,4,4,8,6,3,3,3,2,2,3,2,3,3]$
10^{-10}	$[0.3 ; 1.9] \times 10^{-9}$	$[2482,2828]$	$[774,838]$	$[5,4,6,10,7,4,3,3,2,2,3,2,3,3]$

Conclusions

The proposed algorithm

- provides an approximation of a function in tree-based format using evaluations of the function at a structured and adapted set of points,
- provides a stable approximation with prescribed rank, with a number of samples N equal to (or of the order of) the number of parameters,
- provides an approximation with almost the desired precision.

What should be done:

- Control norms of projections and statistical estimations of principal subspaces for obtaining a certified approximation.
- Provide a priori estimations of the complexity for certain classes of functions.

References

A. Nouy.

Higher-order principal component analysis for the approximation of tensors in tree-based low-rank formats.
ArXiv e-prints, 2017.
A. Nouy.

Low-rank methods for high-dimensional approximation and model order reduction.
In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox (eds.), Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia, PA, 2016.

Tree-based tensor formats I

The minimal subspace $U_{\alpha}^{\min }(u)$ of u is the smallest subspace such that

$$
\mathcal{M}_{\alpha}(u) \in U_{\alpha}^{\min }(u) \otimes \mathcal{H}_{\alpha^{c}}
$$

and $\operatorname{rank}_{\alpha}(u)=\operatorname{dim}\left(U_{\alpha}^{\min }(u)\right)$.

- Any tensor v is such that

$$
v \in \bigotimes_{\alpha \in S(D)} U_{\alpha}^{\min }(v)
$$

with $S(D)$ a partition of D, and

$$
U_{\alpha}^{\min }(v) \subset \bigotimes_{\beta \in S(\alpha)} U_{\beta}^{\min }(v)
$$

for any $\alpha \subsetneq D$ with non trivial partition $S(\alpha)$.

Tree-based tensor formats II

- For a tensor $v \in \mathcal{T}_{r}^{T}$ with $\operatorname{rank}_{T}(v)=r$, let $\left\{\varphi_{k_{\alpha}}^{(\alpha)}\right\}_{k_{\alpha}=1}^{r_{\alpha}}$ be bases of the minimal subspace $U_{\alpha}^{\min }(v)$. The tensor v then admits a hierarchical representation

$$
v=\sum_{\substack{1 \leq k_{\alpha} \leq r_{\alpha} \\ \alpha \in S(D)}} p_{\left(k_{\alpha}\right)_{\alpha \in S(D)}^{D}}^{\bigotimes_{\alpha \in S(D)}} \varphi_{k_{\alpha}}^{\alpha}
$$

with

$$
\varphi_{k_{\alpha}}^{\alpha}=\sum_{\substack{1 \leq k_{\beta} \leq r_{\beta} \\ \beta \in S(\alpha)}} p_{k_{\alpha},\left(k_{\beta}\right)_{\beta \in S(\alpha)}^{\alpha}}^{\substack{\beta \in S(\alpha)}} \varphi_{k_{\beta}}^{\beta}
$$

Partial interpolation of tensors

For a subspace W_{α} in \mathcal{H}_{α}, we define a unisolvent set of points ΓW_{α} in \mathcal{X}_{α} (magic points) and the associated interpolation operator $I_{W_{\alpha}}$ onto W_{α} defined for $v \in \mathbb{R}^{\mathcal{X}_{\alpha}}$ by

$$
I_{W_{\alpha}} v\left(x_{\alpha}\right)=v\left(x_{\alpha}\right) \quad \forall x_{\alpha} \in \Gamma W_{\alpha} .
$$

We then define the corresponding partial interpolation operator $\mathcal{I}_{W_{\alpha}}=I_{W_{\alpha}} \otimes i d_{\alpha^{c}}$ defined for $u \in \mathbb{R}^{\mathcal{X}}$ by

$$
\mathcal{I}_{W_{\alpha}} u\left(x_{\alpha}, \cdot\right)=u\left(x_{\alpha}, \cdot\right) \quad \forall x_{\alpha} \in \Gamma_{W_{\alpha}} .
$$

If the minimal subspace $U_{\alpha}^{\min }(u)$ is a RKHS, then $I_{W_{\alpha}}$ is continuous from $U_{\alpha}^{\min }(u)$ to W_{α} and $\mathcal{I}_{W_{\alpha}}$ is continuous from $U_{\alpha}^{\min }(u) \otimes \mathcal{H}_{\alpha^{c}}$ to $W_{\alpha} \otimes \mathcal{H}_{\alpha^{c}}$, so that

$$
\mathcal{I}_{W_{\alpha}} u \in W_{\alpha} \otimes \mathcal{H}_{\alpha^{c}}
$$

Statistical estimation of principal components

For $\alpha \in T$, consider $u_{\alpha}=\mathcal{I}_{V_{\alpha}} u$.
For $\|\cdot\|$ the $L_{\mu}^{2}(\mathcal{X})$-norm, the α-principal subspace of u_{α} is solution of

$$
\min _{\operatorname{dim}\left(U_{\alpha}\right)=r_{\alpha}} \mathbb{E}\left(\left\|u_{\alpha}\left(\cdot, X_{\alpha^{c}}\right)-\mathcal{P} U_{U_{\alpha}} u_{\alpha}\left(\cdot, X_{\alpha^{c}}\right)\right\|_{L_{\mu_{\alpha}}^{2}\left(\mathcal{X}_{\alpha}\right)}^{2}\right),
$$

where $u_{\alpha}\left(\cdot, X_{\alpha^{c}}\right)$ is interpreted as a V_{α}-valued random variable.
It can be estimated by the solution of

$$
\min _{\operatorname{dim}\left(U_{\alpha}\right)=r_{\alpha}} \frac{1}{N_{\alpha}} \sum_{k=1}^{N_{\alpha}}\left\|u_{\alpha}\left(\cdot, x_{\alpha}^{k}\right)-\mathcal{P}_{U_{\alpha}} u_{\alpha}\left(\cdot, x_{\alpha c}^{k}\right)\right\|_{\mathcal{H}_{\alpha}}^{2}
$$

where the $\chi_{\alpha c}^{k}$ are i.i.d. samples of $X_{\alpha^{c}}$.

Complexity

- The storage complexity (number of parameters) of a tensor in $\mathcal{T}_{r}{ }^{T} \cap V$ is

$$
S=\sum_{\alpha \in(T \cup\{D\}) \backslash \mathcal{L}(T)} r_{\alpha} \prod_{\beta \in S(\alpha)} r_{\beta}+\sum_{\alpha \in \mathcal{L}(T)} r_{\alpha} \operatorname{dim}\left(V_{\alpha}\right)
$$

- The total number of evaluations of the function required by the algorithm is

$$
N=\sum_{\alpha \in \mathcal{L}(T)} N_{\alpha} \operatorname{dim}\left(V_{\alpha}\right)+\sum_{\alpha \in T \backslash \mathcal{L}(T)} N_{\alpha} \prod_{\beta \in S(\alpha)} r_{\beta}+\prod_{\beta \in S(D)} r_{\beta},
$$

where N_{α} is the number of samples used for estimating the $r_{\alpha} \alpha$-principal components of u_{α}, taken such that

$$
r_{\alpha} \leq N_{\alpha}
$$

- If $N_{\alpha}=r_{\alpha}$ for all α, then

$$
N=S
$$

About the constants

If oblique projections $I_{U_{\alpha}}$ and $I_{V_{\alpha}}$ were orthogonal projections, the constants Λ and $\tilde{\Lambda}$ would be equal to 1 .

These constants Λ and $\tilde{\Lambda}$ depend on

$$
\left\|I_{V_{\alpha}}\right\|_{U_{\alpha}^{\min (u) \rightarrow \mathcal{H}_{\alpha}}} \quad \text { and } \quad\left\|I_{U_{\alpha}}-P U_{U_{\alpha}}\right\|_{U_{\alpha}^{\min }(u) \rightarrow \mathcal{H}_{\alpha}}
$$

that depend on the properties of oblique projection operators restricted to minimal subspaces of u.

Case of tensor recovery

Assume that $U_{\alpha}^{\min }(u) \subset V_{\alpha}$ for all leaves α (no discretization error).
If for all $\alpha \in T$, the set of N_{α} samples $u\left(\cdot, x_{\alpha c}^{k}\right)$ contains $\operatorname{rank}_{\alpha}(u)$ linearly independent functions, then $U_{\alpha}=U_{\alpha}^{\min }(u)$.
The constants $\Lambda=1$, and $\tilde{\Lambda}=1$ (i.e. same stability than the ideal algorithm).

