Principal component analysis for the approximation of high-dimensional functions in tree-based tensor formats

Anthony Nouy

Ecole Centrale de Nantes, LMJL

Supported by the ANR (CHORUS project)

We consider the problem of constructing an approximation of a random variable Y by a function of a set of random variables $X = (X_1, \ldots, X_d)$, using samples of (X, Y), when

- the samples of (X, Y) can be generated from adaptively chosen samples of X (active learning),
- there exists a deterministic function *u* such that

$$Y = u(X).$$

In practice, Y could be the output of a numerical model (computer code) and X a set of input parameters modelling uncertainties on the model, with known probability distribution.

The approximation can then be used as a predictive surrogate model.

When the generation of one sample requires a costly numerical simulation (or experiment), only a few samples are available.

Low-dimensional structures of functions have to be exploited (e.g., low effective dimensionality, anisotropy, sparsity, low rank).

1 Tree-based tensor formats

2 Principal component analysis in tree-based tensor formats

Outline

1 Tree-based tensor formats

2 Principal component analysis in tree-based tensor formats

Assume X_{ν} has probability law μ_{ν} with support \mathcal{X}_{ν} .

Let \mathcal{H}_{ν} a Hilbert space of functions defined on \mathcal{X}_{ν} , typically $L^{2}_{\mu\nu}(\mathcal{X}_{\nu})$ or a reproducing kernel Hilbert space (RKHS) in $L^{2}_{\mu\nu}(\mathcal{X}_{\nu})$.

We consider multivariate functions defined on $\mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_d$ that are elements of the tensor Hilbert space

$$\mathcal{H}_1 \otimes \ldots \otimes \mathcal{H}_d := \mathcal{H}$$

equipped with the canonical norm.

α -rank of higher-order tensors

For a non-empty subset α of $D = \{1, \ldots, d\}$ and $\alpha^c = D \setminus \alpha$, a tensor $u \in \mathcal{H}$ can be identified with an order-two tensor

$$\mathcal{M}_{\alpha}(u) \in \mathcal{H}_{\alpha} \otimes \mathcal{H}_{\alpha^{c}},$$

where

$$\mathcal{H}_{eta} = \bigotimes_{
u \in eta} \mathcal{H}_{
u} \subset \mathbb{R}^{\mathcal{X}_{eta}}.$$

The α -rank of u is defined by

$$\mathsf{rank}_lpha(u) = \mathsf{rank}(\mathcal{M}_lpha(u)),$$

which is the minimal integer r_{α} such that

$$u(x) = \sum_{k=1}^{r_{\alpha}} v_k^{\alpha}(x_{\alpha}) w_k^{\alpha^c}(x_{\alpha^c})$$

$\alpha\text{-ranks}$ and related tensor formats

 For T a collection of subsets of D, we define the T-rank of a tensor v as the tuple rank_T(v) = {rank_α(v)}_{α∈T}.

$\alpha\text{-ranks}$ and related tensor formats

- For T a collection of subsets of D, we define the T-rank of a tensor v as the tuple rank_T(v) = {rank_α(v)}_{α∈T}.
- The set of tensors with *T*-rank bounded by $r = (r_{\alpha})_{\alpha \in T}$ is

$$\mathcal{T}_r^{\mathcal{T}} = \{ v \in \mathcal{H} : \mathsf{rank}_{\mathcal{T}}(v) \leq r \} = \bigcap_{\alpha \in \mathcal{T}} \{ v \in \mathcal{H} : \mathsf{rank}_{\alpha}(v) \leq r_{\alpha} \},$$

and is called a tensor format.

,

α -ranks and related tensor formats

- For T a collection of subsets of D, we define the T-rank of a tensor v as the tuple rank_T(v) = {rank_α(v)}_{α∈T}.
- The set of tensors with *T*-rank bounded by $r = (r_{\alpha})_{\alpha \in T}$ is

$$\mathcal{T}_r^T = \{ v \in \mathcal{H} : \mathsf{rank}_T(v) \le r \} = \bigcap_{\alpha \in T} \{ v \in \mathcal{H} : \mathsf{rank}_\alpha(v) \le r_\alpha \},\$$

and is called a tensor format.

• Tree-based tensor formats correspond to a tree-structured T

Anthony Nouy

Tree-based tensor formats

A tensor in *T*^{*T*}_r admits a multilinear parametrization with parameters {*p*^α}_{α∈T∪{D}} forming a tree network of low order tensors.

- Storage complexity scales as *O*(*dR*^{s+1}) where *R* is the maximal *α*-rank and *s* is the arity of the tree.
- Corresponds to a deep (sum-product) network with depth bounded by d-1.
- $\mathcal{T}_r^{\mathcal{T}}$ is weakly closed (and therefore proximinal).

Tree-based tensor formats

2 Principal component analysis in tree-based tensor formats

For a subset of variables α , a multivariate function $u(x_1, \ldots, x_d)$ is identified with a bivariate function $u \in \mathcal{H}_{\alpha} \otimes \mathcal{H}_{\alpha^c}$ which admits a singular value decomposition

$$u(x_{\alpha}, x_{\alpha^{c}}) = \sum_{k=1}^{\operatorname{rank}_{\alpha}(u)} \sigma_{k}^{\alpha} v_{k}^{\alpha}(x_{\alpha}) v_{k}^{\alpha^{c}}(x_{\alpha^{c}})$$

The subspace of α -principal components

$$U_{\alpha} = span\{\mathbf{v}_1^{\alpha}, \dots, \mathbf{v}_{r_{\alpha}}^{\alpha}\}$$

is solution of

$$\min_{\dim(\boldsymbol{U}_{\alpha})=\boldsymbol{r}_{\alpha}} \|\boldsymbol{u} - \boldsymbol{\mathcal{P}}_{\boldsymbol{U}_{\alpha}}\boldsymbol{u}\| = \min_{\operatorname{rank}_{\alpha}(\boldsymbol{v}) \leq \boldsymbol{r}_{\alpha}} \|\boldsymbol{u} - \boldsymbol{v}\|$$

where $\mathcal{P}_{U_{\alpha}} = \mathcal{P}_{U_{\alpha}} \otimes id_{\alpha^{c}}$ is the orthogonal projection onto $U_{\alpha} \otimes \mathcal{H}_{\alpha^{c}}$.

Let T be a tree-structured collection of subsets of 2^{D}

For all α in T, we will determine subspaces U_{α} that are approximations of α -principal subspaces of u in low-dimensional subspaces V_{α} of functions defined on \mathcal{X}_{α} .

Higher-order principal component analysis for tree-based formats

For each $\alpha \in T$, U_{α} is defined as the r_{α} -dimensional α -principal subspace of an approximation of u

$$u_{\alpha} = \mathcal{P}_{V_{\alpha}} u$$

• for $S(\alpha) = \emptyset$ (leaf node), V_{α} is a given approximation space in \mathcal{H}_{α} (e.g., polynomials, wavelets, ...),

• for $S(\alpha) \neq \emptyset$ (interior node), $V_{\alpha} = \bigotimes_{\beta \in S(\alpha)} U_{\beta}$.

We finally obtain an approximation u^* by projecting u onto the tensor space $\bigotimes_{\alpha \in S(D)} U_{\alpha}$

For a feasible algorithm using samples,

- orthogonal projections $\mathcal{P}_{W_{\alpha}}$ on subspaces W_{α} (U_{α} or V_{α}) are replaced by oblique projections $\mathcal{I}_{W_{\alpha}}$ using samples (e.g. interpolation or least-squares projection),
- **9** principal subspaces U_{α} of $u_{\alpha} = \mathcal{I}_{V_{\alpha}} u$ are estimated using samples of the V_{α} -valued random variable

$$u_{\alpha}(\cdot, X_{\alpha^{c}})$$

With interpolation, this requires the evaluation of u at the $dim(V_{\alpha}) \times N_{\alpha}$ points

$$\{(\mathbf{x}_{\alpha}, \mathbf{x}_{\alpha^{c}}^{k}) : \mathbf{x}_{\alpha} \in \mathbf{\Gamma}_{\mathbf{V}_{\alpha}}, 1 \leq k \leq \mathbf{N}_{\alpha}\}$$

where $\Gamma_{V_{\alpha}} \subset \mathcal{X}_{\alpha}$ is a unisolvent set of points for V_{α} (magic points), and the $x_{\alpha^c}^k$ are i.i.d. samples of X_{α^c} .

Theorem (Prescribed rank)

For a given *T*-rank, if the subspaces U_{α} are such that

$$\|\mathcal{P}_{U_{\alpha}}u_{\alpha}-u_{\alpha}\|\leq C\min_{\mathsf{rank}_{\alpha}(v)\leq r_{\alpha}}\|v-u_{\alpha}\|$$

holds with probability higher than $1 - \eta$, then we obtain an approximation u^{\star} such that

$$\|u^{\star} - u\|^{2} \leq \Lambda^{2} C^{2} \# T \min_{v \in \mathcal{T}_{r}^{T}} \|v - u\|^{2} + \tilde{\Lambda}^{2} \max_{1 \leq v \leq d} \|u - \mathcal{P}_{V_{\nu}} u\|^{2}$$

holds with probability higher than $1 - \eta \# T$, with Λ and $\tilde{\Lambda}$ depending on the properties of the oblique projection operators.

About complexity: If $N_{\alpha} = r_{\alpha}$ for all $\alpha \in T$, then the total number of evaluations N is equal to the storage complexity S of the resulting approximation $u^* \in \mathcal{T}_r^T$.

Theorem (Fixed precision)

Let $\epsilon, \tilde{\epsilon} \geq 0$. If the subspaces U_{α} are determined such that

$$\|\mathcal{P}_{U_{\alpha}}u_{\alpha}-u_{\alpha}\|\leq\frac{\epsilon}{\sqrt{\#T}}\|u_{\alpha}\|$$

holds with probability higher than $1 - \eta$, and if the approximation spaces V_{ν} , $1 \le \nu \le d$, are such that

$$\|\mathcal{P}_{V_{\nu}}u-u\|\leq \tilde{\epsilon}\|u\|$$

then we obtain an approximation u* such that

$$\|\boldsymbol{u}^{\star}-\boldsymbol{u}\|^{2} \leq (\Lambda^{2}\epsilon^{2}+\tilde{\Lambda}^{2}\tilde{\epsilon}^{2})\|\boldsymbol{u}\|^{2}$$

holds with probability higher than $1 - \eta \# T$, with Λ and $\tilde{\Lambda}$ depending on the properties of the oblique projection operators.

Illustration of tensor recovery: Henon-Heiles potential

$$u(X) = \frac{1}{2} \sum_{i=1}^{d} X_i^2 + 0.2 \sum_{i=1}^{d-1} (X_i X_{i+1}^2 - X_i^3) + \frac{0.2^2}{16} \sum_{i=1}^{d-1} (X_i^2 + X_{i+1}^2)^2, \quad X_i \sim U(-1, 1),$$

rank_{\alpha}(u) = 3 for all \alpha in
$$\mathcal{T} = \{\{1\}, \{1, 2\}, \dots, \{1, \dots, d-1\}\}$$

a d = 1

Then *u* can be exactly represented in the tensor train format \mathcal{T}_r^T with *T*-rank $r = (3, \ldots, 3)$

$$u = \sum_{k_1=1}^{3} \sum_{k_2=1}^{3} \dots \sum_{k_{d-1}=1}^{3} v_{1,k_1}^{(1)}(x_1) v_{k_1,k_2}^{(1,2)}(x_2) v_{k_2,k_3}^{(1,2,3)}(x_3) \dots v_{k_{d-1},1}^{(1,\dots,d)}(x_d)$$

with univariate polynomial functions of degree 4.

Anthony Nouy

Table: Approximation with prescribed *T*-rank r = (3, ..., 3) and polynomial degree 4 for different values of *d* and $\gamma = N_{\alpha}/r_{\alpha}$.

$\gamma = 1$									
d	5	10	20	50	100				
$\varepsilon(u^{\star}) \times 10^{14}$	[1.0; 234.2]	[1.5; 67.5]	[2.5; 79.9]	[6.6; 62.8]	[15.7; 175.1]				
S = N	165	390	840	2190	4440				
$\gamma = 10$									
d	5	10	20	50	100				
$\varepsilon(u^{\star}) imes 10^{14}$	[0.1; 0.4]	[0.2; 0.4]	[0.3; 0.4]	[0.4; 0.7]	[0.6; 0.8]				
5	165	390	840	2190	4440				
N	1515	3765	8265	21765	44265				

The Borehole function models water flow through a borehole:

$$u(X) = \frac{2\pi T_u(H_u - H_l)}{\ln(r/r_w) \left(1 + \frac{2LT_u}{\ln(r/r_w)r_w^2 K_w} + \frac{T_u}{T_l}\right)}, \quad X = (r_w, \log(r), T_u, H_u, T_l, H_l, L, K_w)$$

r _w	radius of borehole (m)	$N(\mu = 0.10, \sigma = 0.0161812)$
r	radius of influence (m)	$LN(\mu = 7.71, \sigma = 1.0056)$
Tu	transmissivity of upper aquifer (m ² /yr)	U(63070, 115600)
H_u	potentiometric head of upper aquifer (m)	U(990, 1110)
T_l	transmissivity of lower aquifer (m^2/yr)	U(63.1, 116)
H_l	potentiometric head of lower aquifer (m)	U(700, 820)
L	length of borehole (m)	U(1120, 1680)
K_w	hydraulic conductivity of borehole (m/yr)	U(9855, 12045)

Illustration for approximation: Borehole function

Approximation in hierarchical Tucker format with a linearly structured tree:

$$T = \{\{1\}, \dots, \{d\}, \{1, 2\}, \dots, \{1, \dots, d-1\}\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5\}$$

$$\{1, 2, 3, 4, 5, 5\}$$

$$\{1, 2, 3, 4, 5, 5\}$$

$$\{1, 2, 3, 4, 5, 5\}$$

$$\{1, 2, 3, 4, 5, 5\}$$

$$\{1, 2, 3, 4, 5, 5\}$$

$$\{1, 2, 3, 4, 5, 5, 5\}$$

$$\{1, 2, 3, 4, 5, 5, 5\}$$

$$\{1, 2, 3, 4, 5, 5, 5\}$$

$$\{1, 2, 3, 4, 5, 5, 5, 5, 5\}$$

$$u^{\star} = \sum_{i_{1}=1}^{r_{1}} \dots \sum_{i_{d}=1}^{r_{d}} \sum_{k_{2}=1}^{r_{1,2}} \dots \sum_{k_{d-1}=1}^{r_{1,\dots,d-1}} v_{i_{1}}^{(1)}(x_{1}) \dots v_{i_{d}}^{(d)}(x_{d}) C_{i_{1},i_{2},k_{2}}^{(1,2)} C_{k_{2},i_{3},k_{3}}^{(1,\dots,d-1)} \dots C_{k_{d-2},i_{d-1},k_{d-1}}^{(1,\dots,d-1)} C_{k_{d-1},i_{d}}^{(1,\dots,d)}$$

with polynomial functions $v_{i_{\nu}}^{(\nu)} \in V_{\nu} = \mathbb{P}_{q}$.

Table: Approximation with prescribed precision ϵ , adaptive degree $p(\epsilon) = \log_{10}(\epsilon^{-1})$, and $N_{\alpha} = \dim(V_{\alpha})$. Confidence intervals for relative error $\varepsilon(u^*)$, storage complexity S and number of evaluations M for different ϵ , and average ranks.

ϵ	$\varepsilon(u^{\star})$	N	S	$[r_{\{1\}},\ldots,r_{\{d\}},r_{\{1,2\}},\ldots,r_{\{1,\ldots,d-1\}}]$
10^1	$[1.8; 2.7] imes 10^{-1}$	[39, 39]	[23, 23]	$\left[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1$
10^{-2}	$[0.3; 4.0] imes 10^{-2}$	[88, 100]	[41, 46]	[1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1]
10^{-3}	$[0.8; 1.9] imes 10^{-3}$	[159, 186]	[61, 78]	[2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 1]
10^{-4}	$[2.5; 5.6] imes 10^{-5}$	[328, 328]	[141, 141]	[2, 2, 2, 3, 3, 2, 2, 2, 1, 2, 2, 2, 2, 2]
10^{-5}	$[0.6; 1.6] imes 10^{-5}$	[444, 472]	[166, 178]	[2, 2, 2, 4, 4, 2, 2, 2, 1, 2, 2, 2, 2, 2]
10^{-6}	$[3.1; 5.7] imes 10^{-6}$	[596,664]	[204, 241]	[3, 2, 2, 4, 5, 3, 2, 2, 2, 2, 2, 2, 2, 2]
10^{-7}	$[1.0; 6.3] imes 10^{-7}$	[1042, 1267]	[374, 429]	[4,3,4,6,5,3,3,3,2,2,3,2,2,2]
10 ⁻⁸	$[1.1; 7.1] imes 10^{-8}$	[1567, 1567]	[512, 512]	[4,3,4,7,6,3,3,3,2,2,3,2,3,3]
10 ⁻⁹	$[0.2; 4.9] imes 10^{-8}$	[1719, 1854]	[534, 560]	[4, 4, 4, 8, 6, 3, 3, 3, 2, 2, 3, 2, 3, 3]
10^{-10}	$[0.3; 1.9] imes 10^{-9}$	[2482, 2828]	[774, 838]	[5, 4, 6, 10, 7, 4, 3, 3, 2, 2, 3, 2, 3, 3]

The proposed algorithm

- provides an approximation of a function in tree-based format using evaluations of the function at a structured and adapted set of points,
- provides a stable approximation with prescribed rank, with a number of samples N equal to (or of the order of) the number of parameters,
- provides an approximation with almost the desired precision.

What should be done:

- Control norms of projections and statistical estimations of principal subspaces for obtaining a certified approximation.
- Provide a priori estimations of the complexity for certain classes of functions.

References

A. Nouy.

Higher-order principal component analysis for the approximation of tensors in tree-based low-rank formats.

ArXiv e-prints, 2017.

A. Nouy.

Low-rank methods for high-dimensional approximation and model order reduction.

In P. Benner, A. Cohen, M. Ohlberger, and K. Willcox (eds.), Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia, PA, 2016.

Tree-based tensor formats I

The minimal subspace $U_{\alpha}^{min}(u)$ of u is the smallest subspace such that

 $\mathcal{M}_{lpha}(u)\in U^{min}_{lpha}(u)\otimes \mathcal{H}_{lpha^{c}}$

and rank_{α}(u) = dim($U_{\alpha}^{min}(u)$).

• Any tensor v is such that

$$v \in \bigotimes_{lpha \in \mathcal{S}(D)} U^{min}_{lpha}(v)$$

with S(D) a partition of D, and

$$U^{min}_{lpha}(v)\subset \bigotimes_{eta\in \mathcal{S}(lpha)}U^{min}_{eta}(v)$$

for any $\alpha \subsetneq D$ with non trivial partition $S(\alpha)$.

Tree-based tensor formats II

• For a tensor $v \in \mathcal{T}_r^T$ with rank $\tau(v) = r$, let $\{\varphi_{k_\alpha}^{(\alpha)}\}_{k_\alpha=1}^{r_\alpha}$ be bases of the minimal subspace $U_\alpha^{\min}(v)$. The tensor v then admits a hierarchical representation

$$\mathbf{v} = \sum_{\substack{1 \le k_{\alpha} \le r_{\alpha} \\ \alpha \in S(D)}} p^{D}_{(k_{\alpha})_{\alpha \in S(D)}} \bigotimes_{\alpha \in S(D)} \varphi^{\alpha}_{k_{\alpha}},$$

with

$$\varphi^{\alpha}_{k_{\alpha}} = \sum_{\substack{1 \le k_{\beta} \le r_{\beta} \\ \beta \in S(\alpha)}} p^{\alpha}_{k_{\alpha},(k_{\beta})_{\beta \in S(\alpha)}} \bigotimes_{\beta \in S(\alpha)} \varphi^{\beta}_{k_{\beta}}$$

For a subspace W_{α} in \mathcal{H}_{α} , we define a unisolvent set of points $\Gamma_{W_{\alpha}}$ in \mathcal{X}_{α} (magic points) and the associated interpolation operator $I_{W_{\alpha}}$ onto W_{α} defined for $v \in \mathbb{R}^{\mathcal{X}_{\alpha}}$ by

$$I_{W_{\alpha}}v(x_{\alpha})=v(x_{\alpha})\quad \forall x_{\alpha}\in \Gamma_{W_{\alpha}}.$$

We then define the corresponding partial interpolation operator $\mathcal{I}_{W_{\alpha}} = I_{W_{\alpha}} \otimes id_{\alpha^{c}}$ defined for $u \in \mathbb{R}^{\mathcal{X}}$ by

$$\mathcal{I}_{W_{\alpha}} u(x_{\alpha}, \cdot) = u(x_{\alpha}, \cdot) \quad \forall x_{\alpha} \in \Gamma_{W_{\alpha}}.$$

If the minimal subspace $U_{\alpha}^{min}(u)$ is a RKHS, then $I_{W_{\alpha}}$ is continuous from $U_{\alpha}^{min}(u)$ to W_{α} and $\mathcal{I}_{W_{\alpha}}$ is continuous from $U_{\alpha}^{min}(u) \otimes \mathcal{H}_{\alpha^{c}}$ to $W_{\alpha} \otimes \mathcal{H}_{\alpha^{c}}$, so that

 $\mathcal{I}_{W_{\alpha}} u \in W_{\alpha} \otimes \mathcal{H}_{\alpha^{c}}.$

Statistical estimation of principal components

For $\alpha \in T$, consider $u_{\alpha} = \mathcal{I}_{V_{\alpha}} u$.

For $\|\cdot\|$ the $L^2_{\mu}(\mathcal{X})$ -norm, the α -principal subspace of u_{α} is solution of

$$\min_{\dim(U_{\alpha})=r_{\alpha}} \mathbb{E}\left(\left\| u_{\alpha}(\cdot, X_{\alpha^{c}}) - \mathcal{P}_{U_{\alpha}} u_{\alpha}(\cdot, X_{\alpha^{c}}) \right\|_{L^{2}_{\mu_{\alpha}}(\mathcal{X}_{\alpha})}^{2} \right),$$

where $u_{\alpha}(\cdot, X_{\alpha^{c}})$ is interpreted as a V_{α} -valued random variable.

It can be estimated by the solution of

$$\min_{\dim(U_{\alpha})=r_{\alpha}}\frac{1}{N_{\alpha}}\sum_{k=1}^{N_{\alpha}}\|u_{\alpha}(\cdot, x_{\alpha^{c}}^{k}) - \mathcal{P}_{U_{\alpha}}u_{\alpha}(\cdot, x_{\alpha^{c}}^{k})\|_{\mathcal{H}_{\alpha}}^{2}$$

where the $x_{\alpha^c}^k$ are i.i.d. samples of X_{α^c} .

Complexity

• The storage complexity (number of parameters) of a tensor in $\mathcal{T}_r^T \cap V$ is

$$S = \sum_{\alpha \in (T \cup \{D\}) \setminus \mathcal{L}(T)} r_{\alpha} \prod_{\beta \in S(\alpha)} r_{\beta} + \sum_{\alpha \in \mathcal{L}(T)} r_{\alpha} \dim(V_{\alpha})$$

• The total number of evaluations of the function required by the algorithm is

$$N = \sum_{\alpha \in \mathcal{L}(T)} N_{\alpha} \dim(V_{\alpha}) + \sum_{\alpha \in T \setminus \mathcal{L}(T)} N_{\alpha} \prod_{\beta \in S(\alpha)} r_{\beta} + \prod_{\beta \in S(D)} r_{\beta},$$

where N_{α} is the number of samples used for estimating the r_{α} α -principal components of u_{α} , taken such that

$$r_{\alpha} \leq N_{\alpha}$$

• If $N_{\alpha} = r_{\alpha}$ for all α , then

$$N = S$$

About the constants

If oblique projections $I_{U_{\alpha}}$ and $I_{V_{\alpha}}$ were orthogonal projections, the constants Λ and $\tilde{\Lambda}$ would be equal to 1.

These constants Λ and $\tilde{\Lambda}$ depend on

$$\|I_{V_{\alpha}}\|_{U_{\alpha}^{\min}(u) o \mathcal{H}_{\alpha}}$$
 and $\|I_{U_{\alpha}} - P_{U_{\alpha}}\|_{U_{\alpha}^{\min}(u) o \mathcal{H}_{\alpha}}$

that depend on the properties of oblique projection operators restricted to minimal subspaces of u.

Case of tensor recovery

Assume that $U_{\alpha}^{\min}(u) \subset V_{\alpha}$ for all leaves α (no discretization error).

If for all $\alpha \in T$, the set of N_{α} samples $u(\cdot, x_{\alpha^c}^k)$ contains $\operatorname{rank}_{\alpha}(u)$ linearly independent functions, then $U_{\alpha} = U_{\alpha}^{\min}(u)$.

The constants $\Lambda = 1$, and $\tilde{\Lambda} = 1$ (i.e. same stability than the ideal algorithm).