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A classical puzzle: the 15-Puzzle
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A classical puzzle: the 15-Puzzle
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can you always solve it?
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Sliding token puzzles

we can interpret the 15-puzzle as a problem

involving moving tokens on a given graph:

❧15 ❧8 ❧7 ❧5

✉ ❧6 ❧4 ❧14

❧9 ❧11 ❧1 ❧10

❧13 ❧2 ❧3 ❧12

✲
?

❧15 ❧8 ❧7 ❧5

✉❧6 ❧4 ❧14

❧9 ❧11 ❧1 ❧10

❧13 ❧2 ❧3 ❧12
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What if we would play on a different graph?

♥2 ♥4 ♥6 ♥8

✈ ♥10 ♥12 ♥14

♥16 ♥18 ♥20 ♥22

♥24 ♥26 ♥28 ♥30

♥25

♥27

♥29

♥31

♥17

♥19

♥21

♥23

♥9

♥11

♥13

♥15

♥1

♥3

♥5

♥7
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And maybe more empty spaces and/or repeated tokens?

♥2 ♥4 ♥6 ♥8

✈ ♥10 ♥12 ♥14

♥16 ♥18 ♥20 ♥22

♥24 ♥26 ♥28 ♥1

♥25

♥27

♥2

✈

♥17

♥19

♥21

♥23

♥9

♥11

♥13

♥15

♥1

♥3

♥5

♥7
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Sliding token puzzles

for a given graph G on n vertices,

define puz(G) as the graph that has:

nodes: all possible placements

of n − 1 different tokens on G

adjacency: sliding one token along an edge of G

to an empty vertex
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Sliding token puzzles

for a given graph G on n vertices,

define puz(G) as the graph that has:

nodes: all possible placements

of n − 1 different tokens on G

adjacency: sliding one token along an edge of G

to an empty vertex

and our standard decision problems become:

are two token configurations in one component of puz(G)?

is puz(G) connected?
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Sliding token puzzles

Theorem (Wilson, 1974)

if G is a 2-connected graph, then puz(G) is connected, except if:
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Sliding token puzzles

Theorem (Wilson, 1974)

if G is a 2-connected graph, then puz(G) is connected, except if:

G is a cycle on n ≥ 4 vertices

(then puz(G) has (n − 2)! components)

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017



Sliding token puzzles

Theorem (Wilson, 1974)

if G is a 2-connected graph, then puz(G) is connected, except if:

G is a cycle on n ≥ 4 vertices

(then puz(G) has (n − 2)! components)

G is bipartite different from a cycle

(then puz(G) has 2 components)
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Sliding token puzzles

Theorem (Wilson, 1974)

if G is a 2-connected graph, then puz(G) is connected, except if:

G is a cycle on n ≥ 4 vertices

(then puz(G) has (n − 2)! components)

G is bipartite different from a cycle

(then puz(G) has 2 components)

G is the exceptional graph Θ0 (puz(Θ0) has 6 components)

✈ ✈

✈ ✈ ✈

✈ ✈

❚
❚❚

✔
✔✔

✔
✔✔

❚
❚❚

Θ0
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Why does Wilson only consider 2-connected graphs?
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Why does Wilson only consider 2-connected graphs?

since puz(G) is never connected if G has connectivity below 2:

♥1 ♥2 ♥3

♥4 ♥5 ♥6

♥7 ♥8 ✈ ♥9 ♥10

♥11 ♥12 ♥13

♥14 ♥15 ♥16
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Generalised sliding token puzzles

what would happen if:

we have fewer than n − 1 tokens (i.e. more empty vertices)?

and/or not all tokens are the same?

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017



Generalised sliding token puzzles

what would happen if:

we have fewer than n − 1 tokens (i.e. more empty vertices)?

and/or not all tokens are the same?

so suppose we have a set (k1, k2, . . . , kp) of labelled tokens

meaning: k1 tokens with label 1, k2 tokens with label 2, etc.

tokens with the same label are indistinguishable

we can assume that k1 ≥ k2 ≥ · · · ≥ kp

and their sum is at most n − 1
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Generalised sliding token puzzles

what would happen if:

we have fewer than n − 1 tokens (i.e. more empty vertices)?

and/or not all tokens are the same?

so suppose we have a set (k1, k2, . . . , kp) of labelled tokens

meaning: k1 tokens with label 1, k2 tokens with label 2, etc.

tokens with the same label are indistinguishable

we can assume that k1 ≥ k2 ≥ · · · ≥ kp

and their sum is at most n − 1

the corresponding graph of all token configurations on G is

denoted by puz(G; k1, . . . , kp)
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Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:
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Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:

G is not connected
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Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:

G is not connected

G is a path and p ≥ 2
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Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:

G is not connected

G is a path and p ≥ 2

G is a cycle, and p ≥ 3, or p = 2 and k2 ≥ 2
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Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:

G is not connected

G is a path and p ≥ 2

G is a cycle, and p ≥ 3, or p = 2 and k2 ≥ 2

G is a 2-connected, bipartite graph with token set (1(n−1))

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017



Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:

G is not connected

G is a path and p ≥ 2

G is a cycle, and p ≥ 3, or p = 2 and k2 ≥ 2

G is a 2-connected, bipartite graph with token set (1(n−1))

G is the exceptional graph Θ0 with token set (2, 2, 2),

(2, 2, 1, 1), (2, 1, 1, 1, 1) or (1, 1, 1, 1, 1, 1)

s s
s s s
s s

❚❚ ✔✔
✔✔ ❚❚
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Generalised sliding token puzzles

Theorem (Brightwell, vdH & Trakultraipruk, 2013)

G a graph on n vertices, (k1, k2, . . . , kp) a token set,

then puz(G; k1, . . . , kp) is connected, except if:

G is not connected

G is a path and p ≥ 2

G is a cycle, and p ≥ 3, or p = 2 and k2 ≥ 2

G is a 2-connected, bipartite graph with token set (1(n−1))

G is the exceptional graph Θ0 with some “bad” token sets

G has connectivity 1, p ≥ 2 and there is a “separating path

preventing tokens from moving between blocks”
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Generalised sliding token puzzles

“separating paths” in graphs of connectivity one:

t

✐1

✐1
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t
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good:
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Generalised sliding token puzzles

“separating paths” in graphs of connectivity one:

t
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The Structure of T (θ0; (2, 1, 1, 1, 1))

The following are the three groups of standard token configurations in the labelled

token graph T (θ0; (2, 1, 1, 1, 1)).
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Figure A.8: Part 1 of Group B1 in T (θ0; (2, 1, 1, 1, 1))
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Figure A.9: Part 2 of Group B1 in T (θ0; (2, 1, 1, 1, 1))
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Figure A.10: Part 1 of Group B2 in T (θ0; (2, 1, 1, 1, 1))

100



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 3 

1 4 
2 5 

1 2 

1 5 
3 4 

2 1 

5 1 
4 3 

2 4 

5 3 
1 1 

4 2 

3 5 
1 1 

4 1 

3 1 
2 5 

1 3 

4 5 
1 2 

1 2 

5 4 
1 3 

2 1 

1 3 
5 4 

2 4 

3 1 
5 1 

4 2 

5 1 
3 1 

4 1 

1 5 
3 2 

3 2 

1 4 
1 2 

2 4 

1 5 
1 3 

1 3 

2 1 
5 4 

4 1 

2 3 
5 1 

2 1 

4 5 
3 1 

1 5 

4 1 
3 2 

5 4 

1 2 
3 1 

4 5 

1 3 
2 1 

3 1 

2 4 
1 5 

1 3 

2 1 
4 5 

1 5 

4 1 
2 3 

5 1 

4 2 
1 3 

5 4 

2 1 
1 3 

4 5 

3 1 
1 2 

3 1 

4 5 
2 1 

1 3 

1 5 
2 4 

1 5 

1 3 
4 2 

5 1 

2 3 
4 1 

4 1 

5 2 
1 3 

5 1 

4 3 
1 2 

1 5 

3 4 
2 1 

3 5 

1 1 
2 4 

5 3 

1 1 
4 2 

1 3 

5 2 
4 1 

1 2 

4 5 
1 3 

1 3 

5 4 
1 2 

5 4 

1 3 
2 1 

5 1 

3 1 
2 4 

3 1 

5 1 
4 2 

3 2 

1 5 
4 1 

1 2 

5 3 
4 1 

1 3 

4 2 
5 1 

5 4 

3 1 
1 2 

5 1 

1 4 
3 2 

3 1 

1 2 
5 4 

3 2 

5 1 
1 4 

1 1 

4 3 
2 5 

1 1 

5 2 
3 4 

5 2 

1 1 
4 3 

5 2 

3 4 
1 1 

3 4 

5 2 
1 1 

3 4 

1 1 
2 5 

1 1 

2 4 
5 3 

1 1 

3 5 
4 2 

5 2 

4 1 
3 1 

5 2 

1 3 
1 4 

3 4 

1 5 
1 2 

3 4 

2 1 
5 1 

U,L,U,L,L L,L U,L,U,L,L L,L L,L 

L 

U 

L 

U 

U,L 

L 

U 

U 

L 

L 

U 

L 

U 

U,L 

L 

U 

U 

L 

L 

U 

L 

U 

U,L 

L 

U 

U 

L 

L 

U 

L 

U 

U,L 

L 

U 

U 

L 

L 

U 

L 

U 

U,L 

L 

U 

U 

L 

L 

U 

L 

U 

U,L 

L 

U 

U 

L 

Figure A.11: Part 2 of Group B2 in T (θ0; (2, 1, 1, 1, 1))
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Figure A.12: Part 1 of Group B3 in T (θ0; (2, 1, 1, 1, 1))
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Figure A.13: Part 2 of Group B3 in T (θ0; (2, 1, 1, 1, 1))
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Generalised sliding token puzzles

we can also characterise:

given a graph G, token set (k1, . . . , kp),

and two token configurations on G,

are the two configurations in the same component of

puz(G; k1, . . . , kp)?

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017



configuration α, let αi be a token configuration obtained from α by moving some

tokens (if necessary) to make all the vertices on Pi unoccupied.

Let G be a connected graph with connectivity 1, n(G)− (k1 + k2 + · · ·+ kp) = 1,

and B a block in G. Then B contains at least one cut-vertex of G. Let vB be one of

these cut-vertices. Given a token configuration α, let αvB be a token configuration

obtained from α by moving some tokens (if necessary) to make vB unoccupied.

We denote the multiset of all the tokens used in a token configuration α by τ(α).

For example, if α is any of the token configurations in Figure 2.4, then τ(α) =

{1, 1, 2, 2, 3, 3} = (2, 2, 2).

Theorem 2.3

Let G be a connected graph with n(G) ≥ 3, k1 ≥ k2 ≥ · · · ≥ kp positive integers

for some integer p ≥ 2, and k1 + k2 + · · · + kp ≤ n(G) − 1. Then two token

configurations α and β are in the same component of T (G; (k1, k2, . . . , kp)) if and

only if at least one of the following conditions holds:

1. T (G; (k1, k2, . . . , kp)) is connected;

2. G is a path, and the orders of tokens on G of α and β are the same;

3. G is a cycle, and the cyclic orders of tokens on G of α and β are the same;

4. G is the graph θ0, and

(a) (k1, k2, . . . , kp) = (2, 2, 2) or (2, 2, 1, 1), and for any (1,1)-standard to-

ken configurations α′ and β′ which can be reached from α and β, respec-

tively, we have that α′ and β′ are in the same group from the following

two groups:
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Group a1: (1,1)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, 2, s, t), where s, t ∈ {3, 4}. I.e.,

token configurations which have the following forms:

r rr r rr r
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J
J

Group a2: (1,1)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, s, 2, t), where s, t ∈ {3, 4},

(b) (k1, k2, . . . , kp) = (2, 1, 1, 1, 1), and for any (1,1)-standard token config-

urations α′ and β′ which can be reached from α and β, respectively, we

have α′ and β′ are in the same group from the following three groups:

Group b1: (1,1)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, 3, 4, 5) or (2, 5, 4, 3);

Group b2: (1,1)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, 4, 3, 5) or (2, 5, 3, 4);

Group b3: (1,1)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, 3, 5, 4) or (2, 4, 5, 3);

(c) (k1, k2, . . . , kp) = (1, 1, 1, 1, 1, 1), and for any (1,6)-standard token con-

figurations α′ and β′ which can be reached from α and β, respectively,

we have α′ and β′ are in the same group from the following six groups:

Group c1: (1,6)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, 3, 4, 5);

Group c2: (1,6)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, 5, 4, 3);

Group c2: (1,6)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, 4, 3, 5);
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Group c4: (1,6)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, 5, 3, 4);

Group c5: (1,6)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, 3, 5, 4);

Group c6: (1,6)-standard token configurations of which the cyclic order

of tokens on the lower 5-cycle is (2, 4, 5, 3).

5. G is a 2-connected bipartite graph other than a cycle, there are n(G) − 1

different tokens, and one of the following holds:

(a) α and β have their unoccupied vertices at even distance in G, and αβ−1

is an even permutation;

(b) α and β have their unoccupied vertices at odd distance in G, and αβ−1

is an odd permutation.

6. G is a connected graph with connectivity 1 other than a path, n(G)−(k1+k2+

· · · + kp) = l ≥ 2, P1, P2, . . . , Pm are all the separating paths of size l in G,

and τ(αi|Gi,1
) = τ(βi|Gi,1

) and τ(αi|Gi,2
) = τ(βi|Gi,2

) for all i = 1, 2, . . . ,m.

7. G is a connected graph with connectivity 1 other than a path, n(G) − (k1 +

k2 + · · ·+ kp) = 1, for each block B in G, τ(αvB |B) = τ(βvB |B), and at least

one of the following conditions holds:

(a) T (B; τ(αvB |B)) is connected;

(b) B is a cycle, and the cyclic orders of tokens of αvB |B and βvB |B are the

same;

(c) B is the graph θ0, and αvB |B and βvB |B satisfy 4(a), 4(b), or 4(c) above;

(d) B is a 2-connected bipartite graph other than a cycle, there are n(B)−1

different tokens in αvB |B and βvB |B, and αvB |B · (βvB |B)−1 is an even

permutation.
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Generalised sliding token puzzles

we can also characterise:

given a graph G, token set (k1, . . . , kp),

and two token configurations on G,

are the two configurations in the same component of

puz(G; k1, . . . , kp)?

so recognising connectivity properties of puz(G; k1, . . . , kp) is

easy

can we say something about the number of steps we would need?

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017



The length of sliding token paths

SHORTEST-A-TO-B-TOKEN-MOVES

Input : a graph G, a token set (k1, . . . , kp),

two token configurations A and B on G,

and a positive integer N

Question: can we go from A to B in at most N steps?

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017



The length of sliding token paths

Theorem (Goldreich, 1984-2011)

restricted to the case that there are n − 1 different tokens,

SHORTEST-A-TO-B-TOKEN-MOVES is NP-complete

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017



The length of sliding token paths

Theorem (Goldreich, 1984-2011)

restricted to the case that there are n − 1 different tokens,

SHORTEST-A-TO-B-TOKEN-MOVES is NP-complete

Theorem (vdH & Trakultraipruk, 2013; probably others earlier)

restricted to the case that all tokens are the same,

SHORTEST-A-TO-B-TOKEN-MOVES is in P
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The length of sliding token paths

Theorem (Goldreich, 1984-2011)

restricted to the case that there are n − 1 different tokens,

SHORTEST-A-TO-B-TOKEN-MOVES is NP-complete

Theorem (vdH & Trakultraipruk, 2013; probably others earlier)

restricted to the case that all tokens are the same,

SHORTEST-A-TO-B-TOKEN-MOVES is in P

Theorem (vdH & Trakultraipruk, 2013)

restricted to the case that there is just one special token

and all others are the same:

SHORTEST-A-TO-B-TOKEN-MOVES is already NP-complete

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017



Robot motion

the proof of that last result uses ideas of the proof of

Theorem (Papadimitriou, Raghavan, Sudan & Tamaki, 1994)

SHORTEST-ROBOT-MOTION-WITH-ONE-ROBOT is NP-complete

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017



Robot motion

the proof of that last result uses ideas of the proof of

Theorem (Papadimitriou, Raghavan, Sudan & Tamaki, 1994)

SHORTEST-ROBOT-MOTION-WITH-ONE-ROBOT is NP-complete

Robot Motion problems on graphs are sliding token problems,

with some special tokens (the robots)

that have to end in specified positions

all other tokens are just obstacles

and it is not important where those are at the end

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017


	phantom {title}
	A classical puzzle: the 15-Puzzlevp 
	A classical puzzle: the 15-Puzzlevp 
	Sliding token puzzlesvp 
	What if we would play on a different graph?vp 
	And maybe more empty spaces and/or repeated tokens?vp 
	Sliding token puzzlesvp 
	Sliding token puzzlesvp 
	Sliding token puzzlesvp 
	Sliding token puzzlesvp 
	Sliding token puzzlesvp 
	Sliding token puzzlesvp 
	Why does Wilson only consider {dblue {dred 2}-connected} graphs?vp 
	Why does Wilson only consider {dblue {dred 2}-connected} graphs?vp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	Generalised sliding token puzzlesvp 
	The length of sliding token pathsvp 
	The length of sliding token pathsvp 
	The length of sliding token pathsvp 
	The length of sliding token pathsvp 
	Robot motionvp 
	Robot motionvp 

