Generalisations of the 15-Puzzle (Sliding Tokens on Graphs)

Jan van den Heuvel

BIRS, Banff, 26 January 2017

Department of Mathematics
London School of Economics and Political Science
LSE

A classical puzzle: the 15-Puzzle

- can you always solve it?

Sliding token puzzles

- we can interpret the 15 -puzzle as a problem involving moving tokens on a given graph:

What if we would play on a different graph?

And maybe more empty spaces and/or repeated tokens?

Sliding token puzzles

- for a given graph G on n vertices, define $\operatorname{puz}(G)$ as the graph that has:
- nodes: all possible placements
of $n-1$ different tokens on G
- adjacency: sliding one token along an edge of G to an empty vertex

Sliding token puzzles

- for a given graph G on n vertices, define $\operatorname{puz}(G)$ as the graph that has:
- nodes: all possible placements
of $n-1$ different tokens on G
- adjacency: sliding one token along an edge of G to an empty vertex
- and our standard decision problems become:
- are two token configurations in one component of $\operatorname{puz}(G)$?
- is $\operatorname{puz}(G)$ connected?

Sliding token puzzles

Theorem (Wilson, 1974)

- if G is a 2-connected graph, then $\operatorname{puz}(G)$ is connected, except if:

Sliding token puzzles

Theorem (Wilson, 1974)

- if G is a 2-connected graph, then $\operatorname{puz}(G)$ is connected, except if:
- G is a cycle on $n \geq 4$ vertices
(then $\operatorname{puz}(G)$ has $(n-2)$! components)

Sliding token puzzles

Theorem (Wilson, 1974)

- if G is a 2-connected graph, then $\operatorname{puz}(G)$ is connected, except if:
- G is a cycle on $n \geq 4$ vertices (then $\operatorname{puz}(G)$ has $(n-2)$! components)
- G is bipartite different from a cycle
(then $\operatorname{puz}(G)$ has 2 components)

Sliding token puzzles

Theorem (Wilson, 1974)
■ if G is a 2-connected graph, then $\operatorname{puz}(G)$ is connected, except if:

- G is a cycle on $n \geq 4$ vertices (then $\operatorname{puz}(G)$ has $(n-2)$! components)
- G is bipartite different from a cycle
(then $\operatorname{puz}(G)$ has 2 components)
- G is the exceptional graph Θ_{0} (puz $\left(\Theta_{0}\right)$ has 6 components)

Why does Wilson only consider 2-connected graphs?

Why does Wilson only consider 2-connected graphs?

- since $\operatorname{puz}(G)$ is never connected if G has connectivity below 2:

Generalised sliding token puzzles

■ what would happen if:

- we have fewer than $n-1$ tokens (i.e. more empty vertices)?
- and/or not all tokens are the same?

Generalised sliding token puzzles

■ what would happen if:

- we have fewer than $n-1$ tokens (i.e. more empty vertices)?
- and/or not all tokens are the same?

■ so suppose we have a set ($k_{1}, k_{2}, \ldots, k_{p}$) of labelled tokens

- meaning: k_{1} tokens with label $1, k_{2}$ tokens with label 2 , etc.
- tokens with the same label are indistinguishable
- we can assume that $k_{1} \geq k_{2} \geq \cdots \geq k_{p}$ and their sum is at most $n-1$

Generalised sliding token puzzles

- what would happen if:
- we have fewer than $n-1$ tokens (i.e. more empty vertices)?
- and/or not all tokens are the same?
- so suppose we have a set $\left(k_{1}, k_{2}, \ldots, k_{p}\right)$ of labelled tokens
- meaning: k_{1} tokens with label $1, k_{2}$ tokens with label 2 , etc.
- tokens with the same label are indistinguishable
- we can assume that $k_{1} \geq k_{2} \geq \cdots \geq k_{p}$ and their sum is at most $n-1$
- the corresponding graph of all token configurations on G is denoted by puz($\mathbf{G} ; \boldsymbol{k}_{1}, \ldots, \boldsymbol{k}_{p}$)

Generalised sliding token puzzles

Theorem (Brightwell, vdH \& Trakultraipruk, 2013)

- G a graph on n vertices, $\left(k_{1}, k_{2}, \ldots, k_{p}\right)$ a token set, then $\operatorname{puz}\left(G ; k_{1}, \ldots, k_{p}\right)$ is connected, except if:

Generalised sliding token puzzles

Theorem (Brightwell, vdH \& Trakultraipruk, 2013)
■ G a graph on n vertices, $\left(k_{1}, k_{2}, \ldots, k_{p}\right)$ a token set, then $\operatorname{puz}\left(G ; k_{1}, \ldots, k_{p}\right)$ is connected, except if:

- G is not connected

Generalised sliding token puzzles

Theorem (Brightwell, vdH \& Trakultraipruk, 2013)
■ G a graph on n vertices, $\left(k_{1}, k_{2}, \ldots, k_{p}\right)$ a token set, then $\operatorname{puz}\left(G ; k_{1}, \ldots, k_{p}\right)$ is connected, except if:

- G is not connected
- G is a path and $p \geq 2$

Generalised sliding token puzzles

Theorem (Brightwell, vdH \& Trakultraipruk, 2013)

- G a graph on n vertices, $\left(k_{1}, k_{2}, \ldots, k_{p}\right)$ a token set, then $\operatorname{puz}\left(G ; k_{1}, \ldots, k_{p}\right)$ is connected, except if:
- G is not connected
- G is a path and $p \geq 2$
- G is a cycle, and $p \geq 3$, or $p=2$ and $k_{2} \geq 2$

Generalised sliding token puzzles

Theorem (Brightwell, vdH \& Trakultraipruk, 2013)

- G a graph on n vertices, $\left(k_{1}, k_{2}, \ldots, k_{p}\right)$ a token set, then $\operatorname{puz}\left(G ; k_{1}, \ldots, k_{p}\right)$ is connected, except if:
- G is not connected
- G is a path and $p \geq 2$
- G is a cycle, and $p \geq 3$, or $p=2$ and $k_{2} \geq 2$

■ G is a 2 -connected, bipartite graph with token set $\left(1^{(n-1)}\right)$

Generalised sliding token puzzles

Theorem (Brightwell, vdH \& Trakultraipruk, 2013)

- G a graph on n vertices, $\left(k_{1}, k_{2}, \ldots, k_{p}\right)$ a token set, then $\operatorname{puz}\left(G ; k_{1}, \ldots, k_{p}\right)$ is connected, except if:
- G is not connected
- G is a path and $p \geq 2$
- G is a cycle, and $p \geq 3$, or $p=2$ and $k_{2} \geq 2$

■ G is a 2 -connected, bipartite graph with token set $\left(1^{(n-1)}\right)$

- G is the exceptional graph Θ_{0} with token set $(2,2,2)$, $(2,2,1,1),(2,1,1,1,1)$ or $(1,1,1,1,1,1)$

Generalised sliding token puzzles

Theorem (Brightwell, vdH \& Trakultraipruk, 2013)

- G a graph on n vertices, $\left(k_{1}, k_{2}, \ldots, k_{p}\right)$ a token set, then $\operatorname{puz}\left(G ; k_{1}, \ldots, k_{p}\right)$ is connected, except if:
- G is not connected
- G is a path and $p \geq 2$
- G is a cycle, and $p \geq 3$, or $p=2$ and $k_{2} \geq 2$
- G is a 2-connected, bipartite graph with token set $\left(1^{(n-1)}\right)$
- G is the exceptional graph Θ_{0} with some "bad" token sets
- G has connectivity $1, p \geq 2$ and there is a "separating path preventing tokens from moving between blocks"

Generalised sliding token puzzles

- "separating paths" in graphs of connectivity one:

Generalised sliding token puzzles

- "separating paths" in graphs of connectivity one:

The Structure of $T\left(\theta_{0} ;(2,1,1,1,1)\right)$

The following are the three groups of standard token configurations in the labelled token graph $T\left(\theta_{0} ;(2,1,1,1,1)\right)$.

Figure A.8: Part 1 of Group B_{1} in $T\left(\theta_{0} ;(2,1,1,1,1)\right)$

Figure A.9: Part 2 of Group B_{1} in $T\left(\theta_{0} ;(2,1,1,1,1)\right)$

Figure A.10: Part 1 of Group B_{2} in $T\left(\theta_{0} ;(2,1,1,1,1)\right)$

Figure A.11: Part 2 of Group B_{2} in $T\left(\theta_{0} ;(2,1,1,1,1)\right)$

Figure A.12: Part 1 of Group B_{3} in $T\left(\theta_{0} ;(2,1,1,1,1)\right)$

Figure A.13: Part 2 of Group B_{3} in $T\left(\theta_{0} ;(2,1,1,1,1)\right)$

Generalised sliding token puzzles

- we can also characterise:
- given a graph G, token set $\left(k_{1}, \ldots, k_{p}\right)$, and two token configurations on G,
- are the two configurations in the same component of $\operatorname{puz}\left(G ; k_{1}, \ldots, k_{p}\right)$?
configuration α, let α_{i} be a token configuration obtained from α by moving some tokens (if necessary) to make all the vertices on P_{i} unoccupied.

Let G be a connected graph with connectivity $1, n(G)-\left(k_{1}+k_{2}+\cdots+k_{p}\right)=1$, and B a block in G. Then B contains at least one cut-vertex of G. Let v_{B} be one of these cut-vertices. Given a token configuration α, let $\alpha_{v_{B}}$ be a token configuration obtained from α by moving some tokens (if necessary) to make v_{B} unoccupied.

We denote the multiset of all the tokens used in a token configuration α by $\tau(\alpha)$. For example, if α is any of the token configurations in Figure 2.4, then $\tau(\alpha)=$ $\{1,1,2,2,3,3\}=(2,2,2)$.

Theorem 2.3

Let G be a connected graph with $n(G) \geq 3, k_{1} \geq k_{2} \geq \cdots \geq k_{p}$ positive integers for some integer $p \geq 2$, and $k_{1}+k_{2}+\cdots+k_{p} \leq n(G)-1$. Then two token configurations α and β are in the same component of $T\left(G ;\left(k_{1}, k_{2}, \ldots, k_{p}\right)\right)$ if and only if at least one of the following conditions holds:

1. $T\left(G ;\left(k_{1}, k_{2}, \ldots, k_{p}\right)\right)$ is connected;
2. G is a path, and the orders of tokens on G of α and β are the same;
3. G is a cycle, and the cyclic orders of tokens on G of α and β are the same;
4. G is the graph θ_{0}, and
(a) $\left(k_{1}, k_{2}, \ldots, k_{p}\right)=(2,2,2)$ or $(2,2,1,1)$, and for any (1,1)-standard token configurations α^{\prime} and β^{\prime} which can be reached from α and β, respectively, we have that α^{\prime} and β^{\prime} are in the same group from the following two groups:

Group a_{1} : (1,1)-standard token configurations of which the cyclic order of tokens on the lower 5 -cycle is $(2,2, s, t)$, where $s, t \in\{3,4\}$. I.e., token configurations which have the following forms:

Group a_{2} : (1,1)-standard token configurations of which the cyclic order of tokens on the lower 5 -cycle is $(2, s, 2, t)$, where $s, t \in\{3,4\}$,
(b) $\left(k_{1}, k_{2}, \ldots, k_{p}\right)=(2,1,1,1,1)$, and for any (1,1)-standard token configurations α^{\prime} and β^{\prime} which can be reached from α and β, respectively, we have α^{\prime} and β^{\prime} are in the same group from the following three groups:

Group b_{1} : (1,1)-standard token configurations of which the cyclic order of tokens on the lower 5 -cycle is $(2,3,4,5)$ or $(2,5,4,3)$;

Group b_{2} : (1,1)-standard token configurations of which the cyclic order of tokens on the lower 5 -cycle is $(2,4,3,5)$ or $(2,5,3,4)$;

Group $b_{3}:(1,1)$-standard token configurations of which the cyclic order of tokens on the lower 5 -cycle is $(2,3,5,4)$ or $(2,4,5,3)$;
(c) $\left(k_{1}, k_{2}, \ldots, k_{p}\right)=(1,1,1,1,1,1)$, and for any (1,6)-standard token configurations α^{\prime} and β^{\prime} which can be reached from α and β, respectively, we have α^{\prime} and β^{\prime} are in the same group from the following six groups: Group $c_{1}:(1,6)$-standard token configurations of which the cyclic order of tokens on the lower 5 -cycle is $(2,3,4,5)$;

Group $c_{2}:(1,6)$-standard token configurations of which the cyclic order of tokens on the lower 5 -cycle is $(2,5,4,3)$;

Group $c_{2}:(1,6)$-standard token configurations of which the cyclic order of tokens on the lower 5 -cycle is $(2,4,3,5)$;

Group $c_{4}:(1,6)$-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,5,3,4)$;

Group $c_{5}:(1,6)$-standard token configurations of which the cyclic order of tokens on the lower 5 -cycle is $(2,3,5,4)$;

Group c_{6} : (1,6)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is $(2,4,5,3)$.
5. G is a 2-connected bipartite graph other than a cycle, there are $n(G)-1$ different tokens, and one of the following holds:
(a) α and β have their unoccupied vertices at even distance in G, and $\alpha \beta^{-1}$ is an even permutation;
(b) α and β have their unoccupied vertices at odd distance in G, and $\alpha \beta^{-1}$ is an odd permutation.
6. G is a connected graph with connectivity 1 other than a path, $n(G)-\left(k_{1}+k_{2}+\right.$ $\left.\cdots+k_{p}\right)=l \geq 2, P_{1}, P_{2}, \ldots, P_{m}$ are all the separating paths of size l in G, and $\tau\left(\left.\alpha_{i}\right|_{G_{i, 1}}\right)=\tau\left(\left.\beta_{i}\right|_{G_{i, 1}}\right)$ and $\tau\left(\left.\alpha_{i}\right|_{G_{i, 2}}\right)=\tau\left(\left.\beta_{i}\right|_{G_{i, 2}}\right)$ for all $i=1,2, \ldots, m$.
7. G is a connected graph with connectivity 1 other than a path, $n(G)-\left(k_{1}+\right.$ $\left.k_{2}+\cdots+k_{p}\right)=1$, for each block B in $G, \tau\left(\left.\alpha_{v_{B}}\right|_{B}\right)=\tau\left(\left.\beta_{v_{B}}\right|_{B}\right)$, and at least one of the following conditions holds:
(a) $T\left(B ; \tau\left(\left.\alpha_{v_{B}}\right|_{B}\right)\right)$ is connected;
(b) B is a cycle, and the cyclic orders of tokens of $\left.\alpha_{v_{B}}\right|_{B}$ and $\left.\beta_{v_{B}}\right|_{B}$ are the same;
(c) B is the graph θ_{0}, and $\left.\alpha_{v_{B}}\right|_{B}$ and $\left.\beta_{v_{B}}\right|_{B}$ satisfy $4(a), 4(b)$, or $4(c)$ above;
(d) B is a 2-connected bipartite graph other than a cycle, there are $n(B)-1$ different tokens in $\left.\alpha_{v_{B}}\right|_{B}$ and $\left.\beta_{v_{B}}\right|_{B}$, and $\left.\alpha_{v_{B}}\right|_{B} \cdot\left(\left.\beta_{v_{B}}\right|_{B}\right)^{-1}$ is an even permutation.

Generalised sliding token puzzles

- we can also characterise:
- given a graph G, token set $\left(k_{1}, \ldots, k_{p}\right)$, and two token configurations on G,
- are the two configurations in the same component of $\operatorname{puz}\left(G ; k_{1}, \ldots, k_{p}\right)$?
- so recognising connectivity properties of $\operatorname{puz}\left(G ; k_{1}, \ldots, k_{p}\right)$ is easy
- can we say something about the number of steps we would need?

The length of sliding token paths

- Shortest-A-TO-B-TOKEN-Moves

Input: a graph G, a token set $\left(k_{1}, \ldots, k_{p}\right)$, two token configurations A and B on G, and a positive integer N

Question: can we go from A to B in at most N steps?

The length of sliding token paths

Theorem (Goldreich, 1984-2011)

- restricted to the case that there are $n-1$ different tokens, Shortest-A-TO-B-TOKEN-MOVES is NP-complete

The length of sliding token paths

Theorem (Goldreich, 1984-2011)

- restricted to the case that there are $n-1$ different tokens, Shortest-A-TO-B-TOKEN-MOVES is NP-complete

Theorem (vdH \& Trakultraipruk, 2013; probably others earlier)

- restricted to the case that all tokens are the same, Shortest-A-to-B-TOKEN-Moves is in \mathbf{P}

The length of sliding token paths

Theorem (Goldreich, 1984-2011)

- restricted to the case that there are $n-1$ different tokens, Shortest-A-TO-B-TOKEN-MOVES is NP-complete

Theorem (vdH \& Trakultraipruk, 2013; probably others earlier)

- restricted to the case that all tokens are the same, Shortest-A-to-B-TOKEN-Moves is in \mathbf{P}

Theorem (vdH \& Trakultraipruk, 2013)

- restricted to the case that there is just one special token and all others are the same:

Shortest-A-TO-B-TOKEN-MOVES is already NP-complete

Robot motion

- the proof of that last result uses ideas of the proof of

Theorem (Papadimitriou, Raghavan, Sudan \& Tamaki, 1994)

- Shortest-Robot-Motion-with-One-Robot is NP-complete

Robot motion

- the proof of that last result uses ideas of the proof of

Theorem (Papadimitriou, Raghavan, Sudan \& Tamaki, 1994)
■ Shortest-Robot-Motion-with-One-Robot is NP-complete

- Robot Motion problems on graphs are sliding token problems,
- with some special tokens (the robots)
- that have to end in specified positions
- all other tokens are just obstacles
- and it is not important where those are at the end

