Generalisations of the 15-Puzzle (Sliding Tokens on Graphs)

JAN VAN DEN HEUVEL

BIRS, Banff, 26 January 2017

Department of Mathematics London School of Economics and Political Science

A classical puzzle: the 15-Puzzle

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	×	

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) – BIRS, Banff, 26 January 2017

A classical puzzle: the 15-Puzzle

1	2	3	4	
5	6	7	8	
9	10	11	12	
13	14	15	~	

can you always solve it?

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) - BIRS, Banff, 26 January 2017

we can interpret the 15-puzzle as a problem involving moving tokens on a given graph:

What if we would play on a different graph?

And maybe more empty spaces and/or repeated tokens?

Theorem (Wilson, 1974)

if G is a 2-connected graph, then puz(G) is connected, except if:

Theorem (Wilson, 1974)

- if G is a 2-connected graph, then puz(G) is connected, except if:
 - G is a cycle on $n \ge 4$ vertices (then puz(G) has (n - 2)! components)

Theorem (Wilson, 1974)

if G is a 2-connected graph, then puz(G) is connected, except if:

• G is a cycle on $n \ge 4$ vertices

(then puz(G) has (n-2)! components)

• *G* is bipartite different from a cycle

(then puz(G) has 2 components)

- if G is a 2-connected graph, then puz(G) is connected, except if:
 - G is a cycle on $n \ge 4$ vertices

(then puz(G) has (n-2)! components)

- *G* is bipartite different from a cycle
 - (then puz(G) has 2 components)
- G is the exceptional graph Θ_0 (puz(Θ_0) has 6 components)

Why does Wilson only consider **2-connected** graphs?

Why does Wilson only consider **2-connected** graphs?

since puz(G) is never connected if G has connectivity below 2:

what would happen if:

- we have fewer than n 1 tokens (i.e. more empty vertices)?
- and/or not all tokens are the same?

what would happen if:

- we have fewer than n 1 tokens (i.e. more empty vertices)?
- and/or not all tokens are the same?

so suppose we have a set (k_1, k_2, \ldots, k_p) of labelled tokens

- meaning: k_1 tokens with label 1, k_2 tokens with label 2, etc.
- tokens with the same label are indistinguishable
- we can assume that $k_1 \ge k_2 \ge \cdots \ge k_p$ and their sum is at most n-1

what would happen if:

- we have fewer than n 1 tokens (i.e. more empty vertices)?
- and/or not all tokens are the same?

so suppose we have a set (k_1, k_2, \ldots, k_p) of labelled tokens

- meaning: k_1 tokens with label 1, k_2 tokens with label 2, etc.
- tokens with the same label are indistinguishable
- we can assume that $k_1 \ge k_2 \ge \cdots \ge k_p$ and their sum is at most n-1
- the corresponding graph of all token configurations on G is denoted by $puz(G; k_1, \ldots, k_p)$

- G a graph on *n* vertices, $(k_1, k_2, ..., k_p)$ a token set, then $puz(G; k_1, ..., k_p)$ is connected, except if:
 - G is not connected

- G a graph on *n* vertices, $(k_1, k_2, ..., k_p)$ a token set, then puz(*G*; $k_1, ..., k_p$) is connected, except if:
 - G is not connected
 - *G* is a path and $p \ge 2$

- G a graph on *n* vertices, $(k_1, k_2, ..., k_p)$ a token set, then $puz(G; k_1, ..., k_p)$ is connected, except if:
 - G is not connected
 - *G* is a path and $p \ge 2$
 - G is a cycle, and $p \ge 3$, or p = 2 and $k_2 \ge 2$

- G a graph on *n* vertices, $(k_1, k_2, ..., k_p)$ a token set, then $puz(G; k_1, ..., k_p)$ is connected, except if:
 - G is not connected
 - *G* is a path and $p \ge 2$
 - G is a cycle, and $p \ge 3$, or p = 2 and $k_2 \ge 2$
 - G is a 2-connected, bipartite graph with token set $(1^{(n-1)})$

- G a graph on *n* vertices, $(k_1, k_2, ..., k_p)$ a token set, then $puz(G; k_1, ..., k_p)$ is connected, except if:
 - G is not connected
 - *G* is a path and $p \ge 2$
 - G is a cycle, and $p \ge 3$, or p = 2 and $k_2 \ge 2$
 - G is a 2-connected, bipartite graph with token set $(1^{(n-1)})$
 - G is the exceptional graph ⊕₀ with token set (2, 2, 2),
 (2, 2, 1, 1), (2, 1, 1, 1, 1) or (1, 1, 1, 1, 1, 1)

- *G* a graph on *n* vertices, $(k_1, k_2, ..., k_p)$ a token set, then $puz(G; k_1, ..., k_p)$ is connected, except if:
 - G is not connected
 - *G* is a path and $p \ge 2$
 - G is a cycle, and $p \ge 3$, or p = 2 and $k_2 \ge 2$
 - G is a 2-connected, bipartite graph with token set $(1^{(n-1)})$
 - G is the exceptional graph Θ_0 with some "bad" token sets
 - G has connectivity 1, $p \ge 2$ and there is a "separating path preventing tokens from moving between blocks"

"separating paths" in graphs of connectivity one:

Generalisations of the 15-Puzzle (Sliding Tokens on Graphs) - BIRS, Banff, 26 January 2017

"separating paths" in graphs of connectivity one:

The Structure of $T(\theta_0; (2, 1, 1, 1, 1))$

The following are the three groups of standard token configurations in the labelled token graph $T(\theta_0; (2, 1, 1, 1, 1))$.

FIGURE A.8: Part 1 of Group B_1 in $T(\theta_0; (2, 1, 1, 1, 1))$

FIGURE A.9: Part 2 of Group B_1 in $T(\theta_0; (2, 1, 1, 1, 1))$

FIGURE A.10: Part 1 of Group B_2 in $T(\theta_0; (2, 1, 1, 1, 1))$

FIGURE A.11: Part 2 of Group B_2 in $T(\theta_0; (2, 1, 1, 1, 1))$

FIGURE A.12: Part 1 of Group B_3 in $T(\theta_0; (2, 1, 1, 1, 1))$

FIGURE A.13: Part 2 of Group B_3 in $T(\theta_0; (2, 1, 1, 1, 1))$

we can also characterise:

- given a graph G, token set (k_1, \ldots, k_p) , and two token configurations on G,
- are the two configurations in the same component of puz(G; k₁,..., k_p)?

configuration α , let α_i be a token configuration obtained from α by moving some tokens (if necessary) to make all the vertices on P_i unoccupied.

Let G be a connected graph with connectivity 1, $n(G) - (k_1 + k_2 + \dots + k_p) = 1$, and B a block in G. Then B contains at least one cut-vertex of G. Let v_B be one of these cut-vertices. Given a token configuration α , let α_{v_B} be a token configuration obtained from α by moving some tokens (if necessary) to make v_B unoccupied.

We denote the multiset of all the tokens used in a token configuration α by $\tau(\alpha)$. For example, if α is any of the token configurations in Figure 2.4, then $\tau(\alpha) = \{1, 1, 2, 2, 3, 3\} = (2, 2, 2).$

Theorem 2.3

Let G be a connected graph with $n(G) \ge 3$, $k_1 \ge k_2 \ge \cdots \ge k_p$ positive integers for some integer $p \ge 2$, and $k_1 + k_2 + \cdots + k_p \le n(G) - 1$. Then two token configurations α and β are in the same component of $T(G; (k_1, k_2, \ldots, k_p))$ if and only if at least one of the following conditions holds:

- 1. $T(G; (k_1, k_2, \ldots, k_p))$ is connected;
- 2. G is a path, and the orders of tokens on G of α and β are the same;
- 3. G is a cycle, and the cyclic orders of tokens on G of α and β are the same;
- 4. G is the graph θ_0 , and
 - (a) (k₁, k₂,..., k_p) = (2, 2, 2) or (2, 2, 1, 1), and for any (1, 1)-standard token configurations α' and β' which can be reached from α and β, respectively, we have that α' and β' are in the same group from the following two groups:

Group a_1 : (1,1)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2, 2, s, t), where $s, t \in \{3, 4\}$. I.e., token configurations which have the following forms:

Group a_2 : (1,1)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2, s, 2, t), where $s, t \in \{3, 4\}$,

(b) (k₁, k₂,..., k_p) = (2, 1, 1, 1, 1), and for any (1, 1)-standard token configurations α' and β' which can be reached from α and β, respectively, we have α' and β' are in the same group from the following three groups:
Group b₁: (1,1)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2,3,4,5) or (2,5,4,3);

Group b_2 : (1,1)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2,4,3,5) or (2,5,3,4);

Group b_3 : (1,1)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2,3,5,4) or (2,4,5,3);

(c) (k₁, k₂,..., k_p) = (1, 1, 1, 1, 1, 1), and for any (1,6)-standard token configurations α' and β' which can be reached from α and β, respectively, we have α' and β' are in the same group from the following six groups:
Group c₁: (1,6)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2,3,4,5);

Group c_2 : (1,6)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2, 5, 4, 3);

Group c_2 : (1,6)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2, 4, 3, 5); **Group** c_4 : (1,6)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2, 5, 3, 4); **Group** c_5 : (1,6)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2, 3, 5, 4); **Group** c_6 : (1,6)-standard token configurations of which the cyclic order of tokens on the lower 5-cycle is (2, 4, 5, 3).

- 5. G is a 2-connected bipartite graph other than a cycle, there are n(G) 1different tokens, and one of the following holds:
 - (a) α and β have their unoccupied vertices at even distance in G, and αβ⁻¹
 is an even permutation;
 - (b) α and β have their unoccupied vertices at odd distance in G, and αβ⁻¹ is an odd permutation.
- 6. G is a connected graph with connectivity 1 other than a path, n(G)−(k₁+k₂+ ··· + k_p) = l ≥ 2, P₁, P₂, ..., P_m are all the separating paths of size l in G, and τ(α_i|_{G_{i,1}}) = τ(β_i|_{G_{i,1}}) and τ(α_i|_{G_{i,2}}) = τ(β_i|<sub>G_{i,2}) for all i = 1, 2, ..., m.
 </sub>
- G is a connected graph with connectivity 1 other than a path, n(G) − (k₁ + k₂ + · · · + k_p) = 1, for each block B in G, τ(α_{v_B}|_B) = τ(β_{v_B}|_B), and at least one of the following conditions holds:
 - (a) $T(B; \tau(\alpha_{v_B}|_B))$ is connected;
 - (b) B is a cycle, and the cyclic orders of tokens of $\alpha_{v_B}|_B$ and $\beta_{v_B}|_B$ are the same;
 - (c) B is the graph θ_0 , and $\alpha_{v_B}|_B$ and $\beta_{v_B}|_B$ satisfy 4(a), 4(b), or 4(c) above;
 - (d) B is a 2-connected bipartite graph other than a cycle, there are n(B)-1different tokens in $\alpha_{v_B}|_B$ and $\beta_{v_B}|_B$, and $\alpha_{v_B}|_B \cdot (\beta_{v_B}|_B)^{-1}$ is an even permutation.

The length of sliding token paths

SHORTEST-A-TO-B-TOKEN-MOVES

Input: a graph G, a token set (k_1, \ldots, k_p) , two token configurations A and B on G, and a positive integer N

Question: can we go from *A* to *B* in at most *N* steps?

Theorem (Goldreich, 1984-2011)

restricted to the case that there are n - 1 different tokens, SHORTEST-A-TO-B-TOKEN-MOVES is **NP-complete**

Theorem (Goldreich, 1984-2011)

restricted to the case that there are n - 1 different tokens, SHORTEST-A-TO-B-TOKEN-MOVES is NP-complete

Theorem (vdH & Trakultraipruk, 2013; probably others earlier)

restricted to the case that all tokens are the same,

SHORTEST-A-TO-B-TOKEN-MOVES is in P

Robot motion the proof of that last result uses ideas of the proof of (Papadimitriou, Raghavan, Sudan & Tamaki, 1994) Theorem SHORTEST-ROBOT-MOTION-WITH-ONE-ROBOT is **NP-complete**

Theorem (Papadimitriou, Raghavan, Sudan & Tamaki, 1994)

SHORTEST-ROBOT-MOTION-WITH-ONE-ROBOT is **NP-complete**

Robot Motion problems on graphs are sliding token problems,

- with some special tokens (the robots)
 - that have to end in specified positions
- all other tokens are just obstacles
 - and it is not important where those are at the end