Reconfiguring Vertex Colourings of 2-Trees

Mike Cavers and Karen Seyffarth University of Calgary

January 25, 2017

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The *k*-colouring graph

A proper *k*-vertex-colouring of a graph *H* is a function $f: V(H) \rightarrow \{1, 2, ..., k\}$ such that $f(x) \neq f(y)$ for all $xy \in E(H)$. Henceforth we call these *k*-colourings, since we are concerned only with proper *k*-vertex-colourings.

The *k*-colouring graph

A proper *k*-vertex-colouring of a graph *H* is a function $f: V(H) \rightarrow \{1, 2, ..., k\}$ such that $f(x) \neq f(y)$ for all $xy \in E(H)$. Henceforth we call these *k*-colourings, since we are concerned only with proper *k*-vertex-colourings.

The *k*-colouring graph of a graph H, denoted $G_k(H)$, has vertices corresponding to the *k*-colourings of H, and edges corresponding to *k*-colourings of H that differ on exactly one vertex of H.

The *k*-colouring graph

A proper *k*-vertex-colouring of a graph *H* is a function $f: V(H) \rightarrow \{1, 2, ..., k\}$ such that $f(x) \neq f(y)$ for all $xy \in E(H)$. Henceforth we call these *k*-colourings, since we are concerned only with proper *k*-vertex-colourings.

The *k*-colouring graph of a graph *H*, denoted $G_k(H)$, has vertices corresponding to the *k*-colourings of *H*, and edges corresponding to *k*-colourings of *H* that differ on exactly one vertex of *H*.

Cereceda, van den Heuvel, and Johnson (2008) prove that $G_k(H)$ is connected for all $k \ge \operatorname{col}(H) + 1$ (where $\operatorname{col}(H)$ is the colouring number of H, defined as $\operatorname{col}(H) = \max\{\delta(G) \mid G \subseteq H\} + 1$).

Choo and MacGillivray (2011) prove that for any graph H there is a least integer $k_0(H)$ such that $G_k(H)$ has a Hamilton cycle for all $k \ge k_0(H)$. They call $k_0(H)$ the Gray code number of H, and prove that $k_0(H) \le \operatorname{col}(H) + 2$.

Choo and MacGillivray (2011) prove that for any graph H there is a least integer $k_0(H)$ such that $G_k(H)$ has a Hamilton cycle for all $k \ge k_0(H)$. They call $k_0(H)$ the Gray code number of H, and prove that $k_0(H) \le \operatorname{col}(H) + 2$. They then prove that

• Complete Graphs. $k_0(K_1) = 3 \ (= \operatorname{col}(K_1) + 2)$ and $k_0(K_n) = n + 1 \ (= \operatorname{col}(K_n) + 1)$ for all $n \ge 2$.

Choo and MacGillivray (2011) prove that for any graph H there is a least integer $k_0(H)$ such that $G_k(H)$ has a Hamilton cycle for all $k \ge k_0(H)$. They call $k_0(H)$ the Gray code number of H, and prove that $k_0(H) \le \operatorname{col}(H) + 2$. They then prove that

- Complete Graphs. $k_0(K_1) = 3 \ (= \operatorname{col}(K_1) + 2)$ and $k_0(K_n) = n + 1 \ (= \operatorname{col}(K_n) + 1)$ for all $n \ge 2$.
- Trees. k₀(T) = 4 (= col(T) + 2) unless T is a star with an odd number of vertices greater than one, in which case k₀(T) = 3 (= col(T) + 1).

Choo and MacGillivray (2011) prove that for any graph H there is a least integer $k_0(H)$ such that $G_k(H)$ has a Hamilton cycle for all $k \ge k_0(H)$. They call $k_0(H)$ the Gray code number of H, and prove that $k_0(H) \le \operatorname{col}(H) + 2$. They then prove that

- Complete Graphs. $k_0(K_1) = 3 \ (= \operatorname{col}(K_1) + 2)$ and $k_0(K_n) = n + 1 \ (= \operatorname{col}(K_n) + 1)$ for all $n \ge 2$.
- Trees. k₀(T) = 4 (= col(T) + 2) unless T is a star with an odd number of vertices greater than one, in which case k₀(T) = 3 (= col(T) + 1).

(日) (同) (三) (三) (三) (○) (○)

• Cycles. $k_0(C_n) = 4 \ (= \operatorname{col}(C_n) + 1)$ for all $n \ge 3$.

Choo and MacGillivray (2011) prove that for any graph H there is a least integer $k_0(H)$ such that $G_k(H)$ has a Hamilton cycle for all $k \ge k_0(H)$. They call $k_0(H)$ the Gray code number of H, and prove that $k_0(H) \le \operatorname{col}(H) + 2$. They then prove that

- Complete Graphs. $k_0(K_1) = 3 \ (= \operatorname{col}(K_1) + 2)$ and $k_0(K_n) = n + 1 \ (= \operatorname{col}(K_n) + 1)$ for all $n \ge 2$.
- Trees. k₀(T) = 4 (= col(T) + 2) unless T is a star with an odd number of vertices greater than one, in which case k₀(T) = 3 (= col(T) + 1).
- Cycles. $k_0(C_n) = 4 \ (= \operatorname{col}(C_n) + 1)$ for all $n \ge 3$.

Celaya, Choo, MacGillivray and Seyffarth (2016) prove that

Complete Bipartite Graphs. k₀(K_{ℓ,r}) = 3 when ℓ and r are both odd, and k₀(K_{ℓ,r}) = 4 otherwise.

Gray code numbers for 2-trees

Theorem (Cavers, KS)

If *H* is a 2-tree, then $k_0(H) = 4$ unless $H \cong T \lor \{u\}$ for some tree *T* and vertex *u*, where *T* is a star with an odd number of vertices greater than one, or the bipartition of V(T) has two even parts; in these cases, $k_0(H) = 5$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• Proof by induction; base case K_3 .

- Proof by induction; base case K_3 .
- Let H be a 2-tree with at least four vertices. Choose a leaf *u* ∈ V(H) (vertex with degree two), and let H' = H − u.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

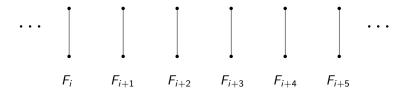
- Proof by induction; base case K_3 .
- Let H be a 2-tree with at least four vertices. Choose a leaf *u* ∈ V(H) (vertex with degree two), and let H' = H − u.

• Apply the induction hypothesis to H', and let $f_0, f_1, \ldots, f_{N-1}, f_0$ be a Hamilton cycle in $G_4(H')$.

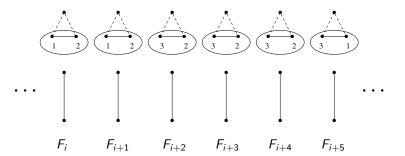
- Proof by induction; base case K₃.
- Let H be a 2-tree with at least four vertices. Choose a leaf *u* ∈ V(H) (vertex with degree two), and let H' = H − u.
- Apply the induction hypothesis to H', and let $f_0, f_1, \ldots, f_{N-1}, f_0$ be a Hamilton cycle in $G_4(H')$.
- For j = 0, 1, ..., N 1, let $F_j \subseteq V(G_4(H))$ be the set of 4-colouring of H that agree with f_j on V(H'); then $\{F_0, F_1, ..., F_{N-1}\}$ is a partition of the vertices of $G_4(H)$.

- Proof by induction; base case K₃.
- Let H be a 2-tree with at least four vertices. Choose a leaf *u* ∈ V(H) (vertex with degree two), and let H' = H − u.
- Apply the induction hypothesis to H', and let $f_0, f_1, \ldots, f_{N-1}, f_0$ be a Hamilton cycle in $G_4(H')$.
- For j = 0, 1, ..., N 1, let $F_j \subseteq V(G_4(H))$ be the set of 4-colouring of H that agree with f_j on V(H'); then $\{F_0, F_1, ..., F_{N-1}\}$ is a partition of the vertices of $G_4(H)$.

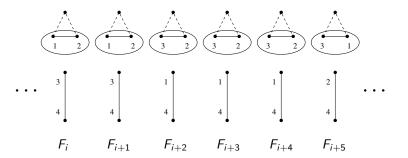
• $H[F_j] \cong K_2$ for each $j, 0 \le j \le N-1$.



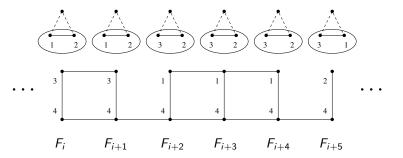
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで



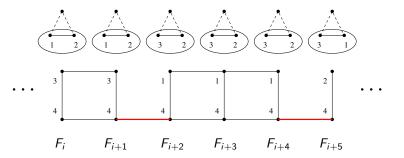
▲ロ → ▲圖 → ▲ 画 → ▲ 画 → の Q ()・



▲ロト ▲圖ト ▲ヨト ▲ヨト 三回 - のへで

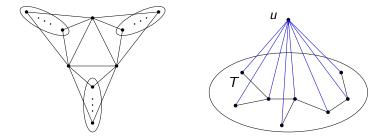


◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

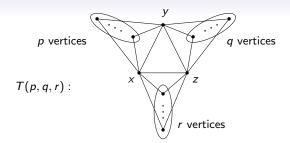


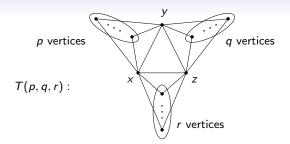
◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

2-trees of diameter two

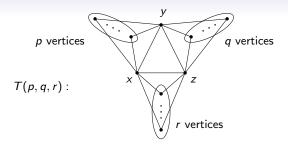


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

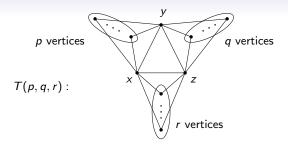




• Start with the 4-colouring graph of K_3 , and let $V(G_4(K_3)) = \{f_0, f_1, \ldots, f_{N-1}\}$. Let $f_0f_1f_2 \ldots f_{N-1}$ be a hamilton path in $G_4(K_3)$.

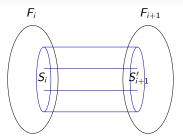


- Start with the 4-colouring graph of K_3 , and let $V(G_4(K_3)) = \{f_0, f_1, \ldots, f_{N-1}\}$. Let $f_0f_1f_2 \ldots f_{N-1}$ be a hamilton path in $G_4(K_3)$.
- Let F_i denote the set of 4-colourings of T(p, q, r) that agree with f_i on {x, y, z}. Then {F₀, F₁,..., F_{N-1}} is a partition of the vertex set of G = G₄(T(p, q, r)).



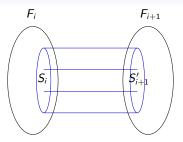
- Start with the 4-colouring graph of K_3 , and let $V(G_4(K_3)) = \{f_0, f_1, \ldots, f_{N-1}\}$. Let $f_0f_1f_2 \ldots f_{N-1}$ be a hamilton path in $G_4(K_3)$.
- Let F_i denote the set of 4-colourings of T(p, q, r) that agree with f_i on {x, y, z}. Then {F₀, F₁,..., F_{N-1}} is a partition of the vertex set of G = G₄(T(p, q, r)).

• The subgraph induced by F_i is isomorphic to Q_{p+q+r} .

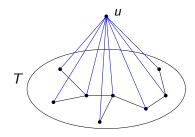


• The subgraph induced by F_i is isomorphic to Q_{p+q+r} .

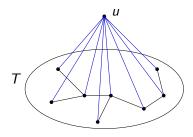
◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣



- The subgraph induced by F_i is isomorphic to Q_{p+q+r} .
- Let S_i ⊆ F_i and S'_{i+1} ⊆ F_{i+1} denote the vertices incident to the edges of [F_i, F_{i+1}]. Then G[S_i] and G[S'_{i+1}] are both isomorphic to one of Q_p, Q_q or Q_r, and G[S_i ∪ S_{i+1}] is isomorphic to one of Q_{p+1}, Q_{q+1} or Q_{r+1}, respectively.



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ



Lemma

Let T be a tree on at least three vertices. Then $G_4(T \vee \{u\})$ has a Hamilton cycle unless T is a star with at least three vertices, or the bipartition of V(T) has two even parts.

The Lemma with the really long horrible proof!

Lemma

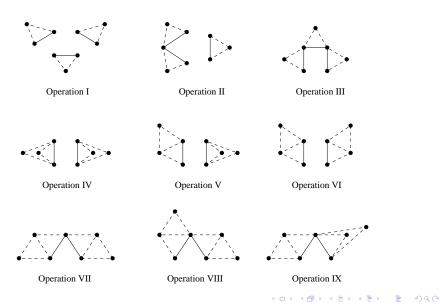
Let T be a tree with bipartition (A, B) where $|A| = \ell$ and |B| = r, and let $G_3(T)$ be the 3-colouring graph of T with colours $C = \{1, 2, 3\}$. Define c_{ij} to be the vertex of $G_3(T)$ with $c_{ij}(a) = i$ for all $a \in A$ and $c_{ij}(b) = j$ for all $b \in B$.

- If ℓ, r > 0 are both even, then G₃(T) has no spanning subgraph consisting only of paths whose ends are in {c₁₂, c₁₃, c₂₁, c₂₃, c₃₁, c₃₂}.
- If $\ell > 1$ is odd and r > 0 is even, then $G_3(T)$ has a hamilton path from c_{12} to c_{13} .
- If ℓ > 1 and r > 1 are both odd, then G₃(T) has a hamilton path from c₁₂ to c₂₃.

Constructing 2-trees of diameter at least three

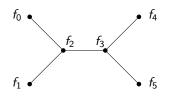
★□> <圖> < E> < E> E のQ@

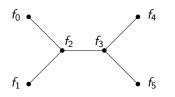
Constructing 2-trees of diameter at least three

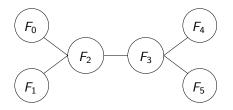


Main idea of the proof

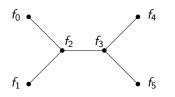
- Let *H* be a 2-tree, and let *H'* be a 2-tree obtained from *H* by applying one of the operations I through IX.
- Let $V(G_4(H)) = \{f_0, f_1, \ldots, f_{N-1}\}$ and let $F_j \subseteq V(G_4(H'))$ be the set of 4-colourings of H' that agree with f_j of the vertices of H.
- Let T be a spanning tree of maximum degree at most four of $G_4[H]$ (such a spanning tree exists).

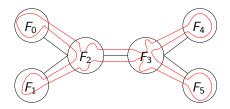






◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?





・ロト ・ 日 ・ ・ 田 ・ ・ 日 ・ うへぐ

References

- M. Cavers and K. Seyffarth, Reconfiguring Vertex Colourings of 2-trees, preprint.
- L. Cereceda, J. van den Heuvel, and M. Johnson, Connectedness of the graph of vertex colourings, Discrete Math. 308 (2008), 913–919.
- M. Celaya, K. Choo and G. MacGillivray and K. Seyffarth, *Reconfiguring k-colourings of Complete Bipartite Graphs*, Kyungpook Math. J. **56** (2016), 647–655.
- K. Choo and G. MacGillivray, *Gray code numbers for graphs*, Ars Math. Contemp. **4** (2011), 125–139.

• Gray code numbers of 3-trees?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Gray code numbers of 3-trees?
- Gray code numbers of *k*-trees?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Gray code numbers of 3-trees?
- Gray code numbers of *k*-trees?
- Gray code numbers of chordal graphs?

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ