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The k-colouring graph

A proper k-vertex-colouring of a graph H is a function
f : V (H)→ {1, 2, . . . , k} such that f (x) 6= f (y) for all xy ∈ E (H).
Henceforth we call these k-colourings, since we are concerned only
with proper k-vertex-colourings.

The k-colouring graph of a graph H, denoted Gk(H), has vertices
corresponding to the k-colourings of H, and edges corresponding
to k-colourings of H that differ on exactly one vertex of H.

Cereceda, van den Heuvel, and Johnson (2008) prove that Gk(H)
is connected for all k ≥ col(H) + 1 (where col(H) is the colouring
number of H, defined as col(H) = max{δ(G ) | G ⊆ H}+ 1).
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Hamiltonicity of the k-colouring graph

Choo and MacGillivray (2011) prove that for any graph H there is
a least integer k0(H) such that Gk(H) has a Hamilton cycle for all
k ≥ k0(H). They call k0(H) the Gray code number of H, and
prove that k0(H) ≤ col(H) + 2.

They then prove that

• Complete Graphs. k0(K1) = 3 (= col(K1) + 2) and
k0(Kn) = n + 1 (= col(Kn) + 1) for all n ≥ 2.

• Trees. k0(T ) = 4 (= col(T ) + 2) unless T is a star with an
odd number of vertices greater than one, in which case
k0(T ) = 3 (= col(T ) + 1).

• Cycles. k0(Cn) = 4 (= col(Cn) + 1) for all n ≥ 3.

Celaya, Choo, MacGillivray and Seyffarth (2016) prove that

• Complete Bipartite Graphs. k0(K`,r ) = 3 when ` and r are
both odd, and k0(K`,r ) = 4 otherwise.
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Gray code numbers for 2-trees

Theorem (Cavers, KS)

If H is a 2-tree, then k0(H) = 4 unless H ∼= T ∨ {u} for some tree
T and vertex u, where T is a star with an odd number of vertices
greater than one, or the bipartition of V (T ) has two even parts; in
these cases, k0(H) = 5.



Naive Approach

• Proof by induction; base case K3.

• Let H be a 2-tree with at least four vertices. Choose a leaf
u ∈ V (H) (vertex with degree two), and let H ′ = H − u.

• Apply the induction hypothesis to H ′, and let
f0, f1, . . . , fN−1, f0 be a Hamilton cycle in G4(H ′).

• For j = 0, 1, . . . ,N − 1, let Fj ⊆ V (G4(H)) be the set of
4-colouring of H that agree with fj on V (H ′); then
{F0,F1, . . . ,FN−1} is a partition of the vertices of G4(H).

• H[Fj ] ∼= K2 for each j , 0 ≤ j ≤ N − 1.
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2-trees of diameter two

T

u



x

y

z

p vertices q vertices

r vertices

T (p, q, r) :

• Start with the 4-colouring graph of K3, and let
V (G4(K3)) = {f0, f1, . . . , fN−1}. Let f0f1f2 . . . fN−1 be a
hamilton path in G4(K3).

• Let Fi denote the set of 4-colourings of T (p, q, r) that agree
with fi on {x , y , z}. Then {F0,F1, . . . ,FN−1} is a partition of
the vertex set of G = G4(T (p, q, r)).

• The subgraph induced by Fi is isomorphic to Qp+q+r .
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Si S ′
i+1

Fi Fi+1

• The subgraph induced by Fi is isomorphic to Qp+q+r .

• Let Si ⊆ Fi and S ′i+1 ⊆ Fi+1 denote the vertices incident to
the edges of [Fi ,Fi+1]. Then G [Si ] and G [S ′i+1] are both
isomorphic to one of Qp, Qq or Qr , and G [Si ∪ Si+1] is
isomorphic to one of Qp+1, Qq+1 or Qr+1, respectively.
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Lemma

Let T be a tree on at least three vertices. Then G4(T ∨ {u}) has a
Hamilton cycle unless T is a star with at least three vertices, or
the bipartition of V (T ) has two even parts.



u

T

Lemma

Let T be a tree on at least three vertices. Then G4(T ∨ {u}) has a
Hamilton cycle unless T is a star with at least three vertices, or
the bipartition of V (T ) has two even parts.



The Lemma with the really long horrible proof!

Lemma

Let T be a tree with bipartition (A,B) where |A| = ` and |B| = r ,
and let G3(T ) be the 3-colouring graph of T with colours
C = {1, 2, 3}. Define cij to be the vertex of G3(T ) with cij(a) = i
for all a ∈ A and cij(b) = j for all b ∈ B.

• If `, r > 0 are both even, then G3(T ) has no spanning
subgraph consisting only of paths whose ends are in
{c12, c13, c21, c23, c31, c32}.

• If ` > 1 is odd and r > 0 is even, then G3(T ) has a hamilton
path from c12 to c13.

• If ` > 1 and r > 1 are both odd, then G3(T ) has a hamilton
path from c12 to c23.
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Main idea of the proof

• Let H be a 2-tree, and let H ′ be a 2-tree obtained from H by
applying one of the operations I through IX.

• Let V (G4(H)) = {f0, f1, . . . , fN−1} and let Fj ⊆ V (G4(H ′)) be
the set of 4-colourings of H ′ that agree with fj of the vertices
of H.

• Let T be a spanning tree of maximum degree at most four of
G4[H] (such a spanning tree exists).
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Thank you!


