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Kempe Chains

For a k -colouring of a graph G, an (a,b)-component is a
maximal connected subgraph whose vertices are coloured a
or b.
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Kempe Changes

To make a Kempe change is to exchange the colours a and b
on the vertices of an (a,b)-component.
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The result is another proper colouring.

A Kempe change involving a single vertex is called trivial.
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Kempe Classes

A pair of k -colourings are Kempe equivalent if each can be
obtained from the other by a sequence of Kempe changes.

A set of Kempe equivalent k -colourings is called a Kempe class

A graph is d-degenerate if every induced subgraph has a
vertex of degree at most d .

Theorem (Las Vergnas, Meyniel 1981)

Let k be greater than d. Then the set of k-colourings of a

d-degenerate graph form a Kempe class.
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Proof

Suppose instead that G + v is the smallest d-degenerate graph
with a pair of non-Kempe-equivalent k -colourings α and β,
where v is a vertex of degree at most d .

Try to copy the sequence of Kempe changes that transform α
into β in G.
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If needed, make a final trivial change to v .
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Regular Graphs

Bojan Mohar conjectured in 2007 that, for k ≥ 3, the
k -colourings of a k -regular non-complete graph form a Kempe
class.

In 2013, Jan van den Heuvel demonstrated that the triangular
prism is a counterexample.
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Observe that no Kempe change alters the colour partition, but
that these differ.
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Regular Graphs

Theorem (Bonamy, Bousquet, Feghali, J, Paulusma 2017)

Let k ≥ 3. If G is a connected k-regular graph that is neither

complete nor the triangular prism, then the k-colourings of G

form a Kempe class.

A useful result: the clique cutset lemma.

Lemma (Las Vergnas, Meyniel 1981)

Let k be a positive integer. Let G1 and G2 be two graphs such

that G1 ∩G2 is complete. If the k-colourings of each of G1 and

G2 form a Kempe class, then the k-colourings of G1 ∪G2 form

a Kempe class.
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k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).

Otherwise the cutset is a pair of non-adjacent vertices.
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We can assume that x has more than one neighbour in G1
and y has more than one neighbour in G2.
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form a Kempe class (add the edge xy and use the clique cutset
lemma again)
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If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.
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The set of k -colourings in which x and y have distinct colours
form a Kempe class (add the edge xy and use the clique cutset
lemma again)
Just to need that when x and y are coloured alike we can apply
Kempe changes until they differ.



k -Regular Graphs that are 3-connected

Lemma
Let k ≥ 4 be a positive integer.
Let G be a 3-connected non-complete k-regular graph.
Let u and v be two vertices of G that are not adjacent.
If there is a pair w1 and w2 of non-adjacent neighbours of v
neither of which is adjacent to u, then the k-colourings of G are
a Kempe class.

We say that u and v are a good pair.

The k -colourings of 3-connected non-complete k -regular
graphs of diameter at least 3 form a Kempe class as a good
pair can always be found.
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Matching Lemma

Lemma
Let k ≥ 3 be a positive integer.
Let G be a 3-connected non-complete k-regular graph.
Let u and v be two vertices with a common neighbour of G that
are not adjacent.
If a pair of k-colourings of G can each be changed by a
sequence of Kempe changes into a k-colouring where u and v
are coloured alike, then the two k-colourings are Kempe
equivalent.



k -Regular 3-connected Graphs of diameter 2
N(v) is the neighbourhood of a vertex v .
The second neighbourhood of v is the set of vertices at
distance 2.
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find a good pair.
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N(v) is the neighbourhood of a vertex v .
The second neighbourhood of v is the set of vertices at
distance 2.
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If a vertex in N(v) neighbours one clique but not another, then
we can find a good pair.
So all vertices in the second neighbourhood have the same
neighbours in N(v).
The Matching Lemma is used if there is more than one clique.



k -Regular 3-connected Graphs of diameter 2 where
the second neighbourhood of every vertex is a clique
on at least three vertices
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But then x has exactly one neighbour with each other colour.
And so x and z form a Kempe chain.
Similarly y and z form a Kempe chain under β.
So we can apply the Matching Lemma using v and z.

12 / 15



Open Problems

Do the 5-colourings of a toroidal triangular lattice form a Kempe
class? (Would prove the validity of WSK algorithm for
simulating the antiferromagnetic Potts model.)
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Open Problems

What is the “distance” between k -colourings? (How many
Kempe changes are needed.)

Conjecture

Any pair of k-colourings of a graph of maximum degree k on n

vertices are joined by a sequence of O(n2) Kempe changes.
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Thank You
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Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.

Suppose instead that G is the smallest planar graph with no
5-colouring. Let v be a vertex with degree at most 5. Let α be a
5-colouring of G − v .

If in α some colour is not used on a neighbour of v , then α
extends to a 5-colouring of G.
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5-colouring of G − v .

If in α some colour is not used on a neighbour of v , then α
extends to a 5-colouring of G.

4

1 5

2 v

3

1

3

3

1

2

Try to remove colour 1
from the neighbours of
v with a Kempe change
of a (1,3)-component.
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Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.

Suppose instead that G is the smallest planar graph with no
5-colouring. Let v be a vertex with degree at most 5. Let α be a
5-colouring of G − v .

If in α some colour is not used on a neighbour of v , then α
extends to a 5-colouring of G.
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Try to remove colour 1
from the neighbours of
v with a Kempe change
of a (1,3)-component.
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Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.

Suppose instead that G is the smallest planar graph with no
5-colouring. Let v be a vertex with degree at most 5. Let α be a
5-colouring of G − v .

If in α some colour is not used on a neighbour of v , then α
extends to a 5-colouring of G.
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1 5

2 v

3

1

3

3

1

2

Else remove colour 2
from the neighbours of
v with a Kempe change
of a (2,4)-component.

16 / 15



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).

Otherwise the cutset is a pair of non-adjacent vertices.
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y



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

1

1

3 2

32

G2G1

x

y



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.
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y

We can assume that x has more than one neighbour in G1
and y has more than one neighbour in G2.



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

1

1

3 2

32

G2G1

x

y

The set of k -colourings in which x and y have distinct colours
form a Kempe class (add the edge xy and use the clique cutset
lemma again)



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

1

1

3 2

32

G2G1

x

y

The set of k -colourings in which x and y have distinct colours
form a Kempe class (add the edge xy and use the clique cutset
lemma again)
Just to need that when x and y are coloured alike we can apply
Kempe changes until they differ.



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.
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k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

1

1

3 2

32

G2G1

x

y

Suppose x has two neighbours in each of G1 and G2.



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

1

1

3 2

32

G2G1

x

y

Suppose x has two neighbours in each of G1 and G2.
Then x has no neighbour in G1 coloured 3.
And x has no neighbour in G2 coloured 2.



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

1

1

3 2

32

G2G1

x

y

Suppose x has two neighbours in each of G1 and G2.
Then x has no neighbour in G1 coloured 3.
And x has no neighbour in G2 coloured 2.
Kempe change (2,3)-components in G1 so that x has no
neighbour coloured 2.



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.
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So x has one neighbour, coloured 2, in G2.



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.
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So x has one neighbour, coloured 2, in G2.
And y has one neighbour in G1. If it is not coloured 2 this can
be achieved by a single Kempe change.



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.
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y

So x has one neighbour, coloured 2, in G2.
And y has one neighbour in G1. If it is not coloured 2 this can
be achieved by a single Kempe change.
Now the (1,3)-component containing x does not contain y .



k -Regular Graphs that are not 3-connected
If G is not 3-connected it has a cutset C of size 1 or 2. If this is
a clique, then apply the clique cutset lemma (and then notice
that the union of C and each connected component of G − C is
(k − 1)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.
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3 2

3

2
G2G1

x

y

So x has one neighbour, coloured 2, in G2.
And y has one neighbour in G1. If it is not coloured 2 this can
be achieved by a single Kempe change.
Now the (1,3)-component containing x does not contain y .


