Combinatorial Reconfiguration, BIRS, 25 January 2017

Kempe equivalence in regular graphs

Matthew Johnson
Durham University

Kempe Chains

For a k-colouring of a graph G, an (a, b)-component is a maximal connected subgraph whose vertices are coloured a or b.

Kempe Chains

For a k-colouring of a graph G, an (a, b)-component is a maximal connected subgraph whose vertices are coloured a or b.

A (1,2)-component

Kempe Chains

For a k-colouring of a graph G, an (a, b)-component is a maximal connected subgraph whose vertices are coloured a or b.

A (1,3)-component

Kempe Chains

For a k-colouring of a graph G, an (a, b)-component is a maximal connected subgraph whose vertices are coloured a or b.

A (1,3)-component

These components are called Kempe chains.

Kempe Changes

To make a Kempe change is to exchange the colours a and b on the vertices of an (a, b)-component.

Kempe Changes

To make a Kempe change is to exchange the colours a and b on the vertices of an (a, b)-component.

Kempe Changes

To make a Kempe change is to exchange the colours a and b on the vertices of an (a, b)-component.

Kempe Changes

To make a Kempe change is to exchange the colours a and b on the vertices of an (a, b)-component.

The result is another proper colouring.

Kempe Changes

To make a Kempe change is to exchange the colours a and b on the vertices of an (a, b)-component.

The result is another proper colouring.
A Kempe change involving a single vertex is called trivial.

Kempe Changes

To make a Kempe change is to exchange the colours a and b on the vertices of an (a, b)-component.

The result is another proper colouring.
A Kempe change involving a single vertex is called trivial.

Kempe Classes

A pair of k-colourings are Kempe equivalent if each can be obtained from the other by a sequence of Kempe changes.

A set of Kempe equivalent k-colourings is called a Kempe class

Kempe Classes

A pair of k-colourings are Kempe equivalent if each can be obtained from the other by a sequence of Kempe changes.

A set of Kempe equivalent k-colourings is called a Kempe class

A graph is d-degenerate if every induced subgraph has a vertex of degree at most d.

Kempe Classes

A pair of k-colourings are Kempe equivalent if each can be obtained from the other by a sequence of Kempe changes.

A set of Kempe equivalent k-colourings is called a Kempe class

A graph is d-degenerate if every induced subgraph has a vertex of degree at most d.

Theorem (Las Vergnas, Meyniel 1981)

Let k be greater than d. Then the set of k-colourings of a d-degenerate graph form a Kempe class.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.
Try to copy the sequence of Kempe changes that transform α into β in G.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.
Try to copy the sequence of Kempe changes that transform α into β in G.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.
Try to copy the sequence of Kempe changes that transform α into β in G.

Kempe chain might not
use the colour of v.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.
Try to copy the sequence of Kempe changes that transform α into β in G.

Kempe chain might use the colour of v and a colour that appears on one of its neighbours.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.
Try to copy the sequence of Kempe changes that transform α into β in G.

Kempe chain might use the colour of v and a colour that appears on one of its neighbours.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.
Try to copy the sequence of Kempe changes that transform α into β in G.

Kempe chain might use the colour of v and a colour that appears on more than one neighbour.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.
Try to copy the sequence of Kempe changes that transform α into β in G.

Kempe chain might use the colour of v and a colour that appears on more than one neighbour.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.
Try to copy the sequence of Kempe changes that transform α into β in G.

Kempe chain might use the colour of v and a colour that appears on more than one neighbour.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.
Try to copy the sequence of Kempe changes that transform α into β in G.

Kempe chain might use the colour of v and a colour that appears on more than one neighbour.
Then first change the colour of v.

Proof

Suppose instead that $G+v$ is the smallest d-degenerate graph with a pair of non-Kempe-equivalent k-colourings α and β, where v is a vertex of degree at most d.
Try to copy the sequence of Kempe changes that transform α into β in G.

Kempe chain might use the colour of v and a colour that appears on more than one neighbour.
Then first change the colour of v.

If needed, make a final trivial change to v.

Regular Graphs

Bojan Mohar conjectured in 2007 that, for $k \geq 3$, the k-colourings of a k-regular non-complete graph form a Kempe class.

Regular Graphs

Bojan Mohar conjectured in 2007 that, for $k \geq 3$, the k-colourings of a k-regular non-complete graph form a Kempe class.

In 2013, Jan van den Heuvel demonstrated that the triangular prism is a counterexample.

Regular Graphs

Bojan Mohar conjectured in 2007 that, for $k \geq 3$, the k-colourings of a k-regular non-complete graph form a Kempe class.

In 2013, Jan van den Heuvel demonstrated that the triangular prism is a counterexample.

Observe that no Kempe change alters the colour partition, but that these differ.

Regular Graphs

Theorem (Bonamy, Bousquet, Feghali, J, Paulusma 2017)

Let $k \geq 3$. If G is a connected k-regular graph that is neither complete nor the triangular prism, then the k-colourings of G form a Kempe class.

Regular Graphs

Theorem (Bonamy, Bousquet, Feghali, J, Paulusma 2017)

Let $k \geq 3$. If G is a connected k-regular graph that is neither complete nor the triangular prism, then the k-colourings of G form a Kempe class.

A useful result: the clique cutset lemma.
Lemma (Las Vergnas, Meyniel 1981)
Let k be a positive integer. Let G_{1} and G_{2} be two graphs such that $G_{1} \cap G_{2}$ is complete. If the k-colourings of each of G_{1} and G_{2} form a Kempe class, then the k-colourings of $G_{1} \cup G_{2}$ form a Kempe class.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

We can assume that x has more than one neighbour in G_{1} and y has more than one neighbour in G_{2}.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

The set of k-colourings in which x and y have distinct colours form a Kempe class (add the edge $x y$ and use the clique cutset lemma again)

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

The set of k-colourings in which x and y have distinct colours form a Kempe class (add the edge xy and use the clique cutset lemma again)
Just to need that when x and y are coloured alike we can apply Kempe changes until they differ.

k-Regular Graphs that are 3-connected

Lemma

Let $k \geq 4$ be a positive integer.
Let G be a 3-connected non-complete k-regular graph.
Let u and v be two vertices of G that are not adjacent. If there is a pair w_{1} and w_{2} of non-adjacent neighbours of v neither of which is adjacent to u, then the k-colourings of G are a Kempe class.

k-Regular Graphs that are 3-connected

> Lemma
> Let $k \geq 4$ be a positive integer.
> Let G be a 3-connected non-complete k-regular graph.
> Let u and v be two vertices of G that are not adjacent. If there is a pair w_{1} and w_{2} of non-adjacent neighbours of v neither of which is adjacent to u, then the k-colourings of G are a Kempe class.

We say that u and v are a good pair.

k-Regular Graphs that are 3-connected

> Lemma
> Let $k \geq 4$ be a positive integer.
> Let G be a 3-connected non-complete k-regular graph.
> Let u and v be two vertices of G that are not adjacent. If there is a pair w_{1} and w_{2} of non-adjacent neighbours of v neither of which is adjacent to u, then the k-colourings of G are a Kempe class.

We say that u and v are a good pair.
The k-colourings of 3-connected non-complete k-regular graphs of diameter at least 3 form a Kempe class as a good pair can always be found.

Matching Lemma

Lemma

Let $k \geq 3$ be a positive integer.
Let G be a 3-connected non-complete k-regular graph.
Let u and v be two vertices with a common neighbour of G that are not adjacent.
If a pair of k-colourings of G can each be changed by a sequence of Kempe changes into a k-colouring where u and v are coloured alike, then the two k-colourings are Kempe equivalent.

k-Regular 3-connected Graphs of diameter 2

$N(v)$ is the neighbourhood of a vertex v.
The second neighbourhood of v is the set of vertices at distance 2.

k-Regular 3-connected Graphs of diameter 2

$N(v)$ is the neighbourhood of a vertex v.
The second neighbourhood of v is the set of vertices at distance 2.

k-Regular 3-connected Graphs of diameter 2

$N(v)$ is the neighbourhood of a vertex v.
The second neighbourhood of v is the set of vertices at distance 2.

If the second neighbourhood contains an induced path, we can find a good pair.

k-Regular 3-connected Graphs of diameter 2

$N(v)$ is the neighbourhood of a vertex v.
The second neighbourhood of v is the set of vertices at distance 2.

If the second neighbourhood contains an induced path, we can find a good pair.
So the second neighbourhood contains disjoint cliques.

k-Regular 3-connected Graphs of diameter 2

$N(v)$ is the neighbourhood of a vertex v.
The second neighbourhood of v is the set of vertices at distance 2.

If a vertex in $N(v)$ neighbours one clique but not another, then we can find a good pair.

k-Regular 3-connected Graphs of diameter 2

$N(v)$ is the neighbourhood of a vertex v.
The second neighbourhood of v is the set of vertices at distance 2.

If a vertex in $N(v)$ neighbours one clique but not another, then we can find a good pair.
So all vertices in the second neighbourhood have the same neighbours in $N(v)$.

k-Regular 3-connected Graphs of diameter 2

$N(v)$ is the neighbourhood of a vertex v.
The second neighbourhood of v is the set of vertices at distance 2.

If a vertex in $N(v)$ neighbours one clique but not another, then we can find a good pair.
So all vertices in the second neighbourhood have the same neighbours in $N(v)$.
The Matching Lemma is used if there is more than one clique.
k-Regular 3-connected Graphs of diameter 2 where the second neighbourhood of every vertex is a clique on at least three vertices
k-Regular 3-connected Graphs of diameter 2 where the second neighbourhood of every vertex is a clique on at least three vertices

k-Regular 3-connected Graphs of diameter 2 where

 the second neighbourhood of every vertex is a clique on at least three vertices

If the colour 1 appears on the same vertex on the clique (or not at all), use the Matching Lemma
k-Regular 3-connected Graphs of diameter 2 where the second neighbourhood of every vertex is a clique on at least three vertices

So the colour 1 appears on distinct vertices.

k-Regular 3-connected Graphs of diameter 2 where

 the second neighbourhood of every vertex is a clique on at least three vertices

So the colour 1 appears on distinct vertices.
Match the colours of y with a single Kempe change.

k-Regular 3-connected Graphs of diameter 2 where

 the second neighbourhood of every vertex is a clique on at least three vertices

So the colour 1 appears on distinct vertices.
Match the colours of y with a single Kempe change.
Unless the Kempe chain includes v.

k-Regular 3-connected Graphs of diameter 2 where

 the second neighbourhood of every vertex is a clique on at least three vertices

But then x has exactly one neighbour with each other colour. And so x and z form a Kempe chain.

k-Regular 3-connected Graphs of diameter 2 where

 the second neighbourhood of every vertex is a clique on at least three vertices

But then x has exactly one neighbour with each other colour. And so x and z form a Kempe chain.
Similarly y and z form a Kempe chain under β.

k-Regular 3-connected Graphs of diameter 2 where

 the second neighbourhood of every vertex is a clique on at least three vertices

But then x has exactly one neighbour with each other colour. And so x and z form a Kempe chain.
Similarly y and z form a Kempe chain under β.
So we can apply the Matching Lemma using v and z.

Open Problems

Do the 5-colourings of a toroidal triangular lattice form a Kempe class? (Would prove the validity of WSK algorithm for simulating the antiferromagnetic Potts model.)

Open Problems

What is the "distance" between k-colourings? (How many Kempe changes are needed.)

Open Problems

What is the "distance" between k-colourings? (How many Kempe changes are needed.)

Conjecture

Any pair of k-colourings of a graph of maximum degree k on n vertices are joined by a sequence of $O\left(n^{2}\right)$ Kempe changes.

Thank You

Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.

Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.
Suppose instead that G is the smallest planar graph with no 5 -colouring. Let v be a vertex with degree at most 5 . Let α be a 5 -colouring of $G-v$.

Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.
Suppose instead that G is the smallest planar graph with no 5 -colouring. Let v be a vertex with degree at most 5 . Let α be a 5 -colouring of $G-v$.

If in α some colour is not used on a neighbour of v, then α extends to a 5 -colouring of G.

Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.
Suppose instead that G is the smallest planar graph with no 5 -colouring. Let v be a vertex with degree at most 5 . Let α be a 5 -colouring of $G-v$.

If in α some colour is not used on a neighbour of v, then α extends to a 5 -colouring of G.

Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.
Suppose instead that G is the smallest planar graph with no 5 -colouring. Let v be a vertex with degree at most 5 . Let α be a 5 -colouring of $G-v$.

If in α some colour is not used on a neighbour of v, then α extends to a 5 -colouring of G.

Try to remove colour 1 from the neighbours of v with a Kempe change of a (1,3)-component.

Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.
Suppose instead that G is the smallest planar graph with no 5 -colouring. Let v be a vertex with degree at most 5 . Let α be a 5 -colouring of $G-v$.

If in α some colour is not used on a neighbour of v, then α extends to a 5 -colouring of G.

Try to remove colour 1 from the neighbours of v with a Kempe change of a (1,3)-component.

Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.
Suppose instead that G is the smallest planar graph with no 5 -colouring. Let v be a vertex with degree at most 5 . Let α be a 5 -colouring of $G-v$.
If in α some colour is not used on a neighbour of v, then α extends to a 5 -colouring of G.

> Try to remove colour 1 from the neighbours of v with a Kempe change of a $(1,3)$-component.

Five Colour Theorem

Theorem (Heawood 1890)

Every planar graph has a 5-colouring.
Suppose instead that G is the smallest planar graph with no 5 -colouring. Let v be a vertex with degree at most 5 . Let α be a 5 -colouring of $G-v$.
If in α some colour is not used on a neighbour of v, then α extends to a 5 -colouring of G.

Else remove colour 2 from the neighbours of v with a Kempe change of a (2,4)-component.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

We can assume that x has more than one neighbour in G_{1} and y has more than one neighbour in G_{2}.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

The set of k-colourings in which x and y have distinct colours form a Kempe class (add the edge $x y$ and use the clique cutset lemma again)

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

The set of k-colourings in which x and y have distinct colours form a Kempe class (add the edge $x y$ and use the clique cutset lemma again)
Just to need that when x and y are coloured alike we can apply Kempe changes until they differ.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

Suppose x has two neighbours in each of G_{1} and G_{2}.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

Suppose x has two neighbours in each of G_{1} and G_{2}.
Then x has no neighbour in G_{1} coloured 3.
And x has no neighbour in G_{2} coloured 2.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

Suppose x has two neighbours in each of G_{1} and G_{2}.
Then x has no neighbour in G_{1} coloured 3.
And x has no neighbour in G_{2} coloured 2 .
Kempe change (2,3)-components in G_{1} so that x has no neighbour coloured 2.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

So x has one neighbour, coloured 2 , in G_{2}.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

So x has one neighbour, coloured 2 , in G_{2}.
And y has one neighbour in G_{1}. If it is not coloured 2 this can be achieved by a single Kempe change.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

So x has one neighbour, coloured 2 , in G_{2}.
And y has one neighbour in G_{1}. If it is not coloured 2 this can be achieved by a single Kempe change.
Now the (1,3)-component containing x does not contain y.

k-Regular Graphs that are not 3-connected

If G is not 3 -connected it has a cutset C of size 1 or 2 . If this is a clique, then apply the clique cutset lemma (and then notice that the union of C and each connected component of $G-C$ is ($k-1$)-degenerate).
Otherwise the cutset is a pair of non-adjacent vertices.

So x has one neighbour, coloured 2 , in G_{2}.
And y has one neighbour in G_{1}. If it is not coloured 2 this can be achieved by a single Kempe change.
Now the (1,3)-component containing x does not contain y.

