Reconfiguration of Dominating sets

Ruth Haas, U. Hawaii
Karen Seyffarth, U. Calgary

January, 2017

Dominating sets

$S \subset V(G)$ is a dominating set of G if and only if every vertex of $V(G) \backslash S$ is adjacent to a vertex of S.
The domination number, $\gamma(G)$, is the minimum cardinality of a dominating set of G. upper domination number, $\Gamma(G)$, is the maximum cardinality of a minimal dominating set of G.

The k-dominating graph

$D_{k}(G)$, vertices are dominating sets with cardinality $\leqslant k$; two vertices of $D_{k}(G)$
Reconfiguration rule: addition or deletion of a single vertex.

Others models for domination reconfiguration also of interest. E.g., Subramaniam, Sridharan, and Fricke; Hedetniemi, Hedetniemi, Hutson,
γ-graph

- Only γ sets
- Token jumping.

The k-dominating graph

First question: find $d_{0}(G)$ the least value of k for which $D_{k}(G)$ is connected for all $k \geqslant d_{0}(G)$.
First results:
(i) $d_{0}(G) \geqslant \Gamma(G)+1$, if $E(G)$ is non-empty. (any Γ set is isolated)
(ii) $d_{0}(G) \leqslant|V(G)|$.

The k-dominating graph

First question: find $d_{0}(G)$ the least value of k for which $D_{k}(G)$ is connected for all $k \geqslant d_{0}(G)$.
First results:
(i) $d_{0}(G) \geqslant \Gamma(G)+1$, if $E(G)$ is non-empty. (any Γ set is isolated)
(ii) $d_{0}(G) \leqslant|V(G)|$.
(iii) $d_{0}(G) \leqslant \gamma(G)+\Gamma(G)$.

In (H\&S 2014) gave classes of graphs for which $d_{0}(G)=\Gamma(G)+1$ (bipartite graphs, chordal graphs)

Suzuki, Mouawad and Nishimura have shown that

Theorem
If G has a matching of size at least $\mu+1$, then $d_{0} G \leqslant|V|-\mu$.

Suzuki, Mouawad and Nishimura have shown that
Theorem
If G has a matching of size at least $\mu+1$, then $d_{0} G \leqslant|V|-\mu$.

And, that sometimes $d_{0}(G)>\Gamma(G)+1$.

Alikhani, Fatehi and Klavzar considered which graphs can be $D_{k}(G)$. They showed:

Theorem
If $V(G) \geqslant 2$ and $G \cong D_{k}(G)$, then $k=2$ and $G=K_{1, n-1}$ for some $n \geqslant 4$.

Theorem
For a fixed r there exist only a finite number of r-regular, connected dominating graphs of connected graphs.

new results

Today we show

- All independent dominating sets are in the same connected component of $D_{\Gamma+1}(G)$
- If G is both perfect and irredundant perfect then $d_{0}(G)=\Gamma(G)+1$.
- For certain classes of well-covered graphs, $d_{0}(G)=\Gamma(G)+1$.

more notation, basics

- If dominating sets S and T of G are in the same component of $D_{k}(G)$. Then for all $m \geqslant k, D_{k}(G)$ is an induced subgraph of $D_{m}(G)$, and hence S and T are in the same component of $D_{m}(G)$.
\bullet Write $A \leftrightarrow B$ if there is a path in $D_{k}(G)$ joining A and B.

Independent dominating sets

$S \subseteq G$ is a maximal independent set of G if and only if S is an independent dominating set of G.

Thus, $\alpha(G) \leqslant \Gamma(G)$.

Independent dominating sets

$S \subseteq G$ is a maximal independent set of G if and only if S is an independent dominating set of G.

Thus, $\alpha(G) \leqslant \Gamma(G)$.
Theorem (H\&S)
Let T_{1} and T_{2} be independent dominating sets of a graph G. Then $T_{1} \leftrightarrow T_{2}$ in $D_{\alpha+1}(G)$, and hence in $D_{\Gamma+1}(G)$.

Proof that all independent dominating sets in same component

$\forall v \in V(G)$, let \mathcal{S}_{v} be the set of maximal independent sets of G that contain v. Note $\mathcal{S}_{v} \neq \varnothing$.

Show
(i) Each \mathcal{S}_{v} is connected (by induction on α).
(ii) If $\mathcal{S}_{v} \cap \mathcal{S}_{u} \neq \varnothing$ then these are in same connected component.
(iii) $\mathcal{S}_{v} \cap \mathcal{S}_{u}=\varnothing$ then these are in same connected component.

(i) Show by induction \mathcal{S}_{v} is connected.

Lemma

S is a maximal independent set if and only if $S \backslash\{v\}$ is a maximal independent set of $G-N[v]$.

So $\left\{S \backslash\{v\} \mid S \in \mathcal{S}_{v}\right\}$ is the set of all independent dominating sets of $G-N[v]$.

Lemma

For any graph G and any $v \in V(G), \Gamma(G-N[v])<\Gamma(G)$ and $\alpha(G-N[v])<\alpha(G)$.

So, $\alpha(G-N[v])<\alpha(G)$.

To show $T_{1} \leftrightarrow T_{2}$ in $D_{\alpha+1}$

If T_{1}, T_{2} max indep in G then by lemmas:
$\left(T_{1} \backslash\{v\}\right) \leftrightarrow\left(T_{2} \backslash\{v\}\right)$ in $D_{\alpha(G-N[v])+1}(G-N[v])$.

$$
\begin{aligned}
& T_{1} \backslash\{v\}, A_{1}, A_{2}, \ldots, A_{k}, T_{2} \backslash\{v\} \\
& \\
& \quad \text { in } D_{\alpha(G-N[v])+1}(G-N[v])
\end{aligned}
$$

$$
T_{1}, A_{1} \cup\{v\}, A_{2} \cup\{v\} \ldots, A_{k} \cup\{v\}, T_{2}
$$

is a path in $D_{\alpha+1}$.
So all sets of \mathcal{S}_{v} are in the same component of $D_{\alpha+1}(G)$.

(ii) $\mathcal{S}_{u} \cap \mathcal{S}_{v} \neq \varnothing$

If $\mathcal{S}_{u} \cap \mathcal{S}_{v} \neq \varnothing$, then there exists a maximal independent set containing both u and v.

Thus all the the sets of \mathcal{S}_{v} and \mathcal{S}_{u} are in the same connected component of $D_{\alpha+1}$.

(iii) $\mathcal{S}_{u} \cap \mathcal{S}_{v}=\varnothing$

Suppose $T_{1} \cap T_{2}=\varnothing$, with $u \in T_{1}$ and $v \in T_{2}$. (If non-empty both in \mathcal{S}_{w}, some w)
If there is a path in \bar{G} joining u and v, say

$$
u, x_{1}, x_{2}, \ldots, x_{k}, v
$$

then there exist maximal independent sets $S_{1} \in \mathcal{S}_{u} \cap \mathcal{S}_{x_{1}}$, $S_{i} \in \mathcal{S}_{x_{i-1}} \cap \mathcal{S}_{x_{i}}$ for $2 \leqslant i \leqslant k$, and $S_{k+1} \in \mathcal{S}_{k} \cap \mathcal{S}_{v}$, such that

$$
T_{1} \leftrightarrow S_{1}, S_{1} \leftrightarrow S_{2}, \ldots, S_{k} \leftrightarrow S_{k+1}, S_{k+1} \leftrightarrow T_{2}
$$

in $D_{\alpha+1}(G)$. Thus $T_{1} \leftrightarrow T_{2}$ in $D_{\alpha+1}(G)$.

(iii') $\mathcal{S}_{u} \cap \mathcal{S}_{v}=\varnothing$, continued

Suppose $T_{1} \cap T_{2}=\varnothing$, with $u \in T_{1}$ and $v \in T_{2}$.
If there is no path in \bar{G} joining u and v, then u and v are in different components of \bar{G}.

Lemma
If \bar{G} is disconnected, and $u, v \in V(G)$ are in different components of \bar{G}, then $\{u, v\}$ is a dominating set of G and hence $\gamma(G) \leqslant 2$.

So,

$$
T_{1} \leftrightarrow T_{1} \cup\{v\} \leftrightarrow\{u, v\} \leftrightarrow T_{2} \cup\{u\} \leftrightarrow T_{2}
$$

from T_{1} to T_{2} in $D_{\alpha+1}(G)$.
Thus $\mathcal{S}_{u}, \mathcal{S}_{v}$ are in same connected component in this case too.

Theorem

For any graph $G, d_{0}(G) \leqslant \Gamma(G)+\alpha(G)-1$. Furthermore, if G is triangle free, then $d_{0}(G) \leqslant \Gamma(G)+\alpha(G)-2$.

Irredundant perfect graphs

- $S \subseteq V(G)$ is an irredundant set if every $s \in S$ has a private neighbour.
- $\operatorname{ir}(\mathrm{G})$ and $\operatorname{IR}(\mathrm{G})$, are the cardinalities of the smallest and largest maximal irredundant sets of G.
- The clique cover number $\bar{\chi}(G)$, is the minimum number of cliques in a clique cover of G.
- $\alpha(G) \leqslant \Gamma(G) \leqslant \operatorname{IR}(G)$,
- $\alpha(G) \leqslant \bar{\chi}(G)$.

Note that $\bar{\chi}(G)$ may be larger or smaller than $\Gamma(G)$.

If S is an independent set and \mathcal{C} is a clique cover and $|S|=|\mathcal{C}|$, then

$$
\alpha(G)=|S|=|\mathcal{C}|=\bar{\chi}(G) .
$$

- G is perfect if $\alpha(H)=\bar{\chi}(H)$ for all induced subgraphs H of G.
- G is irredundant perfect if and only if $\alpha(H)=\operatorname{IR}(H)$ for all induced subgraphs H of G.

The following theorem holds for all graphs that are both perfect and irredundant perfect (including all strongly perfect graphs), but it also holds slightly more generally.

Theorem (H\&S)
Let G be a graph with $\alpha(G)=\bar{\chi}(G)=\Gamma(G)$, and $\alpha(H)=\Gamma(H)$ for all induced subgraphs H of G. Then $d_{0}(G)=\Gamma(G)+1$.

Well covered and well dominated

Definition (Plummer)

G is well-covered if every maximal independent set has the same cardinality, namely $\alpha(G)$.

Definition (Finbow, Hartnell and Nowakowski)
G is well-dominated if every minimal dominating set has the same cardinality, namely $\gamma(G)=\Gamma(G)$

Since every maximal independent set of a graph is a dominating set, every well-dominated graph is necessarily well-covered; hence if G is well-dominated, $\alpha(G)=\Gamma(G)$.

Families of well-covered graphs

A graph G is in the family \mathcal{L} if there exists $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subseteq V(G)$ so that for each i, the subgraph induced by $N\left[x_{i}\right]$ is isomorphic to a complete graph and $\left\{N\left[x_{i}\right] \mid 1 \leqslant i \leqslant k\right\}$ is a partition of $V(G)$. We say that the set $\left\{x_{1}, x_{2}, \ldots x_{k}\right\}$ is a kernel of G. Note that a kernel of G is a maximal independent set of G.

Lemma

If $G \in \mathcal{L}$, then G is well-dominated and hence well-covered.

Theorem

If $G \in \mathcal{L}$ then $d_{0}(G)=\Gamma(G)+1$.

Theorem (Finbow, Hartnell, Nowakowski)
A graph G is connected, well-covered and contains neither C_{4} nor C_{5} as a subgraph if and only if $G \in \mathcal{L}$ has kernel $\left\{x_{1}, \ldots, x_{k}\right\}$ in which the subgraph induced by $N\left[x_{i}\right]$ is isomorphic to K_{1}, K_{2} or K_{3}; or G is isomorphic to C_{7} or T_{10}.

Theorem (H\&S)
If G is a connected well-covered graph containing neither C_{4} nor C_{5} as a subgraph, then $d_{0}(G)=\Gamma(G)+1$.

Claw Free and well covered

A basic chain is a graph \mathcal{L} with additional properties.
Theorem (Whitehead)
Let G be a connected well-covered claw free graph with no 4-cycle. Then G is either a basic chain or isomorphic to one of K_{1}, C_{5} or C_{7}.

Theorem

Let G be a non-trivial, connected, well-covered, claw free graph with no 4 -cycle. Then $d_{0}(G)=\Gamma(G)+1$.

Well-covered graphs of girth at least five

Theorem (Finbow, Hartnell and Nowakowski)
If G is a connected, well-covered graph of girth at least five, then $G \in \mathcal{P C}$ or G is isomorphic to one of six exceptional graphs: $K_{1}, C_{7}, P_{10}, P_{13}, Q_{13}, P_{14}$.

$\mathcal{P C}$ graphs

$V(G)=\mathcal{P} \cup \mathcal{C}$
\mathcal{P} incident to pendant edges, and those form a matching.
\mathcal{C} set of 5-cycles, adjacent vertices can not both have degree greater than two.

Theorem (H\&S)

If G is a non-trivial, connected, well-covered graph of girth at least five, then $d_{0}(G)=\Gamma(G)+1$.

Well-covered plane triangulations

Theorem (Finbow, Hartnell, Nowakowski, Plummer)
A plane triangulation G is well-covered if and only if $G \in \mathcal{K}^{+}$or $G \in\left\{K_{3}, R_{6}, R_{7}, R_{8}, R_{12}, R_{8} \bigcirc K_{3}, R_{8} \bigcirc R_{8}\right\}$.

The two non-isomorphic versions of $R_{8} \bigcirc R_{8}$.

The Well covered plane triangulations \mathcal{K}^{+}

Construct a graph $G \in \mathcal{K}^{+}$as follows:
Begin with a plane triangulation T from the family \mathcal{L}, where T has kernel $\left\{q_{10}, q_{20}, \ldots, q_{\mu 0}\right\}$, and $q_{i 0}$ has degree three in T, $1 \leqslant i \leqslant \mu$.

In each face of T that is not incident with a kernel vertex do one of the following: (i)nothing, (ii)O-join a triangle, or (iii)O-join a copy of R_{8}.

Theorem (H\&S)
If G is a well-covered triangulation of the plane, then
$d_{0}(G)=\Gamma(G)+1$.

- (Finbow and van Bommel) Most graphs in \mathcal{K}^{+}are not well-dominated.
- This makes proof for $G \in \mathcal{K}^{+}$more complex.
- A maximal independent set of G has one vertex from each K_{4}, one vertex from each O-joined triangle, and two vertices from each O-joined R_{8}.
- Other minimal dominating sets might use a vertex from the original triangluation to dominate a vertex in an O-joined triangle or $R-8$. And, may not use all kernel vertices.

Idea of proof:
For S is a minimal dominating set, consider the connected component of $D_{\Gamma}(G)$ containing S.

Find the member of the component that uses the least non-kernel vertices and then show that number has to be 0 .

On the other hand the graphs below are well covered but $d_{0}(G)=\Gamma(G)+2$.

On the other hand the graphs below are well covered but $d_{0}(G)=\Gamma(G)+2$.

Open:

1. Characterize graphs for which $d_{0}(G)=\Gamma(G)+1$

On the other hand the graphs below are well covered but $d_{0}(G)=\Gamma(G)+2$.

Open:

1. Characterize graphs for which $d_{0}(G)=\Gamma(G)+1$
2. Are there any graph for which $d_{0}(G)>\Gamma(G)+2$.
