◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reconfiguration of Dominating sets

Ruth Haas, U. Hawaii Karen Seyffarth, U. Calgary

January, 2017

Dominating sets

 $S \subset V(G)$ is a *dominating set* of G if and only if every vertex of $V(G) \setminus S$ is adjacent to a vertex of S. The *domination number*, $\gamma(G)$, is the minimum cardinality of a dominating set of G. *upper domination number*, $\Gamma(G)$, is the maximum cardinality of a

upper domination number, $\Gamma(G)$, is the maximum cardinality of a minimal dominating set of G.

The *k*-dominating graph

 $D_k(G)$, vertices are dominating sets with cardinality $\leq k$; two vertices of $D_k(G)$ Reconfiguration rule: addition or deletion of a single vertex.

Others models for domination reconfiguration also of interest. E.g., Subramaniam, Sridharan, and Fricke; Hedetniemi, Hedetniemi, Hutson,

 $\gamma - \mathsf{graph}$

- Only γ sets
- Token jumping.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The *k*-dominating graph

First question: find $d_0(G)$ the least value of k for which $D_k(G)$ is connected for all $k \ge d_0(G)$. First results:

(ii)
$$d_0(G) \leq |V(G)|$$
.

The *k*-dominating graph

First question: find $d_0(G)$ the least value of k for which $D_k(G)$ is connected for all $k \ge d_0(G)$. First results:

(iii)
$$d_0(G) \leq \gamma(G) + \Gamma(G)$$
.

In (H&S 2014) gave classes of graphs for which $d_0(G) = \Gamma(G) + 1$ (bipartite graphs, chordal graphs)

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Suzuki, Mouawad and Nishimura have shown that Theorem

If G has a matching of size at least $\mu + 1$, then $d_0G \leq |V| - \mu$.

Suzuki, Mouawad and Nishimura have shown that Theorem If G has a matching of size at least $\mu + 1$, then $d_0 G \leq |V| - \mu$.

And, that sometimes $d_0(G) > \Gamma(G) + 1$.

Alikhani, Fatehi and Klavzar considered which graphs can be $D_k(G)$. They showed:

Theorem

If $V(G) \ge 2$ and $G \cong D_k(G)$, then k = 2 and $G = K_{1,n-1}$ for some $n \ge 4$.

Theorem

For a fixed r there exist only a finite number of r-regular, connected dominating graphs of connected graphs.

new results

Today we show

- All independent dominating sets are in the same connected component of D_{Γ+1}(G)
- If G is both perfect and irredundant perfect then $d_0(G) = \Gamma(G) + 1.$
- For certain classes of well-covered graphs, $d_0(G) = \Gamma(G) + 1$.

more notation, basics

- If dominating sets S and T of G are in the same component of $D_k(G)$. Then for all $m \ge k$, $D_k(G)$ is an induced subgraph of $D_m(G)$, and hence S and T are in the same component of $D_m(G)$.
- •Write $A \leftrightarrow B$ if there is a path in $D_k(G)$ joining A and B.

Independent dominating sets

- $S \subseteq G$ is a maximal independent set of G if and only if S is an independent dominating set of G.
- Thus, $\alpha(G) \leq \Gamma(G)$.

Independent dominating sets

- $S \subseteq G$ is a maximal independent set of G if and only if S is an independent dominating set of G.
- Thus, $\alpha(G) \leq \Gamma(G)$.
- Theorem (H&S)

Let T_1 and T_2 be independent dominating sets of a graph G. Then $T_1 \leftrightarrow T_2$ in $D_{\alpha+1}(G)$, and hence in $D_{\Gamma+1}(G)$.

Proof that all independent dominating sets in same component

 $\forall v \in V(G)$, let S_v be the set of maximal independent sets of G that contain v. Note $S_v \neq \emptyset$.

Show

(i) Each S_v is connected (by induction on α).

(ii) If $\mathcal{S}_{v} \cap \mathcal{S}_{u} \neq \emptyset$ then these are in same connected component.

(iii) $S_v \cap S_u = \emptyset$ then these are in same connected component.

(i) Show by induction S_v is connected.

Lemma

S is a maximal independent set if and only if $S \setminus \{v\}$ is a maximal independent set of G - N[v].

So $\{S \setminus \{v\} \mid S \in S_v\}$ is the set of all independent dominating sets of G - N[v].

Lemma

For any graph G and any $v \in V(G)$, $\Gamma(G - N[v]) < \Gamma(G)$ and $\alpha(G - N[v]) < \alpha(G)$.

So, $\alpha(G - N[v]) < \alpha(G)$.

To show $T_1 \leftrightarrow T_2$ in $D_{\alpha+1}$

If T_1, T_2 max indep in G then by lemmas: $(T_1 \setminus \{v\}) \leftrightarrow (T_2 \setminus \{v\})$ in $D_{\alpha(G - N[v]) + 1}(G - N[v])$. $T_1 \setminus \{v\}, A_1, A_2, \ldots, A_k, T_2 \setminus \{v\}$ in $D_{\alpha(G-N[v])+1}(G-N[v])$ $T_1, A_1 \cup \{v\}, A_2 \cup \{v\}, \dots, A_k \cup \{v\}, T_2$ is a path in $D_{\alpha+1}$. So all sets of S_v are in the same component of $D_{\alpha+1}(G)$.

Independent Dominating sets

(ii) $\mathcal{S}_u \cap \mathcal{S}_v \neq \emptyset$

If $S_u \cap S_v \neq \emptyset$, then there exists a maximal independent set containing both u and v.

Thus all the the sets of S_v and S_u are in the same connected component of $D_{\alpha+1}$.

(iii) $\mathcal{S}_u \cap \mathcal{S}_v = \emptyset$

Suppose $T_1 \cap T_2 = \emptyset$, with $u \in T_1$ and $v \in T_2$. (If non-empty both in S_w , some w) If there is a path in \overline{G} joining u and v, say

 $u, x_1, x_2, \ldots, x_k, v,$

then there exist maximal independent sets $S_1 \in S_u \cap S_{x_1}$, $S_i \in S_{x_{i-1}} \cap S_{x_i}$ for $2 \leq i \leq k$, and $S_{k+1} \in S_k \cap S_v$, such that

$$T_1 \leftrightarrow S_1, S_1 \leftrightarrow S_2, \dots, S_k \leftrightarrow S_{k+1}, S_{k+1} \leftrightarrow T_2$$

in $D_{\alpha+1}(G)$. Thus $T_1 \leftrightarrow T_2$ in $D_{\alpha+1}(G)$.

(iii') $\mathcal{S}_u \cap \mathcal{S}_v = \emptyset$, continued

Suppose $T_1 \cap T_2 = \emptyset$, with $u \in T_1$ and $v \in T_2$. If there is no path in \overline{G} joining u and v, then u and v are in different components of \overline{G} .

Lemma

If \overline{G} is disconnected, and $u, v \in V(G)$ are in different components of \overline{G} , then $\{u, v\}$ is a dominating set of G and hence $\gamma(G) \leq 2$.

So,

$$T_1 \leftrightarrow T_1 \cup \{v\} \leftrightarrow \{u,v\} \leftrightarrow T_2 \cup \{u\} \leftrightarrow T_2$$

from T_1 to T_2 in $D_{\alpha+1}(G)$.

Thus S_u , S_v are in same connected component in this case too.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

For any graph G, $d_0(G) \leq \Gamma(G) + \alpha(G) - 1$. Furthermore, if G is triangle free, then $d_0(G) \leq \Gamma(G) + \alpha(G) - 2$.

Irredundant perfect graphs

- S ⊆ V(G) is an *irredundant* set if every s ∈ S has a private neighbour.
- ir(G) and IR(G), are the cardinalities of the smallest and largest maximal irredundant sets of G.
- The clique cover number $\overline{\chi}(G)$, is the minimum number of cliques in a clique cover of G.
- $\alpha(G) \leqslant \Gamma(G) \leqslant \operatorname{IR}(G)$,
- $\alpha(G) \leq \overline{\chi}(G)$.

Note that $\overline{\chi}(G)$ may be larger or smaller than $\Gamma(G)$.

If S is an independent set and C is a clique cover and |S| = |C|, then

$$\alpha(G) = |S| = |\mathcal{C}| = \overline{\chi}(G).$$

- G is *perfect* if $\alpha(H) = \overline{\chi}(H)$ for all induced subgraphs H of G.
- G is *irredundant perfect* if and only if α(H) = IR(H) for all induced subgraphs H of G.

The following theorem holds for all graphs that are both perfect and irredundant perfect (including all strongly perfect graphs), but it also holds slightly more generally.

Theorem (H&S)

Let G be a graph with $\alpha(G) = \overline{\chi}(G) = \Gamma(G)$, and $\alpha(H) = \Gamma(H)$ for all induced subgraphs H of G. Then $d_0(G) = \Gamma(G) + 1$.

Well covered and well dominated

Definition (Plummer)

G is well-covered if every maximal independent set has the same cardinality, namely $\alpha(G)$.

Definition (Finbow, Hartnell and Nowakowski)

G is well-dominated if every minimal dominating set has the same cardinality, namely $\gamma(G)=\Gamma(G)$

Since every maximal independent set of a graph is a dominating set, every well-dominated graph is necessarily well-covered; hence if G is well-dominated, $\alpha(G) = \Gamma(G)$.

Families of well-covered graphs

A graph G is in the family \mathcal{L} if there exists $\{x_1, x_2, \ldots, x_k\} \subseteq V(G)$ so that for each *i*, the subgraph induced by $N[x_i]$ is isomorphic to a complete graph and $\{N[x_i] \mid 1 \leq i \leq k\}$ is a partition of V(G). We say that the set $\{x_1, x_2, \ldots, x_k\}$ is a *kernel* of G. Note that a kernel of G is a maximal independent set of G.

Lemma

If $G \in \mathcal{L}$, then G is well-dominated and hence well-covered.

Theorem

If
$$G \in \mathcal{L}$$
 then $d_0(G) = \Gamma(G) + 1$.

Theorem (Finbow, Hartnell, Nowakowski)

A graph G is connected, well-covered and contains neither C_4 nor C_5 as a subgraph if and only if $G \in \mathcal{L}$ has kernel $\{x_1, \ldots, x_k\}$ in which the subgraph induced by $N[x_i]$ is isomorphic to K_1 , K_2 or K_3 ; or G is isomorphic to C_7 or T_{10} .

Theorem (H&S)

If G is a connected well-covered graph containing neither C_4 nor C_5 as a subgraph, then $d_0(G)=\Gamma(G)+1.$

Claw Free and well covered

A basic chain is a graph \mathcal{L} with additional properties.

Theorem (Whitehead)

Let G be a connected well-covered claw free graph with no 4-cycle. Then G is either a basic chain or isomorphic to one of K_1 , C_5 or C_7 .

Theorem

Let G be a non-trivial, connected, well-covered, claw free graph with no 4-cycle. Then $d_0(G)=\Gamma(G)+1.$

<ロ> (四) (四) (三) (三) (三) (三)

Well-covered graphs of girth at least five

Theorem (Finbow, Hartnell and Nowakowski)

If G is a connected, well-covered graph of girth at least five, then $G \in \mathcal{PC}$ or G is isomorphic to one of six exceptional graphs: $K_1, C_7, P_{10}, P_{13}, Q_{13}, P_{14}.$

\mathcal{PC} graphs

 $V(G) = \mathcal{P} \cup \mathcal{C}$

 $\ensuremath{\mathcal{P}}$ incident to pendant edges, and those form a matching.

 ${\cal C}$ set of 5-cycles, adjacent vertices can not both have degree greater than two.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Theorem (H&S)

If G is a non-trivial, connected, well-covered graph of girth at least five, then $d_0(G)=\Gamma(G)+1.$

Well-covered plane triangulations

Theorem (Finbow, Hartnell, Nowakowski, Plummer)

A plane triangulation G is well-covered if and only if $G \in \mathcal{K}^+$ or $G \in \{K_3, R_6, R_7, R_8, R_{12}, R_8 \bigcirc K_3, R_8 \bigcirc R_8\}$.

The Well covered plane triangulations \mathcal{K}^+

Construct a graph $G \in \mathcal{K}^+$ as follows:

Begin with a plane triangulation T from the family \mathcal{L} , where T has kernel $\{q_{10}, q_{20}, \ldots, q_{\mu 0}\}$, and q_{i0} has degree three in T, $1 \leq i \leq \mu$.

In each face of T that is *not* incident with a kernel vertex do one of the following: (i)nothing, (ii)O-join a triangle, or (iii)O-join a copy of R_8 .

Theorem (H&S) If G is a well-covered triangulation of the plane, then $d_0(G) = \Gamma(G) + 1.$

- (Finbow and van Bommel) Most graphs in \mathcal{K}^+ are not well-dominated.
- This makes proof for $G \in \mathcal{K}^+$ more complex.
- A maximal independent set of *G* has one vertex from each *K*₄, one vertex from each O-joined triangle, and two vertices from each O-joined *R*₈.
- Other minimal dominating sets might use a vertex from the original triangluation to dominate a vertex in an O-joined triangle or R 8. And, may not use all kernel vertices.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Idea of proof:

For S is a minimal dominating set, consider the connected component of $D_{\Gamma}(G)$ containing S.

Find the member of the component that uses the least non-kernel vertices and then show that number has to be 0.

On the other hand the graphs below are well covered but $d_0(G) = \Gamma(G) + 2$.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

On the other hand the graphs below are well covered but $d_0(G) = \Gamma(G) + 2$.

Open:

1. Characterize graphs for which $d_0(G) = \Gamma(G) + 1$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

On the other hand the graphs below are well covered but $d_0(G) = \Gamma(G) + 2$.

Open:

- 1. Characterize graphs for which $d_0(G) = \Gamma(G) + 1$
- 2. Are there any graph for which $d_0(G) > \Gamma(G) + 2$.