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Goal: explicit (and short) equations of all genus 3 curves over Q
with trivial automorphism group and CM by the maximal order.

@

@
@
@
®

()

The list of possible (Galois) CM fields (Kilicer and Streng);
Obtain the Riemann matrix (folklore 4+ improvements);
Compute the Thetanullwerte (fast algorithms from Labrande);
Compute a model of the curve over C (formulas from Weber);

Compute the Dixmier-Ohno invariants and recognize them as
rational numbers ;

Reconstruct the curve from its invariants (Lercier-R.-Sijsling
+ improvements );

Reduce the size of the coefficients (Stoll, Elsenhans).
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Compute a model of the curve over C (formulas from Weber);

Compute the Dixmier-Ohno invariants and recognize them as
rational numbers ;

Reconstruct the curve from its invariants (Lercier-R.-Sijsling
+ improvements );

Reduce the size of the coefficients (Stoll, Elsenhans).

Similar works: genus 2 (van Wamelen 1999 + Bisson-Streng
2015), genus 3 hyperelliptic (Weng 2001 + Balakrishnan et al.
2016), Picard curves y3 = f(x) (Koike-Weng 2005 +
Lario-Somoza 2016).
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Some examples

X1 : —4169 x* — 956 x3y + 7440 x3z 4 55770 x2y?
+ 43486 x%y z + 42796 x%z? — 38748 x y°> — 30668 x y°z
+ 79352 x y 22 — 162240 x z3 + 6095 y* + 19886 y>z
— 89869 y?z? — 1079572 y z3 — 6084 z*= 0,

Xo : 96128 x* 4 232804 x3y + 5588 x3z + 51333 x2 2
— 37020 x%y z — 5791396 x%z> — 108416 x y> — 49056 x y°z
— 6947226 x y 2% — 214292 x z3 — 5880 y* — 581812 )3z
+ 2438436 y2z% + 1944852 y 23 + 87102093 z*= 0

Xis :x* = x3y +2x324+2x%y z +2x%22 = 2xy%z

+4xyz? —y3z4+3y?22 42y 4+ =0

Remark: the result is conjectural except for some examples (work
in progress by Sijsling).



There are exactly 37 isomorphism classes of CM fields K for which
there exist principally polarized abelian threefolds A/Q with field of
moduli Q and End(A) ~ Ok.




The list of possible cases

Theorem (Kiliger and Streng 2016)

There are exactly 37 isomorphism classes of CM fields K for which
there exist principally polarized abelian threefolds A/Q with field of
moduli Q and End(A) ~ Ok.

0000@000000000000000

Case | —dk PE fe —dk | # | Type
1 7 | X34 X2—4X+1 13 [ 73.13* | 2 G
2 7 | X3-3X-1 32 .73 ] 2 G
3 7 | X34+8X%2-51X+4+27|7-31|7°-31*] 2 G
4 7 [ X34+6X2—-90X+1 2.7 3.7 ]2 H
36 7 [ X34+ X2-2X-1 7 7° 14| H
37 3 | X3-3X-1 32 39 18] P

k: imaginary quadratic subfield of discriminant d

F: totally real cubic subfield with minimal polynomial pg, conductor f¢



Computation of the Riemann matrix (van Wamelen,
Shimura-Taniyama, Streng)

o
o

Let ® be a CM-type for K, seen as a map K — C3;

Let ¢ € K a generator of DE}Q such that ¢(¢) has a positive
imaginary part for all ¢ € ®;

Then

E(®(), ®(8)) = Trgjo(CaB), a,BeK

defines a principal polarization on C3/®(Ok).
Deduce a Riemann matrix 7;

Reduce it to a fundamental domain F? Not known but an
algorithm to F3({N}) D F.



Computation of Thetanullwerte

19[‘ = ﬁ[ab] (7‘) = Z ei7r(t(n—|—a)7'(n+a)+2t(n+a)b)

nez3
with i = 2(by + 2by + 4by) + 2*(ap + 2a1 + 4ay).
Proposition
Let Sg be the partial summation of ¥o with indices in [—B, B]3.
For T € F3({N}) and ¢ > /3/200, we have

90(7) — Sp|< 24 (mce™™)° x e B,

Taking B= 0O (x/I_D) is enough to ensure that Sg is within 10~"
of ’190.



Fast naive algorithm (Labrande 2016)

Fast naive algorithm: Let gy = €™k and
eim(m,n,p)r*(m,n,p).

tm,np =

Then we have the following recursion relations:

¢ _ 2m 2n _2p
m+1,np — tmn pqll q11912913
n 2m 2p

mnt+lp — tm n,pq22 922912 923
t 2n 2m

mnp+l — tm n,pq33 933923913

Complexity: O(M(P)P®) (450 digits in 20 seconds).



AGM style algorithm (after Dupont 2006)

Duplication formula
2 .

Borchardt mean

3, (1 91(7)? 197(7)2): 1

"Po(7)2 T Yo(1)? do(7)?

. <z91(r)2 On(r)
Bo(r)2 T ol

Complexity: O(M(P)log P) (2000 digits of precision in 10
seconds).

. . . 2 2 2
> = (—17'11, —IT22, —1733, T12—T11722, T13—T11733, 7'23—7'227'33)-



Model of the curve over C (Weber 1876)

= 3305
V40012
i U554
Vo740
a5y =  Usal33
V120027
The lines

a2 -

. I.19211949 s = i Y7935
V28056 C o 0140s]

_ V4912 S I.19351916
Varog’ © U114
2021 V16V7

x1=0,x%=0,x3=0,x1+x2+x3=0

and

lia1ix1 + axixo + azixz3 =0

in P2 form an Aronhold system.



Edge quartic (Plaumann et al. 2011)

=34(x?y* + y?2> + x°2%)
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25(x* 4 y* + 2%) = 34(x%y? + y2 2% + x°2°)

N\




Define
-1
u 1 1 1 1 1 1 X1
_ |l 1 1 . .
| = ail aiz ai3 a1l d12 a3 X2
us 1 s a1 a2 axs X3

Then Xc is the curve defined by the equation

2
(X1U1 + Xoup — X3U3) —4dxyuxour = 0.

Alternative: (Guardia 2009) using derivative of odd theta
functions.



Computation of the invariants

Dixmier-Ohno invariants
l=(hk:lg:lo:Jo:ho:o:hs:is:hg:Jig:hi:o: by)
are homogeneous expressions in the coefficients of X¢ of degree
d=(3,6,9,9,12,12,15,15,18,18,21,21,27).

Inormzllﬁl_géh_zﬁh_‘r’ﬁh_gﬁﬁﬁb_? 6@13
1 7/%’/3?7/3,/?,I§,/357I§7/g,lg,l37,lg’/§ .

Use BestApproximation at less than 1000 decimal digits to
observe convergence to a rational.



Reconstruction from the invariants

Problems: The basic reconstruction algorithm produces a quartic
over a quadratic extension with huge coefficients

o Mestre reconstruction involves finding a rational point on a
conic (which does not necessarily exists)

o A Shioda invariant of degree d is of degree 9d in the
Dixmier-Ohno invariants

o The Galois descent blows up coefficients even more
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The conic trick

o Mestre reconstruction algorithm starts with three (covariant)
quadratic binary forms q1, g2, g3 € k[x, z].

o Construct a conic C and a degree g + 1 curve H which
intersections are the ramification points of the hyperelliptic

curve.
2

o Clebsch’s identity: 2 - disc(C) = (det(ql,q2,q3)(xz,xzjzz)) .

o Use another g5 to minimize

det(q1, g2, A\g3 + pq3) = Adet(q1, g2, q3) + pndet(qi, g2, g3).

o Find the corresponding C and H with interpolation
techniques.

Leads to big speed-ups to reconstruct a hyperelliptic curve in
general. Here we observe that disc(C) ~ h.



Descent over the field of moduli

Our quartic X : F = 0 over a quadratic extension K/Q has
Aut(X) = {Id}.

o There exists M € PGL3(K) such that F.M = F? up to a
scalar (Van Rijnswou 2001).

o MM? =71d, = € Q.

o Let My = gy - M. Then MoMg = Id.

o Hilbert 90 to define a coboundary N = R + MR?, R random
matrix in GL3(K).

o Xp: F.N =0 is defined over Q.

Problem: in general N is large and the primes dividing det(N) add
to the discriminant of Xjp.



In worst case, Xp has 1500-digits coefficients. One needs to reduce
further

@ use action of GL3(Q) to minimize discriminant (Elsenhans
2016);

@ use action of SL3(Q) to reduce the heights (Stoll 2011).

Complexity (heuristically): factorization of /1 and ly.

Question: can we avoid (partially) the factorizations as in
(Bouyer-Streng 2015) for hyperelliptic curves?



Primes of potentially good non-hyperelliptic reduction

Xo : 96128 x* +232804 x7y 45588 x>z +51333 x°y* — 37020 x°y z— 5791396 x° 2>
— 108416 x y* — 49056 x y°z — 6947226 x y z° — 214292 x z° — 5880 y*
— 581812 y>z + 2438436 y* 2 + 1944852 y 2> + 87102093 z*= 0

hy = —2%° . 512. 714 1318 . 7914 . 23314 . 85714
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Primes dividing the discriminant

Primes of potentially good non-hyperelliptic reduction

Xo:96128 x* 4232804 x®y 45588 x> 2451333 x°y* — 37020 x°y z—5791396 x°2°
— 108416 x y* — 49056 x y*z — 6947226 x y z° — 214292 x z° — 5880 y*
— 581812 y°7z + 2438436 y°z° + 1944852 y z° + 87102093 z*= 0

by = —21%.512. 7141318 . 7914 . 93314 . g5714
Change of variables

x = 132x1 +5v 13x0, y = v/ 13x, z =x3

Xo =~ —96128 V13" x{ — 2155364 V13 x2 x2 — 5588 x2 x5 — 17962593 x2 x2
— 3600 V/13° X2 x2 x3 + 445492 V13 x2 x2 — 5071478 V13" x1 53
11213 x0 X2 x5 + 4989322 x1 x2 X2 + 1268 V13 x1 X3 — 6916605 v/13
1 81084 X2 x3 + 1047826 V13 x2 x2 — 5168 V13 x2 x2 — 515307 x&
~0
lhy = —215. 512714 . 7914 . 93314 . g5714
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Criterion for potentially good reduction

Proposition

Let A = Jac C be an abelian variety over a number field k and
suppose that A has CM by Ok for a sextic cyclic CM field K.
Let n be the number of prime factors of pOk.

If n= 2,6, A is absolutely simple and C has potential good
reduction.

If n=1,3 then A is supersingular.

For genus 2, this leads to the characterization of primes dividing
the discriminant (Goren-Lauter 2007, Lauter-Viray 2015).

For genus 3, only an upper bound for the bad primes (Kilicer et al.
2016) and an algorithm for the bad primes of Picard curves (Kiliger
et al. 2017).
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Proving hyperelliptic reduction (Clemens 1980)

Proposition

Let C : F =0 be an equation of a plane smooth quartic with
coefficients in Z and p be a prime.

If F = @+ pG where, modulo p, @ = 0 is a smooth conic
intersecting the quartic G = 0 in 8 distinct points then C has
hyperelliptic reduction modulo p with equation {@ = 0, t> = G}.

Problem: this can happen after an extension:
x3y + y3z 4 z3x = 0 is not of this form for p = 7 but the curve is

isomorphic over Q(v/—7) to
3+V-7
(4 y2 12224V T +2 (x2y2+y2z2 +z2x2) 0

Work in progress: characterization in terms of valuations of
invariants.



