Isogeny classes of rational squares of CM elliptic curves

Francesc Fité (UPC) and Xavier Guitart (UB)

BIRS, Banff, 31st May 2017.

Francesc Fité (UPC)



A conjecture

@ F is a number field.

Francesc Fité (UPC)



A conjecture

@ F is a number field.

e A/F is an abelian variety

Francesc Fité (UPC)



A conjecture

@ F is a number field.
e A/F is an abelian variety
o Call End(Ag) ® Q the endomorphism algebra of Ag.

Francesc Fité (UPC) 2 /15



A conjecture

F is a number field.

A/F is an abelian variety

Call End(Ag) ® Q the endomorphism algebra of Ag.
For any g, d > 1, set

Lg.q ={End(Ag) ® Q| dim(A) = g and [F : Q] = d}/ ~ .

Francesc Fité (UPC) 2 /15



A conjecture

F is a number field.

A/F is an abelian variety

Call End(Ag) ® Q the endomorphism algebra of Ag.
For any g, d > 1, set

Lg.q ={End(Ag) ® Q| dim(A) = g and [F : Q] = d}/ ~ .

Conjecture
For every g,d > 1, the set L, 4 is finite. J

(Attributed to Coleman; for example in a paper of Bruin-Flynn-Gonzélez-Rotger.)
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An open question

Example: g =d =1
#L11=10.
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e If A/Q has CM by M, then

CUM) ~ Gal(Hwm /M)
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Indeed:
o End(Ag) ® Q is Q if A does not have CM.
e If A/Q has CM by M, then
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An open question

Example: g =d =1
#L11=10.

Indeed:
o End(Ag) ® Q is Q if A does not have CM.
e If A/Q has CM by M, then

CI(M) ~ Gal(Hp /M) ~ Gal(M(ja)/M) ~ {1} .

Thus there are 9 possibilities for M.

Problem
What is the set £51 ?
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Endomorphism algebras of abelian surfaces

Let A be an abelian surface over Q.

Dec. of Ag End(Ag) ® Q #Possibilities

Q
.. real quad. field

Ag is simple def. div. quat. alg./Q
quartic CM field

A-~ExE | 2XQ _

ar(1@d ELE Q x My, M; quad. imag.
M1 X M2

A@ ~ E2 MZ(Q)

My(M), M quad. imag.
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Endomorphism algebras of abelian surfaces

Let A be an abelian surface over Q.

Dec. of Ag End(Ag) ® Q #Possibilities
Q 1
A is simple real quad. field ?
Q P def. div. quat. alg./Q ?
quartic CM field 19 (Murabayashi-Umegaki)
As~ExE | @xQ _
ar(1@d ELE Q x My, M; quad. imag.
M1 X M2
A~ ~ E2 MQ(Q)
Q My(M), M quad. imag.
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Endomorphism algebras of abelian surfaces

Let A be an abelian surface over Q.

Dec. of Ag End(Ag) ® Q #Possibilities
Q 1
A is simple real quad. field ?
Q P def. div. quat. alg./Q ?
quartic CM field 19 (Murabayashi-Umegaki)
o | @x0 I
A@d EE XE,E Q x M1, M; quad. imag. | 9, since #Cl(M;) =1
and £ 5 My X My 36

My(M), M quad. imag.

?, since #CI(M) =1,2,...
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Endomorphism algebras of abelian surfaces

Let A be an abelian surface over Q.

Dec. of Ag End(Ag) ® Q #Possibilities
Q 1
A_is simple real quad. field ?
Q P def. div. quat. alg./Q ?
quartic CM field 19 (Murabayashi-Umegaki)
. / QxQ 1
AQd EiXE’E Q x My, M; quad. imag. 9, since #Cl(M;) =1
an Ml X M2 36
A~ ~ E2 MQ(Q) 1
Q My(M), M quad. imag. N>

The goal of the talk is to find an upper bound for

No = #{ab. surf. A/Q such that Ag ~ E2, where E has CM}/ ~g -
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Endomorphism algebras of abelian surfaces

Let A be an abelian surface over Q.

Dec. of Ag End(Ag) ® Q #Possibilities
Q 1
A_is simple real quad. field ?
Q P def. div. quat. alg./Q ?
quartic CM field 19 (Murabayashi-Umegaki)
. / QxQ 1
A@d EiXE’E Q x My, M; quad. imag. 9, since #Cl(M;) =1
an Ml X M2 36
A~ ~ E2 M2(Q) 1
Q My(M), M quad. imag. N>

Actually, for any prime g, we will find an upper bound for

Ng = #{ab. var. A/Q such that Ag ~ E#, where E has CM}/ ~5 .
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Main result

Theorem 1 (F.-Guitart)

Let A/Q be an abelian variety of dimension g > 1 such that Ag ~ EE,
where E/Q is an elliptic curve with CM by M. Then:

i) The class group Cl(M) has exponent dividing g.
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Main result

Theorem 1 (F.-Guitart)
Let A/Q be an abelian variety of dimension g > 1 such that Ag ~ EE,
where E/Q is an elliptic curve with CM by M. Then:

i) The class group Cl(M) has exponent dividing g.
ii) If moreover g is prime, then

CI(M) . 1, CQ, C2 X CQ ifg = 2,
1, Cg otherwise.
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An upper bound
o Write:

ME"& .= {M quad. imag. field | CI(M) ~ Cgx .7. xCg}.
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An upper bound
o Write:

ME"& .= {M quad. imag. field | CI(M) ~ Cgx .7. xCg}.
@ Theorem 1 implies:

Ny < HM + #M? + #M>2 =9+ 18 + 24 = 51.
Ngg#/\/ll-i—#/\/lg, forg > 3.
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An upper bound
o Write:

ME"& .= {M quad. imag. field | CI(M) ~ Cgx .7. xCg}.
@ Theorem 1 implies:

Ny < H#MP + #M? + #M?2 =9+ 18424 =51.
Ng < #M + #ME, for g > 3.

@ On the other hand: N, > HMY + #ME for g > 2.
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An upper bound
o Write:

ME"& .= {M quad. imag. field | CI(M) ~ Cgx .7. xCg}.
@ Theorem 1 implies:

Ny < H#MP + #M? + #M?2 =9+ 18424 =51.
Ng < #M + #ME, for g > 3.

@ On the other hand: N, > H M + # M8 for g > 2. Indeed, for
M € M8, take E/Q(jg) with CM by M. Then

A = Res V) (E)

satisfies dim(A) = [Q(je) : Q] = #Cl(M) = g and Ag ~ Eé.
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An upper bound
o Write:

ME"& .= {M quad. imag. field | CI(M) ~ Cgx .7. xCg}.
@ Theorem 1 implies:

Ny < H#MP + #M? + #M?2 =9+ 18424 =51.
Ng < #M + #ME, for g > 3.

@ On the other hand: N, > H M + # M8 for g > 2. Indeed, for
M € M8, take E/Q(jg) with CM by M. Then

A = Res V) (E)
satisfies dim(A) = [Q(je) : Q] = #Cl(M) = g and Ag ~ E%.

Open question
Is Np >9+418 7 J
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Proof of Theorem 1

Definition
Let B/F be an abelian variety. The minimal extension K/F over which
End(Bx) ~ End(Bg)

is called the endomorphism field of B.
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Proof of Theorem 1

Definition
Let B/F be an abelian variety. The minimal extension K/F over which

End(Bx) =~ End(Bg)

is called the endomorphism field of B.

e K/F is finite and Galois.
@ Recast of the setting of Theorem 1:

(H) A/Q is an abelian variety of dimension g > 1 such that Ax ~ E&,
where E/K is an elliptic curve with CM by M.

Here K/Q is the endomorphism field of A.
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Proof of Theorem 1
Theorem 2 (F.-Guitart)

Under (H), there exist a subextension M C L C K and an elliptic curve
E’/L such that:

e L/M is Galois and Gal(L/M) has exponent dividing g.
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Theorem 2 (F.-Guitart)

Under (H), there exist a subextension M C L C K and an elliptic curve
E’/L such that:

e L/M is Galois and Gal(L/M) has exponent dividing g.

@ Part i) of Theorem 1 follows from Theorem 2

Gal(L/M) — Gal(M(je:)/M) ~ Gal(Hy /M) ~ C1(M).
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Proof of Theorem 1
Theorem 2 (F.-Guitart)

Under (H), there exist a subextension M C L C K and an elliptic curve
E’/L such that:

e L/M is Galois and Gal(L/M) has exponent dividing g.

@ Part i) of Theorem 1 follows from Theorem 2

Gal(L/M) — Gal(M(je:)/M) ~ Gal(Hy /M) ~ C1(M).

Theorem 3 (‘from’ Guralnick-Kedlaya)

Under (H), if g is prime, the maximal power of g dividing # Gal(K /M) is
2ifg=2and 1if g > 2.
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Proof of Theorem 1
Theorem 2 (F.-Guitart)

Under (H), there exist a subextension M C L C K and an elliptic curve
E’/L such that:

e L/M is Galois and Gal(L/M) has exponent dividing g.

@ Part i) of Theorem 1 follows from Theorem 2

Gal(L/M) — Gal(M(je:)/M) ~ Gal(Hy /M) ~ C1(M).

Theorem 3 (‘from’ Guralnick-Kedlaya)

Under (H), if g is prime, the maximal power of g dividing # Gal(K /M) is
2ifg=2and 1if g > 2.

@ Part ii) of Theorem 1 follows from Theorem 3.
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A refined version of Theorem 1 for g = 2
Theorem 1* (F.-Guitart)

Let A/Q be an abelian surface such that Ag ~ E?, where E/Q is an

elliptic curve with CM by M. Then, the set of possibilities for M provided
that Gal(K/M) ~ G is contained in M(G), where

Gal(K/M) M(Gal(K/M))
Cy M
C, MLuM?
Cs M
Cy {Q(v=1),Q(v=2)} uMm®
Ce {Q(v=-3)}um®
D, MEUMPUM??
D MuM?
D, {Q(v=T), Qv=2)} U MU M??
D {Q(v=3)} U MU M?>?
A4 M\{QV=T)}
Sa {Q(v=2)} u M*\{Q(v~=T5), Q(v/=35), Q(+v/=51), Q(v—115)}
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Proof of Theorem 2: abelian F-varieties
Definition (Ribet)
Let B/Q be an abelian variety and F a number field.

We say that B is an (abelian) F-variety if for every o € Gf:
@ There exists an isogeny p,: °B — B,

@ For every ¢ € End(B), the following diagram commutes
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Definition (Ribet)

Let B/Q be an abelian variety and F a number field.
We say that B is an (abelian) F-variety if for every o € Gf:
@ There exists an isogeny p,: °B — B,

@ For every ¢ € End(B), the following diagram commutes

e If dim(B) =1, then B is called an (elliptic) F-curve.
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Proof of Theorem 2: abelian F-varieties
Definition (Ribet)

Let B/Q be an abelian variety and F a number field.
We say that B is an (abelian) F-variety if for every o € Gf:
@ There exists an isogeny p,: °B — B,

@ For every ¢ € End(B), the following diagram commutes

e If dim(B) =1, then B is called an (elliptic) F-curve.
e If dim(B) = 1, observe that
> If B does not have CM, then 2) is always satisfied.
» If B has CM (by M), then 1) automatic and 2) amounts to M C F.
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Weil's descent criterion
o Let B be a F-variety.
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Welil's descent criterion

o Let B be a F-variety.

e We may assume B/K, where K is a number field.
@ We may assume that K is a field of complete definition for B, i.e.:
» K/F is finite and Galois,

> All the isogenies p, are defined over K.
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Welil's descent criterion

o Let B be a F-variety.

e We may assume B/K, where K is a number field.

@ We may assume that K is a field of complete definition for B, i.e.:
» K/F is finite and Galois,
> All the isogenies p, are defined over K.

e Set G = Gal(K/F) and define
cg: G x G — (End(B) ® Q)"

(0,7) = po 0 %pr 0 (por)
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e We may assume B/K, where K is a number field.

@ We may assume that K is a field of complete definition for B, i.e.:
» K/F is finite and Galois,
> All the isogenies p, are defined over K.

e Set G = Gal(K/F) and define
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Welil's descent criterion

o Let B be a F-variety.

e We may assume B/K, where K is a number field.

@ We may assume that K is a field of complete definition for B, i.e.:
» K/F is finite and Galois,
> All the isogenies p, are defined over K.

e Set G = Gal(K/F) and define
cg: Gx G— Z(End(B) Q)" = R

(0,7) = o 0 %pr 0 (por)
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Welil's descent criterion

Let B be a F-variety.

We may assume B/K, where K is a number field.

We may assume that K is a field of complete definition for B, i.e.:
» K/F is finite and Galois,

> All the isogenies p, are defined over K.

Set G = Gal(K/F) and define

cg: G x G — Z(End(B) ® Q) = R*

(0,7) = o 0 %pr 0 (por)
Denote by 5 = [cg] € H?(G, R*).
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Welil's descent criterion

o Let B be a F-variety.

e We may assume B/K, where K is a number field.

@ We may assume that K is a field of complete definition for B, i.e.:
» K/F is finite and Galois,
> All the isogenies p, are defined over K.

e Set G = Gal(K/F) and define
cg: Gx G— Z(End(B) Q)" = R
(0,7) = o 0 %pr 0 (por)
e Denote by vg = [cg] € H*(G,R*).
Weil's descent criterion (Ribet)
If FC L C K is such that

vg € Ker(H?(G, R*) = H?(Gal(K /L), R)),

then there exists B’/L such that Bf@ ~ Bg.
11/15




Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)

Let A/Q be an abelian variety of dimension g > 1 such that:
o Ay ~ E&
e £/K has CM by M.

Here, K the endomorphism field of A.

Then, there exists a subextension M C L C K and an elliptic curve E’/L
such that:

o E!@ ~ E@,
e L/M is Galois and Gal(L/M) has exponent dividing g.
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Theorem 2 (F.-Guitart)

Let A/Q be an abelian variety of dimension g > 1 such that:
o Ax ~ E#
e £/K has CM by M.

Here, K the endomorphism field of A.
Then, there exists a subextension M C L C K and an elliptic curve E’/L
such that:

o E!@ ~ E@,
e L/M is Galois and Gal(L/M) has exponent dividing g.

@ Key observation:
E is a an M-curve and K is a field of complete definition for E.
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Recall the setting of Theorem 2

Theorem 2 (F.-Guitart)

Let A/Q be an abelian variety of dimension g > 1 such that:
o Ay ~ E&
e £/K has CM by M.

Here, K the endomorphism field of A.

Then, there exists a subextension M C L C K and an elliptic curve E’/L
such that:

!
o E@ ~ E@,

e L/M is Galois and Gal(L/M) has exponent dividing g.

@ Key observation:
E is a an M-curve and K is a field of complete definition for E.

Voe Gy: “E& ~%Ax ~ Ak ~ E® ~ ,LLUZUE—>E.
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Sketch of proof of Theorem 2

It follows ‘Ribet's strategy’:
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Sketch of proof of Theorem 2

It follows ‘Ribet’s strategy’:
@ One shows that vg € H?(G, M*)[g], where G = Gal(K/M)
(by relating vg, Yee, and ya).
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It follows ‘Ribet’s strategy’:
@ One shows that vg € H?(G, M*)[g], where G = Gal(K/M)
(by relating vg, Yee, and ya).
@ Write P = M* /U, where U C M* denotes the roots of unity in M*.

Francesc Fité (UPC) 13 /15



Sketch of proof of Theorem 2

It follows ‘Ribet’s strategy’:
@ One shows that vg € H?(G, M*)[g], where G = Gal(K/M)
(by relating vg, Yee, and ya).
@ Write P = M* /U, where U C M* denotes the roots of unity in M*.

@ We have

H?(G, M*) ~ H*(G, U) x H*(G, P)
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Sketch of proof of Theorem 2

It follows ‘Ribet’s strategy’:
@ One shows that vg € H?(G, M*)[g], where G = Gal(K/M)
(by relating vg, Yee, and ya).
@ Write P = M* /U, where U C M* denotes the roots of unity in M*.

@ We have

H(G, M*)lg] ~ H*(G, U)[g] x H*(G, P)[g]
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Sketch of proof of Theorem 2

It follows ‘Ribet’s strategy’:
@ One shows that vg € H?(G, M*)[g], where G = Gal(K/M)
(by relating vg, Yee, and ya).
@ Write P = M* /U, where U C M* denotes the roots of unity in M*.

o We have
H?(G, M*)[g] = H*(G, U)[g] x H*(G, P)[g]

e = (YU, 7)
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Sketch of proof of Theorem 2

It follows ‘Ribet’s strategy’:
@ One shows that vg € H?(G, M*)[g], where G = Gal(K/M)
(by relating vg, yee, and ya).
@ Write P = M* /U, where U C M* denotes the roots of unity in M*.

o We have
H?(G, M*)[g] = H*(G, U)[g] x H*(G, P)[g]

ve = (0,7)
@ For any subgroup H C G, one shows that

resy(7) = 1 = resg(yy) =1.
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Sketch of proof of Theorem 2

o Consider the map
P— P

X — x&
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Sketch of proof of Theorem 2

o Consider the map
P— P

X — x8

@ It induces an exact sequence in cohomology

HY(G,P) — HY(G,P/P8) — H*(G,P)[g] — 1
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Sketch of proof of Theorem 2

o Consider the map
P— P

X — x8

@ It induces an exact sequence in cohomology

Hom(G, P) — Hom(G, P/P8) — H*(G,P)[g] — 1
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Sketch of proof of Theorem 2

o Consider the map
P— P

X — x8

@ It induces an exact sequence in cohomology

1 — Hom(G, P/P8) = H?*(G,P)[g] — 1
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Sketch of proof of Theorem 2

o Consider the map
P— P

X — x8

@ It induces an exact sequence in cohomology
1 — Hom(G, P/P8) = H?*(G,P)[g] — 1
o Take H = (a8 |a € G) < G. Then clearly

resg(7) =1, as 7 € Hom(G, P/P¢).
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Sketch of proof of Theorem 2

o Consider the map
P— P

x > x8
@ It induces an exact sequence in cohomology
1 — Hom(G, P/P8) — H*(G,P)[g] — 1
o Take H = (a8 |a € G) < G. Then clearly
resg(7) =1, as 7 € Hom(G, P/P¢).

@ By Weil's descent criterion:

» There is a model of E over L = KH, and
» Gal(L/F) ~ G/H is killed by g.
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Final comments
Theorem (Elkies-Ribet)

Let £/Q be an F-curve without CM. Then E admits a model over a
polyquadratic extension of F.

@ Ribet shows that
YE € Hz(GaQX)[2]7

(for different reasons as ours). The other steps of the proof are
analogous.

Corollary

Let A be an abelian variety over F such that A@ ~ E&, where E is an
elliptic curve without CM and g is odd. Then E admits a model over F.

=1

) } = ve = 1 = E admits a model over F.
ve =1
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