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Simple model of sea surface wind variability

Idealized momentum budget of surface layer of depth h:

d

dt
u = 〈Πu〉 − cd

h
(u2 + v2)1/2u+ ηu

d

dt
v = − cd

h
(u2 + v2)1/2v + ηv
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Correlated Additive-Multiplicative (CAM) noise

Linear SDE with correlated additive & multiplicative noise terms:

d

dt
x =

(
Lx− 1

2
Eg

)
+ (Ex+ g) ◦ Ẇ1 + bẆ2
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)
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⇒ skewed, kurtotic stationary pdf
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where

ν = −
[
A
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+

1
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]

Has been proposed as a generic model for non-Gaussianity in
atmosphere/ocean variables
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Skewness of bandpass-filtered temperatures

Proistosescu et al. (2016) found that skewness of bandpass-filtered daily
850 hPa radiosonde temperatures generally decreases with filter bandwidth
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Sea surface wind data

Use 10m wind data from MERRA-2 reanalysis

Hourly resolution from 01/01/79-31/12/16

60◦S to 60◦N

At each gridpoint, convert to local along-wind (u) and across-wind (v)
components

Subtract harmonic fit seasonal cycle of mean; divide by harmonic fit to
season

Bandpass filter using forward-backward Butterworth filter
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Bandpass-filtered skew(u)
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Lowpass-filtered skew(u)
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Raw and lowpass-filtered time series
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Spatial distribution
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Timescales of idealized model

Idealized near-surface momentum budget:
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Timescales of idealized model

Idealized near-surface momentum budget:

d

dt
u = 〈Πu〉 − cd

h
(u2 + v2)1/2u+ ηu

d

dt
v = − cd

h
(u2 + v2)1/2v + ηv

Model (ηu, ηv) as red-noise process

d

dt
ηu = −1

τ
ηu +

σ

τ
Ẇ1

d

dt
ηv = −1

τ
ηv +

σ

τ
Ẇ2
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Timescales of idealized model

Nondimensionalize using dynamical speed and time scales

U =

( 〈Πu〉h
cd

)1/2

θ =

(
h
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)1/2
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Timescales of idealized model

Nondimensionalize using dynamical speed and time scales

U =

( 〈Πu〉h
cd

)1/2

θ =

(
h

〈Πu〉 cd

)1/2

⇒ System characterized by two non-dimensional parameters:

α =
τ

θ

β =

(
σ4cd

h 〈Πu〉3
)1/4
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Lowpass-filtered model skew(ũ)
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Lowpass-filtered model skew(ũ)
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-2 -1 0 1 2

log
10

(α)

1

2

3

-0.2 -0.1 0

T̃min

-2 -1 0 1 2

log
10

(α)

1

2

3

3 4 5 6

α =
τ

θ
β =

(
σ4cd

h 〈Πu〉3
)1/4

– p. 15/17



Lowpass-filtered model skew(ũ)
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Lowpass-filtered model skew(ũ)

Model shows skewness enhancement with (nondimensional) T̃min ∼ 3− 5

⇒ timescale set by dynamical timescale θ

U ∼ 5 ms−1, h ∼ 1000 m, cd ∼ 1.3× 10−3 ⇒ θ ∼ 1.8 days

⇒ results consistent with observed Tmin ∼ days

Skewness enhancement greatest when α < 1, so noise “faster” than
dynamics

⇒ fast noise partially “buries” dynamically generated skewness, which is
brought out by filtering

O(100 day) skewness max. in equatorial band suggestive of relatively large
θ, or skewed noise (e.g. in ENSO region)

Not clear why subtropical θ ∼ 1 day; need direct estimates of model
parameters.
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with lowpass filtering in midlatitudes and equatorial belt

Timescale of skewness extremum synoptic in midlatitudes,
subseasonal-seasonal in equatorial band

Idealized model of surface momentum budget captures many features of
observed skewness enhancement; predicts key parameters are dynamical
and noise timescales (but unresolved questions remain)

Enhancement of skewness by filtering not consistent with CAM process

Reduction of skewness by bandpass filtering not a general result

Analyses such as these may provide a tool to assess if non-Gaussian
features result from nonlinear dynamics or multiplicative noise
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