Enhancement of Sea Surface Wind Skewness by Filtering

Adam Monahan

monahana@uvic.ca

School of Earth and Ocean Sciences, University of Victoria Victoria, BC, Canada

Skewness of sea surface wind components

Skewness of meridional wind

Skewness of sea surface wind components

Skewness of cross-mean wind v

Simple model of sea surface wind variability

Idealized momentum budget of surface layer of depth h:

$$\frac{d}{dt}u = \langle \Pi_u \rangle - \frac{c_d}{h}(u^2 + v^2)^{1/2}u + \eta_u$$
$$\frac{d}{dt}v = -\frac{c_d}{h}(u^2 + v^2)^{1/2}v + \eta_v$$

Simple model of sea surface wind variability

Idealized momentum budget of surface layer of depth h:

$$\frac{d}{dt}u = \langle \Pi_u \rangle - \frac{c_d}{h}(u^2 + v^2)^{1/2}u + \eta_u$$
$$\frac{d}{dt}v = -\frac{c_d}{h}(u^2 + v^2)^{1/2}v + \eta_v$$

If $(\eta_u, \eta_v) = (\sigma \dot{W}_1, \sigma \dot{W}_2)$ uncorrelated white noise

$$p_s(u,v) = \mathcal{N} \exp\left(\frac{2}{\sigma^2} \left[\langle \Pi_u \rangle \, u - \frac{c_d}{3h} (u^2 + v^2)^{3/2} \right] \right)$$

Simple model of sea surface wind variability

Idealized momentum budget of surface layer of depth h:

$$\frac{d}{dt}u = \langle \Pi_u \rangle - \frac{c_d}{h}(u^2 + v^2)^{1/2}u + \eta_u$$
$$\frac{d}{dt}v = -\frac{c_d}{h}(u^2 + v^2)^{1/2}v + \eta_v$$

If $(\eta_u, \eta_v) = (\sigma \dot{W}_1, \sigma \dot{W}_2)$ uncorrelated white noise

$$p_{s}(u,v) = \mathcal{N} \exp\left(\frac{2}{\sigma^{2}} \left[\langle \Pi_{u} \rangle \, u - \frac{c_{d}}{3h} (u^{2} + v^{2})^{3/2} \right] \right)$$

$$\underset{\substack{0.3 \\ 0.25 \\ 0.2} \\ 0.15 \\$$

Correlated Additive-Multiplicative (CAM) noise

Linear SDE with correlated additive & multiplicative noise terms:

$$\frac{d}{dt}x = \left(Lx - \frac{1}{2}Eg\right) + (Ex + g)\circ\dot{W}_1 + b\dot{W}_2$$

Correlated Additive-Multiplicative (CAM) noise

Linear SDE with correlated additive & multiplicative noise terms:

$$\frac{d}{dt}x = \left(Lx - \frac{1}{2}Eg\right) + (Ex + g)\circ\dot{W}_1 + b\dot{W}_2$$

 \Rightarrow skewed, kurtotic stationary pdf

$$p_s(x) = \mathcal{N}\left[(Ex+g)^2 + b^2\right]^{-(\nu+1)} \exp\left[\frac{2g\nu}{b}\tan^{-1}\left(\frac{Ex+g}{b}\right)\right]$$

where

$$\nu = -\left[\frac{A}{E^2} + \frac{1}{2}\right]$$

Linear SDE with correlated additive & multiplicative noise terms:

$$\frac{d}{dt}x = \left(Lx - \frac{1}{2}Eg\right) + (Ex + g)\circ\dot{W}_1 + b\dot{W}_2$$

 \Rightarrow skewed, kurtotic stationary pdf

$$p_s(x) = \mathcal{N}\left[(Ex+g)^2 + b^2\right]^{-(\nu+1)} \exp\left[\frac{2g\nu}{b}\tan^{-1}\left(\frac{Ex+g}{b}\right)\right]$$

where

$$\nu = -\left[\frac{A}{E^2} + \frac{1}{2}\right]$$

Has been proposed as a generic model for non-Gaussianity in atmosphere/ocean variables

Proistosescu et al. (2016) found that skewness of bandpass-filtered daily
 850 hPa radiosonde temperatures generally decreases with filter bandwidth

Proistosescu et al. (2016) found that skewness of bandpass-filtered daily
 850 hPa radiosonde temperatures generally decreases with filter bandwidth

Proistosescu et al. (2016) found that skewness of bandpass-filtered daily
 850 hPa radiosonde temperatures generally decreases with filter bandwidth

This behaviour was interpreted in terms of the bispectrum of uncorrelated processes; but they also found it in correlated series (including CAM noise)

Proistosescu et al. (2016) found that skewness of bandpass-filtered daily
 850 hPa radiosonde temperatures generally decreases with filter bandwidth

This behaviour was interpreted in terms of the bispectrum of uncorrelated processes; but they also found it in correlated series (including CAM noise)

Use 10m wind data from MERRA-2 reanalysis

- Use 10m wind data from MERRA-2 reanalysis
- Hourly resolution from 01/01/79-31/12/16

- Use 10m wind data from MERRA-2 reanalysis
- Hourly resolution from 01/01/79-31/12/16
- 60° S to 60° N

- Use 10m wind data from MERRA-2 reanalysis
- Hourly resolution from 01/01/79-31/12/16
- 60° S to 60° N
- At each gridpoint, convert to local along-wind (*u*) and across-wind (*v*) components

- Use 10m wind data from MERRA-2 reanalysis
- Hourly resolution from 01/01/79-31/12/16
- 60° S to 60° N
- At each gridpoint, convert to local along-wind (*u*) and across-wind (*v*) components
- Subtract harmonic fit seasonal cycle of mean; divide by harmonic fit to season

- Use 10m wind data from MERRA-2 reanalysis
- Hourly resolution from 01/01/79-31/12/16
- 60° S to 60° N
- At each gridpoint, convert to local along-wind (*u*) and across-wind (*v*) components
- Subtract harmonic fit seasonal cycle of mean; divide by harmonic fit to season
- Bandpass filter using forward-backward Butterworth filter

Bandpass-filtered skew(u)

Lowpass-filtered skew(u)

$$T = f_c^{-1}$$

Raw and lowpass-filtered time series

– p. 10/17

Spatial distribution

– p. 11/17

Idealized near-surface momentum budget:

$$\frac{d}{dt}u = \langle \Pi_u \rangle - \frac{c_d}{h}(u^2 + v^2)^{1/2}u + \eta_u$$
$$\frac{d}{dt}v = -\frac{c_d}{h}(u^2 + v^2)^{1/2}v + \eta_v$$

Idealized near-surface momentum budget:

$$\frac{d}{dt}u = \langle \Pi_u \rangle - \frac{c_d}{h}(u^2 + v^2)^{1/2}u + \eta_u$$
$$\frac{d}{dt}v = -\frac{c_d}{h}(u^2 + v^2)^{1/2}v + \eta_v$$

Model (η_u, η_v) as red-noise process

$$\frac{d}{dt}\eta_u = -\frac{1}{\tau}\eta_u + \frac{\sigma}{\tau}\dot{W}_1$$
$$\frac{d}{dt}\eta_v = -\frac{1}{\tau}\eta_v + \frac{\sigma}{\tau}\dot{W}_2$$

Nondimensionalize using dynamical speed and time scales

$$U = \left(\frac{\langle \Pi_u \rangle h}{c_d}\right)^{1/2}$$
$$\theta = \left(\frac{h}{\langle \Pi_u \rangle c_d}\right)^{1/2}$$

Nondimensionalize using dynamical speed and time scales

$$U = \left(\frac{\langle \Pi_u \rangle h}{c_d}\right)^{1/2}$$
$$\theta = \left(\frac{h}{\langle \Pi_u \rangle c_d}\right)^{1/2}$$

 \Rightarrow System characterized by two non-dimensional parameters:

$$\alpha = \frac{\tau}{\theta}$$
$$\beta = \left(\frac{\sigma^4 c_d}{h \langle \Pi_u \rangle^3}\right)^{1/4}$$

$$\alpha = \frac{\tau}{\theta} \qquad \beta = \left(\frac{\sigma^4 c_d}{h \left< \Pi_u \right>^3}\right)^{1/4}$$

Model shows skewness enhancement with (nondimensional) $\tilde{T}_{min} \sim 3-5$

- Model shows skewness enhancement with (nondimensional) $\tilde{T}_{min} \sim 3-5$
- \Rightarrow timescale set by dynamical timescale θ

- Model shows skewness enhancement with (nondimensional) $\tilde{T}_{min} \sim 3-5$
- \Rightarrow timescale set by dynamical timescale θ
 - $U \sim 5 \text{ ms}^{-1}, h \sim 1000 \text{ m}, c_d \sim 1.3 \times 10^{-3} \Rightarrow \theta \sim 1.8 \text{ days}$

- Model shows skewness enhancement with (nondimensional) $\tilde{T}_{min} \sim 3-5$
- \Rightarrow timescale set by dynamical timescale θ
 - $U \sim 5 \text{ ms}^{-1}, h \sim 1000 \text{ m}, c_d \sim 1.3 \times 10^{-3} \Rightarrow \theta \sim 1.8 \text{ days}$
- \Rightarrow results consistent with observed $T_{min} \sim \text{days}$

- Model shows skewness enhancement with (nondimensional) $\tilde{T}_{min} \sim 3-5$
- \Rightarrow timescale set by dynamical timescale θ
 - $U \sim 5 \text{ ms}^{-1}, h \sim 1000 \text{ m}, c_d \sim 1.3 \times 10^{-3} \Rightarrow \theta \sim 1.8 \text{ days}$
- \Rightarrow results consistent with observed $T_{min} \sim \text{days}$
 - Skewness enhancement greatest when $\alpha < 1$, so noise "faster" than dynamics

- Model shows skewness enhancement with (nondimensional) $\tilde{T}_{min} \sim 3-5$
- \Rightarrow timescale set by dynamical timescale θ
 - $U \sim 5 \text{ ms}^{-1}, h \sim 1000 \text{ m}, c_d \sim 1.3 \times 10^{-3} \Rightarrow \theta \sim 1.8 \text{ days}$
- \Rightarrow results consistent with observed $T_{min} \sim \text{days}$
 - Skewness enhancement greatest when $\alpha < 1$, so noise "faster" than dynamics
- ⇒ fast noise partially "buries" dynamically generated skewness, which is brought out by filtering

- Model shows skewness enhancement with (nondimensional) $\tilde{T}_{min} \sim 3-5$
- \Rightarrow timescale set by dynamical timescale θ
 - $U \sim 5 \text{ ms}^{-1}, h \sim 1000 \text{ m}, c_d \sim 1.3 \times 10^{-3} \Rightarrow \theta \sim 1.8 \text{ days}$
- \Rightarrow results consistent with observed $T_{min} \sim \text{days}$
 - Skewness enhancement greatest when $\alpha < 1$, so noise "faster" than dynamics
- ⇒ fast noise partially "buries" dynamically generated skewness, which is brought out by filtering
 - O(100 day) skewness max. in equatorial band suggestive of relatively large θ , or skewed noise (e.g. in ENSO region)

- Model shows skewness enhancement with (nondimensional) $\tilde{T}_{min} \sim 3-5$
- \Rightarrow timescale set by dynamical timescale θ
 - $U \sim 5 \text{ ms}^{-1}, h \sim 1000 \text{ m}, c_d \sim 1.3 \times 10^{-3} \Rightarrow \theta \sim 1.8 \text{ days}$
- \Rightarrow results consistent with observed $T_{min} \sim \text{days}$
 - Skewness enhancement greatest when $\alpha < 1$, so noise "faster" than dynamics
- ⇒ fast noise partially "buries" dynamically generated skewness, which is brought out by filtering
 - O(100 day) skewness max. in equatorial band suggestive of relatively large θ , or skewed noise (e.g. in ENSO region)
 - Not clear why subtropical $\theta \sim 1$ day; need direct estimates of model parameters.

Along-mean wind components show systematic enhancement of skewness with lowpass filtering in midlatitudes and equatorial belt

- Along-mean wind components show systematic enhancement of skewness with lowpass filtering in midlatitudes and equatorial belt
- Timescale of skewness extremum synoptic in midlatitudes, subseasonal-seasonal in equatorial band

- Along-mean wind components show systematic enhancement of skewness with lowpass filtering in midlatitudes and equatorial belt
- Timescale of skewness extremum synoptic in midlatitudes, subseasonal-seasonal in equatorial band
- Idealized model of surface momentum budget captures many features of observed skewness enhancement; predicts key parameters are dynamical and noise timescales (but unresolved questions remain)

- Along-mean wind components show systematic enhancement of skewness with lowpass filtering in midlatitudes and equatorial belt
- Timescale of skewness extremum synoptic in midlatitudes, subseasonal-seasonal in equatorial band
- Idealized model of surface momentum budget captures many features of observed skewness enhancement; predicts key parameters are dynamical and noise timescales (but unresolved questions remain)
- Enhancement of skewness by filtering not consistent with CAM process

- Along-mean wind components show systematic enhancement of skewness with lowpass filtering in midlatitudes and equatorial belt
- Timescale of skewness extremum synoptic in midlatitudes, subseasonal-seasonal in equatorial band
- Idealized model of surface momentum budget captures many features of observed skewness enhancement; predicts key parameters are dynamical and noise timescales (but unresolved questions remain)
- Enhancement of skewness by filtering not consistent with CAM process
- Reduction of skewness by bandpass filtering not a general result

- Along-mean wind components show systematic enhancement of skewness with lowpass filtering in midlatitudes and equatorial belt
- Timescale of skewness extremum synoptic in midlatitudes, subseasonal-seasonal in equatorial band
- Idealized model of surface momentum budget captures many features of observed skewness enhancement; predicts key parameters are dynamical and noise timescales (but unresolved questions remain)
- Enhancement of skewness by filtering not consistent with CAM process
- Reduction of skewness by bandpass filtering not a general result
- Analyses such as these may provide a tool to assess if non-Gaussian features result from nonlinear dynamics or multiplicative noise

