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Atmospheric Predictability

Weather forecast at 45N, 60W
21 slightly different initial conditions

figure from http://cola.gmu.edu/grads/gadoc/ensembles.html
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Oceanic Predictability

Fig. 13. a Level 3 temperature (170 m) first principle component
trajectories from ensemble A. Principle component units are C.
b The normalized ensemble variances along with a 95% red noise
null hypothesis

Fig. 14. a Meridional stream function principle component 2 and
circulation index trajectories from ensemble A. Units are Sv. b Nor-
malized ensemble variances along with a 95% red noise null hypoth-
esis

Fig. 15. a SSS PC-1 trajectories from ensemble A. Principle com-
ponent units are psu. b the normalized ensemble variance along with
a 95% red noise null hypothesis

climatological variance after 12—13 y, whereas the stream
function index crosses after less than 5 y. Both variances
show growth somewhat slower than the red noise null
hypothesis at times less than 3 y. However, the THC index
variance increases much faster thereafter, crossing the
50% line in about the same time as the red noise null
hypothesis would suggest. We interpret this result as an
indication that the THC index is significantly a§ected by
the less predictable smaller scale variability described by
the higher stream function EOFs. On the other hand,
PC-2 represents the amplitude of a large-scale spatially
averaged pattern whose variability is decoupled from the
higher EOF patterns. Therefore, PC-2 can be expected to
maintain more predictability than the THC index. This
result highlights the importance of employing a suite of
fields for assessing predictability as well as to point out
that potential for pessimistic predictability times based on
indices representing non-spatially averaged quantities. It
should be noted that the reduction of the ensemble vari-
ance seen between years 10—15 might be considered signif-
icant based on the F-test. In the absence of similar
behavior seen in other fields, we will not consider this
fluctuation to be of importance.

5.4 Predictability of the North Atlantic SSS and SST

Figures 15 and 16 show the first principle component
ensemble trajectories and normalized ensemble variance
for North Atlantic SSS and SST. SST PC-1 reaches 50%
of the climatological variance after around 5 y (roughly
1/8 of an oscillation period) whereas the SSS EOF-1
pattern reaches this mark after 13 y (roughly 1/4 of a peri-
od). The initial 1—2 y ensemble variance growth seen
for the SST is consistent with red noise, but it slows
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Figure : Trajectories of leading principal component of 170m ocean
temperature simulated by GFDL model; from Griffies and Bryan (1997).
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Measure of Predictability

ensemble spread

total variance
=

N

T
.

Equivalent measure: signal-to-total ratio

S

T
= 1 − N

T
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Predictable Component Analysis

Find the linear combination of variables that maximizes average
initial-condition predictability

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

lead

IC

●

●

5 / 47



Average Predictability Time (APT)
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Most Predictable Component in Climate Models
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Srivastava and DelSole (2016; PNAS)
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Atmosphere-	Slab	Ocean	Model	

No	ocean	circula8on!								

14	
Courtesy:	The	COMET	Program	

Slab	Ocean	

courtesy of Abhishekh Srivastava. upper figure from COMET program
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Interactive ocean circulations are not essential in determining the
most predictable pattern.
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Empirical Prediction Model r̂t+τ = Lτ rt

11 / 47



Skill of Most Predictable Component
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Interactive ocean circulations seem to enhance predictability that
already exists without ocean dynamics.
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Frankignoul &
Hasselmann (1977)

Energy Balance

ρocpH
dT ′

dt
= −λT ′+F ′

Deser et al. (2003): Understanding the Persistence of Sea Surface Temperature Anomalies in Midlatitudes,
J. Climate, 16, 57-72
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Dynamics of Mixed Layer Model

τD =
ρocpH

λ
≈ 5.4 months.

feedback parameter λ 15 W m−2 K−1

density of seawater ρo 1000 kg m−3

specific heat of seawater cp 4180 J kg−1 K−1

depth of mixed layer H 50m
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Skill of Most Predictable Component
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Two-Box Model

BOX 1 BOX 2

1 ε

heat flux heat flux

Ṫ1 = −λT1 + n1

εṪ2 = −λT2 + n2
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If stochastic forcing of the two boxes are independent, then APT is
bounded by the predictabilities of the individual boxes:

ε

λ
≤ APT ≤ 1

λ

No enhancement of predictability.
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λ
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λ
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19 / 47



But atmospheric heat fluxes are spatially coherent.

Delworth, T.L. and F. Zeng, 2016: J. Climate, 29, 941-962.
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Assume forcing is spatially coherent

(
Ṫ1

Ṫ2

)
=

(
−λ 0
0 −λ/ε

)(
T1

T2

)
+ n(t)

(
1

−1/ε

)

Note that the forcing term is energetically balanced:
it cancels out in the linear combination T1 + εT2.
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What’s the Mechanism

BOX 1 BOX 2

1 ε

heat flux heat flux

T1(t) =

∫ t

−∞
e−λ1(t−s)n1(s)ds T2(t) =

∫ t

−∞
e−λ2(t−s)/εn2(s)ds
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Theorem from Tippett and Chang (2002):

I The linear stochastic model with minimum predictability is
uncorrelated in normal-mode space.

I The minimum predictability depends only on the eigenvalues.

Corollary: For diagonal dynamical operator, correlated stochastic forcing
yields higher predictability than uncorrelated forcing.
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An atmospheric response to SST (i.e, “feedback”) is
not necessary to enhance predictability.
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Criticisms

Ocean slab models...

I give inconsistent time-lagged (low-pass) heat flux-temperature
relations relative to observations and coupled models.

I cannot explain the high coherence of North Atlantic temperature
and salinity at decadal-or-longer time scales.

I cannot explain the two-time scale decay of the autocorrelation of
North Atlantic SST.

I produce unrealistic responses to NAO forcing.

Hall and Manabe (1997; J. Climate); Zhang et al. (2016; J. Climate);
Cane et al. (2017; J. Climate); Delworth et al. (2017; J. Climate)
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Coherence between SST and SSS in Observations

Fig. 11. As in Fig. 2, but for weather station India. The nearest
model grid point is located at 60.8 °N, 20.6 °W. For the observations,
the total variances used to normalize the autocovariance function
were 0.00624 psu2 for SSS and 0.406 (°C)2 for SST. The observed
spectra are plotted out to the length of the time series (25.3 y for both
SST and SSS). For the model, the total variances were 0.00192 psu2
for SSS and 0.146 (°C)2 for SST. The observational SST spectrum
presented here di§ers slightly from the spectrum presented in the
Frankignoul and Hasselmann (1977) paper because the time series
used in this study includes data from the post-1977 period

50 y, which is the characteristic time scale of the model’s
thermohaline oscillation. The grid point nearest India is
also located directly in the ‘sinking region’ of the model’s
thermohaline circulation and shows an especially strong
peak at 50 y. In addition, the coherency plots of SST and
SSS for the model grid points nearest India and Mike (not
shown) closely resemble those shown in Fig. 12, with SST
and SSS strongly coherent on these same long time scales.
As with station Panulirus, the advection term in Eq. (1)
may not be approximated by a damping term. At stations
Mike and India, large-scale anomalies in the ocean’s cir-
culation make an important contribution to the forcing,
rather than the damping, of local SST and SSS anomalies.
Thus, in spite of the fact that the observed SST and SSS
spectra resemble a red noise spectrum, it is not possible to
invoke the local, linear stochastic mechanism to explain
temperature or salinity variability at Mike and India, at
least for long time scales. However, on short time scales,

Fig. 12. The coherency of SST and SSS at weather stations Mike
(top) and India (bottom). The dashed horizontal line shows the thre-
shold below which 95% of the points would lie if the two time series
were incoherent. Time scales are shown on the upper edge of the
plot. The cross spectral statistics were calculated by taking the
Fourier transform of the cross-covariance function using a Parzen
window with a maximum lag of 72 (40) months for Mike (India)

local stochastic forcing may be a more plausible explana-
tion for the variability, as suggested by the goodness of the
1/u2 fit at high frequencies.

6 Summary and discussion

To summarize, results of spectral analysis of data at one
of the weather stations and its corresponding model grid
point are consistent with the local, linear stochastic pic-
ture. At Papa, in the northeast Pacific, the fact that the
model and observational SSS spectra are redder than their
SST counterparts conforms well to the predictions of
LLST. Additional model results put LLST on an even
firmer foundation at this location. The coherency between
salinity’s ‘residual noise’ time series and the water flux
time series is significant at all time scales, indicating that
the water flux is responsible for much of SSS variability.
The frequency dependence of the coherency between the
total energy flux and temperature’s ‘residual noise’ time
series is also close to what LLST predicts.

Hall and Manabe: Sea surface temperature and salinity variability 177

Hall and Manabe (1997, Climate Dynamics)
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Stochastic Models Can Reproduce SST-SSS Coherence

Surface fluxes of heat and freshwater both involve evaporation:

cphṪ = −LE +sensible + radiative + diffusion + entrainment

hṠ = +S(E − P) +diffusion + entrainment

28 / 47



Parameterized evaporation as

E ≈ −λET + nE

This leads to the coupled stochastic model(
Ṫ

Ṡ

)
=

(
−λT − λE 0

−λE −λS

)(
T
S

)
+

(
nT
nS

)
+ nE

(
L/Cp

−1

)
There is coupling in the dynamical operator and in the forcing.
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Predictions of AMO: AMOC is a Useful Predictor
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AMO(t+lead) = ΦAMO(t−1)

AMO(t+lead) = ΦAMO(t−1)+ δψMAX(t)+ζpsiMAX(t−1)

(h)

—— AMO(t+lead) = φ AMO(t)
—— AMO(t+lead) = φ AMO(t) + β1 Index1
—— AMO(t+lead) = φ AMO(t) + β2 Index2

Trenary and DelSole, 2016: Does the Atlantic Multidecadal Oscillation Get its Predictability from the
Atlantic Meridional Overturning Circulation?, J. Climate, 29, 5267-5280
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Stommel-like Box Model (Griffies and Tziperman)

Griffies and Tziperman 1995, J. Climate
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Stommel Box Model Equations

Ṫ1 =
U

δV
(T3 − T1) + γT (T ∗1 − T1)

Ṫ2 =
U

εδV
(T1 − T2) + γT (T ∗2 − T2)

Ṫ3 =
U

V
(T4 − T3)

Ṫ4 =
U

εV
(T2 − T4)

Ṡ1 =
U

δV
(S3 − S1) + F S

1

Ṡ2 =
U

εδV
(S1 − S2) + F S

2

Ṡ3 =
U

V
(S4 − S3)

Ṡ4 =
U

εV
(S2 − S4)

No T-S coupling through surface fluxes
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Autocorrelation Function of Temperature
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CMIP5 Autocorrelation Function of Temperature

R. Zhang (2017, GRL)
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ACF Based on Oscillatory Mode
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Squared Coherency
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R-Square with and without AMOC index
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Predictability
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The low-frequency coherence between SST and SSS is not a
discriminating feature for ocean circulation, since stochastic
models with and without ocean circulation can reproduce it.

However, the enhanced predictability of SST after adding SSS as a
predictor is a discriminating feature.
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Predictability of North Atlantic in CMIP5 Models
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Predictability of North Atlantic in ODA
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Predictability of North Atlantic in ODA
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Summary

1. The most predictable components of climate models with and
without interactive ocean circulation are remarkably similar.

2. This result implies that ocean dynamics is not essential for the
existence of multi-year predictability.

3. Predictability of certain individual patterns are longer in the coupled
model than in slab model.

4. Predictability of slab models can be higher than that of individual
slabs for spatially correlated stochastic forcing.

5. Slab models can reproduce coherence between temperature and
salinity at low frequencies, if the influence of evaporation is taken
into account.

6. Stommel box model can

I Generate 2-time scale decay of ACF of temperature
I Reproduce coherence between temperature and salinity
I Reproduce enhanced predictability when AMOC included.
I Reproduce predictive skill due to including salinity as predictor.

47 / 47


