Data assimilation with stochastic model reduction

Fei Lu

Department of Mathematics, Johns Hopkins Joint with: Alexandre J. Chorin (UC Berkeley) Kevin K. Lin (U. of Arizona) Xuemin Tu (U. of Kansas)

Nov. 21, 2017 Banff International Research Station

イロト イヨト イヨト イヨト

1/24

Motivation: weather/climate prediction

High-dimensional
Full system+Discrete partial
data-->Predictionx' = f(x) + U(x, y),Observe only
 $\{x(nh)\}_{n=1}^N$ Forecast
 $x(t), t \ge Nh.$

ECMWF: 16 km horizontal grid \rightarrow 10⁹ freedoms

The Lorenz 96 system Wilks 2005

- Complex full systems:
 - can only afford to resolve x' = f(x)
 - y: unresolved variables (subgrid-scales)
- Discrete partial observations: missing i.c.
- Ensemble prediction: need many simulations

Motivation: weather/climate prediction

High-dimensional
Full system+Discrete partial
data-->Predictionx' = f(x) + U(x, y),
y' = g(x, y).Observe only
 $\{x(nh)\}_{n=1}^{N}$.Forecast
 $x(t), t \ge Nh.$

- Complex full systems:
 - can only afford to resolve x' = f(x)
 - y: unresolved variables (subgrid-scales)
 - Discrete partial observations: missing i.c.
 - Ensemble prediction: need many simulations
- \rightarrow Develop a reduced model that
 - quantifies the model error U(x, y)
 - captures key statistical + dynamical properties

ECMWF: 16 km horizontal grid $\rightarrow 10^9$ freedoms

The Lorenz 96 system Wilks 2005

Outline

• Stochastic model reduction

(A first step: reduction from simulated data)

- Discrete-time stochastic parametrization (NARMA)
- Application to chaotic dynamical systems
- Data assimilation with the reduced model (An intermediate step: NARMA + noisy data → state estimation and prediction)

```
x' = f(x) + U(x, y), y' = g(x, y).
Data \{x(nh)\}_{n=1}^{N}
```

Memory effects (Mori, Zwanzig, Chorin, Ghil, Majda, Wilks, ...)

- Takens Theorem: delay embedding
- Mori-Zwanzig formalism: "generalized Langevin equation"

$$\frac{dx}{dt} = \underbrace{f(x)}_{\text{Markov term}} + \underbrace{\int_{0}^{t} K(x(t-s), s) ds}_{\text{memory}} + \underbrace{\dot{W_t}}_{\text{noise}},$$

Goal: a non-Markovian stochastic reduced system for x

Differential system or discrete-time system?

 $X' = f(X) + Z(t, \omega) \qquad X_{n+1} = X_n + R_h(X_n) + Z_n$

informative, neat

messy

Inference¹

likelihood

Discretization²

error correction by data

¹Talay, Mattingly, Stuart, Higham, Milstein, Tretyakov, ...

²Brockwell, Sørensen, Pokern, Wiberg, Samson,...

Discrete-time stochastic parametrization

- $R_h(X_{n-1})$ from a numerical scheme for $x' \approx f(x)$
- Φ_n depends on the past

Tasks:

Structure derivation: terms and orders (p, r, s, q) in Φ_n

- physical laws, asymptotic behavior, discretization

Parameter estimation: $a_j, b_{i,j}, c_j$, and σ

- conditional likelihood methods

Application to chaotic dynamics systems

Example I: the Lorenz 96 system

A chaotic dynamical system (a simplified atmospheric model)

$$\frac{d}{dt}x_{k} = x_{k-1}(x_{k+1} - x_{k-2}) - x_{k} + 10 - \frac{1}{J}\sum_{j}y_{k,j}$$
$$\frac{d}{dt}y_{k,j} = \frac{1}{\varepsilon}[y_{k,j+1}(y_{k,j-1} - y_{k,j+2}) - y_{k,j} + x_{k}],$$

where $x \in \mathbb{R}^{18}$, $y \in \mathbb{R}^{360}$. $\epsilon = 0.5 \rightarrow$ no scale separation.

Find a reduced system for $x \in \mathbb{R}^{18}$ based on

> Data $\{x(nh)\}_{n=1}^{N}$

$$\geq \frac{d}{dt} x_k \approx x_{k-1} \left(x_{k+1} - x_{k-2} \right) - x_k + 10$$

Wilks 2005

•

NARMA:

$$x^{n} = x^{n-1} + R_{h}(x^{n-1}) + z^{n}; \ z^{n} = \Phi^{n} + \xi^{n},$$

 $\Phi^{n} = a + \sum_{j=1}^{p} \sum_{l=1}^{d_{x}} b_{j,l}(x^{n-j})^{l} + \sum_{j=1}^{p} c_{j}R_{h}(x^{n-j}) + \sum_{j=1}^{q} d_{j}\xi^{n-j}.$

$$p = 2, d_x = 3; q = \begin{cases} 1, & h = 0.01; \\ 0, & h = 0.05. \end{cases}$$

NARMA:

$$x^{n} = x^{n-1} + R_{h}(x^{n-1}) + z^{n}; z^{n} = \Phi^{n} + \xi^{n},$$

 $\Phi^{n} = a + \sum_{j=1}^{p} \sum_{l=1}^{d_{x}} b_{j,l}(x^{n-j})^{l} + \sum_{j=1}^{p} c_{j}R_{h}(x^{n-j}) + \sum_{j=1}^{q} d_{j}\xi^{n-j}.$
 $p = 2, d_{x} = 3; q = \begin{cases} 1, h = 0.01; \\ 0, h = 0.05. \end{cases}$

Polynomial autoregression (POLYAR)³

$$\frac{d}{dt}x_{k} = x_{k-1}(x_{k+1} - x_{k-2}) - x_{k} + 10 + U,$$

$$U = P(x_{k}) + \eta_{k}, \text{ with } d\eta_{k}(t) = \phi\eta_{k}(t) + dB_{k}(t).$$

where $P(x) = \sum_{j=0}^{d_x} a_j x^j$. Optimal $d_x = 5$.

^{11/24}

Prediction (h = 0.05)

A typical ensemble forecast:

- forecast trajectories in cyan
- true trajectory in blue

Prediction (h = 0.05)

A typical ensemble forecast:

RMSE of many forecasts:

Example II: the Kuramoto-Sivashinsky equation

$$v_t + v_{xx} + v_{xxxx} + vv_x = 0, t > 0, x \in [0, 2\pi\nu]$$
, periodic.

Spatio-temporally chaotic

Example II: the Kuramoto-Sivashinsky equation

$$v_t + v_{xx} + v_{xxxx} + vv_x = 0, t > 0, x \in [0, 2\pi\nu]$$
, periodic.

1000 900 800 - 700 600 500 time 400 300 200 100 х

Spatio-temporally chaotic

solved with 128 Fourier modes

Problem setting: $\nu = 3.43$

- Observing only 5 Fourier modes
- to predict their evolution

Reduced models:

- the truncated system not accurate
- Discrete-time sto. paramtrization^a: derive structure from inertial manifold
 - \rightarrow an effective NARMA model

^aLu-Lin-Chorin17

Key point 1: long-term statistics \leftrightarrow Large time behavior of PDE⁴

Inertial manifolds \mathcal{M} : - finite-dimensional, positively invariant manifolds - exponentially attracts all trajectories

Let v = u + w. Rewrite the KSE:

$$\frac{du}{dt} = Au + Pf(u + w)$$

$$\frac{dw}{dt} = Aw + Qf(u + w)$$
On $\mathcal{M}, w = \psi(u)$

$$\frac{du}{dt} = PAu + Pf(u + \psi(u)).$$

Approximate inertial manifolds (AIMs): approximate $w = \psi(u)$

•
$$\frac{dw}{dt} \approx 0 \Rightarrow w \approx A^{-1}Qf(u+w),$$

• Fixed point: $\psi_0 = 0$; $\psi_{n+1} = A^{-1}Qf(u + \psi_n)$.

Key point 2: parametrize the AIM

- AIM with 5 modes: unstable
 (An accurate AIM requires m = dim(u) to be large!)
- use the terms; estimate their coefficients from data \rightarrow an effective NARMA model

NARMA with AIMs⁵

The AIMs hint at how the high modes depend on the low modes:

$$|k| > K: \quad \hat{v}_k \approx \psi_{1,k} = \left(A^{-1}Qf(u)\right)_k \Rightarrow \hat{v}_k \approx c_k \sum_{1 \le |l|, |k-l| \le K} \hat{v}_l \hat{v}_{k-l}.$$

$$\widetilde{u}_j^n = \begin{cases} u_j^{n}, & 1 \leq j \leq K, \\ i \sum_{l=j-K}^{K} u_l^n u_{j-l}^n, & K < j \leq 2K. \end{cases}$$

A discrete-time stochastic system: (p = 2, q = 1)

$$u_{k}^{n+1} = u_{k}^{n} + hR_{k}^{h}(u^{n}) + hz_{k}^{n},$$

$$z_{k}^{n} = \Phi_{k}^{n} + \xi_{k}^{n},$$

$$\Phi_{k}^{n}(\theta_{k}) = \mu_{k} + \sum_{j=0}^{p} b_{k,j}u_{k}^{n-j} + \sum_{j=1}^{K} c_{k,j}\widetilde{u}_{j+K}^{n}\widetilde{u}_{j+K-k}^{n} + c_{k,(K+1)}R_{k}^{h}(u^{n}) + \sum_{j=1}^{q} d_{k,j}\xi_{k}^{n-j}.$$

<□> < ② > < ③ > < ③ > < ○ > < ○への 17/24

Long-term statistics:

Prediction

A typical forecast:

19/24

Part II: Data assimilation with the reduced model

$$x' = f(x) + U(x, y), y' = g(x, y).$$

Noisy data: $x(nh) + W(n), n = 1, 2, ...$

Data assimilation:

- state estimation and prediction
- EnKF: ensemble from forward model + Kalman update

Assume: we can simulate the full system offline

- \rightarrow use the solution to quantify model error U(x, y) by
 - tuning inflation and localization of EnKF
 - deriving a NARMA reduced model

The Lorenz 96 system

Wilks 2005

Estimate and predict x based on

> Noisy Data z(n) = x(nh) + W(n)

- Forward models
 - L96x: $\frac{d}{dt}x_k \approx x_{k-1}(x_{k+1}-x_{k-2})-x_k+10$ (account for the model error by IL in EnKF)
 - NARMA (account for the model error by parametrization in the forward model)

Relative error of state estimation

(ensemble size: =1000 for L96x and NARMA; =10 for the full model)

RMSE of state prediction

Summary: The NARMA modeling improves performance of DA.

Summary and ongoing work

Data-driven stochastic model reduction by Discrete-time stochastic parametrization

- effective non-Markovian reduced model (NARMA)
 - captures key statistical-dynamical features
 - makes medium-range forecasting
- Improves performance of Data assimilation

Open and ongoing work: if noisy data only?

- DA with non-Markovian models
- inference for hidden non-Markovian models

Thank you!