Some Study on the Molecular and Multiscale Modelling of Liquid Crystals

Fang, Lidong (ldfang.sjtu@gamil.com)

School of Mathematical Sciences and Institute of Natural Sciences Shanghai Jiao Tong University

joint work with Apala Majumdar (Bath) and Lei Zhang (SJTU)

Banff International Research Station November 30, 2017

Liquid crystals

- Liquid crystals (LCs) are matter in a state between liquids and crystals. [Wikipedia: Liquid crystal].
- Liquid crystals may flow like a liquid, but oriented in a crystal-like way.
- Nematic phase: the rod-shaped molecules have long-range directional order and are free to flow.
- We study different models (lattice-based Gay–Berne, Lebwohl–Lasher, Landau–de Gennes) of nematic liquid crystals in 1D and 2D, at zero temperature. And then, we focus on the multiscale model.

ション 小田 マイビット ビックタン

Contents

Gay-Berne Model

Lebwohl-Lasher Model and Landau-de Gennes Model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Multiscale Method

Gay-Berne Model

Lebwohl–Lasher Model and Landau–de Gennes Model

Multiscale Method

Gay–Berne Model

HANGHAI IIAO TONG UNIV

- The Gay–Berne (GB) model [GB81] is an off–lattice, pair potential model for nematic liquid crystals.
- An empirical coarse grained model to approximate the interaction between two rod-like molecules.
- The GB pair potential function depends on the positions and the orientations of molecules, $(\mathbf{x}, \mathbf{n}) \in \mathbb{R}^d \times \mathbb{S}^{d'}$.
- The standard GB pair potential between a pair of molecules i and *j* is,

$$U_{\text{GB}}(\mathbf{n}_{i},\mathbf{n}_{j},\mathbf{r}) := 4\epsilon (\mathbf{n}_{i},\mathbf{n}_{j},\hat{\mathbf{r}}) \left((q(\mathbf{n}_{i},\mathbf{n}_{j},\mathbf{r}))^{12} - (q(\mathbf{n}_{i},\mathbf{n}_{j},\mathbf{r}))^{6} \right).$$
(1)

- ▶ $\mathbf{r} := \mathbf{x}_i \mathbf{x}_i$. $r := |\mathbf{r}|$. $\hat{\mathbf{r}} := \mathbf{r}/r$.
- $\epsilon(\mathbf{n}_i, \mathbf{n}_i, \hat{\mathbf{r}})$ is an energetic term. $(q(\mathbf{n}_i, \mathbf{n}_i, \mathbf{r}))^{12} (q(\mathbf{n}_i, \mathbf{n}_i, \mathbf{r}))^6$ is a Lennard–Jones type contribution. 上海交通大学

Gay–Berne Model, Potential Energy Function

- Four parameters: μ , ν , κ' , κ .
- The energy term is,

$$\epsilon \left(\mathbf{n}_{i},\mathbf{n}_{j},\hat{\mathbf{r}}\right) := \epsilon_{0} \left(\epsilon_{3} \left(\mathbf{n}_{i},\mathbf{n}_{j},\hat{\mathbf{r}}\right)\right)^{\mu} \left(\epsilon_{2} \left(\mathbf{n}_{i},\mathbf{n}_{j}\right)\right)^{\nu}.$$
 (2)

$$\epsilon_{3}(\mathbf{n}_{i},\mathbf{n}_{j},\hat{\mathbf{r}}) := 1 - \frac{\chi'}{2} \left(\frac{(\mathbf{n}_{i} \cdot \hat{\mathbf{r}} + \mathbf{n}_{j} \cdot \hat{\mathbf{r}})^{2}}{1 + \chi'(\mathbf{n}_{i} \cdot \mathbf{n}_{j})} + \frac{(\mathbf{n}_{i} \cdot \hat{\mathbf{r}} - \mathbf{n}_{j} \cdot \hat{\mathbf{r}})^{2}}{1 - \chi'(\mathbf{n}_{i} \cdot \mathbf{n}_{j})} \right).$$
(3)

$$\chi' := \left((\kappa')^{1/\mu} - 1 \right) / \left((\kappa')^{1/\mu} + 1 \right), \tag{4}$$

and κ' is the well–depth ratio of the end–to–end and side–by–side configurations.

・ロト・西ト・ヨト・ヨー うらぐ

Gay–Berne Model, Potential Energy Function

$$\epsilon_{2}\left(\mathbf{n}_{i},\mathbf{n}_{j}\right) := \left(1 - \chi^{2}\left(\mathbf{n}_{i}\cdot\mathbf{n}_{j}\right)^{2}\right)^{-1/2}, \qquad (5)$$

and the shape anisotropy parameter χ is,

$$\chi := \frac{\kappa^2 - 1}{\kappa^2 + 1},\tag{6}$$

and $\kappa := \sigma_e / \sigma_s$ is a measure of the molecular aspect ratio and $\sigma_e \sigma_s$ are proportional to the length and width of the molecules respectively. ($\chi = 0$ for spherical particles, $\chi = 1$ for infinitely long rods, $\chi = -1$ for infinitely thin disks.)

Gay–Berne Model, Potential Energy Function

► The q term is,

$$q(\mathbf{n}_i, \mathbf{n}_j, \mathbf{r}) := \frac{\sigma_s}{r - \sigma(\mathbf{n}_i, \mathbf{n}_j, \hat{\mathbf{r}}) + \sigma_s}.$$
 (7)

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

We define σ_s as the width of the nematic molecules, and the shape parameter (range parameter) σ (n_i, n_j, r̂) is the intermolecular separation at which the potential is zero,

$$\sigma(\mathbf{n}_{i},\mathbf{n}_{j},\hat{\mathbf{r}}) := \sigma_{s} \left(1 - \frac{\chi}{2} \left(\frac{(\mathbf{n}_{i} \cdot \hat{\mathbf{r}} + \mathbf{n}_{j} \cdot \hat{\mathbf{r}})^{2}}{1 + \chi(\mathbf{n}_{i} \cdot \mathbf{n}_{j})} + \frac{(\mathbf{n}_{i} \cdot \hat{\mathbf{r}} - \mathbf{n}_{j} \cdot \hat{\mathbf{r}})^{2}}{1 - \chi(\mathbf{n}_{i} \cdot \mathbf{n}_{j})} \right) \right)^{-\frac{1}{2}}$$
(8)

Important Configurations

► There are four orientations of particular significance and simplicity [LSP90]. We set **n**_i and **n**_j of them with **r** = dσ_s**2**, and d > 0 is our new variable here.

type	n _i	nj
end-to-end (e)	Ź	Ź
side-by-side (s)	Ŷ	Ŷ
cross (X)	Ŷ	ŷ
tee (T)	Â	Â

- Important in square lattice-based systems.
- For two of the orientations, the expressions are simple,

$$U_{\rm GB,s}(d) = 4\epsilon_0 \left(\tilde{d}^{-12} - \tilde{d}^{-6}\right) \left(1 - \chi^2\right)^{-\nu/2}, \tag{9}$$

$$U_{\text{GB},X}\left(d\right) = 4\epsilon_0 \left(\tilde{d}^{-12} - \tilde{d}^{-6}\right). \tag{10}$$

Important Configurations

All the four pair energies are actually Lennard–Jones potential energies. We show for $(\mu, \nu, \kappa', \kappa) = (1, 3, 5, 3)$.

1D Simulation

We setup one dimensional chain of molecules (x, n) ∈ ℝ¹ × S² with Dirichlet boundary condition and fixed positions. We find a phase transition by numerical experiments, which agrees with the analysis above.

 $\sigma_{s} = 1/20$, spacing = 1/19, 's'.

 $\sigma_s = 1/20$, spacing = 1/22, 'X'.

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

2D Simulation

We setup two dimensional array of molecules (x, n) ∈ ℝ² × S² with Dirichlet boundary condition and fixed positions. The optimized configurations vary with the boundary conditions.

 $\sigma_s = 1,$ #molecule: 21 × 21,
domain size: 20 × 20. と 済え近大学

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

 $\sigma_s = 1,$ #molecule: 21 × 21, domain size: 60 × 60.

2D Simulation

When we choose rectangular domains, the uniform boundary condition is able to give us aligned configurations.

 $\begin{aligned} \sigma_s &= 1, & \sigma_s &= 1, \\ \text{#molecule: } 21 \times 21, & \text{#molecule: } 21 \times 21, \\ \text{domain size: } 58 \times 20. & \text{domain size: } 63 \times 21. \\ & \text{The optimized configuration has too much micro structures,} \\ & \text{So GB model are not compatible with the continuum methods.} \end{aligned}$

・ロト・西ト・田・・田・ うへぐ

Gay–Berne Model

Lebwohl-Lasher Model and Landau-de Gennes Model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Multiscale Method

Lebwohl–Lasher Model

- The Lebwohl–Lasher (LL) model [LL73] is a lattice–based, nearest neighbour, pair potential model for nematic liquid crystals.
- The LL pair potential function depends on the orientations of molecules, n ∈ S^{d-1}, when the positions are fixed and interaction ranges are determined.
- The LL pair potential energy is given by,

$$U_{\text{LL}}(\mathbf{n}_i, \mathbf{n}_j) = L_{LL} \left(1 - (\mathbf{n}_i \cdot \mathbf{n}_j)^2 \right). \tag{11}$$

It prefers aligned configurations.

► *L*_{LL} is a measure of the strength of intermolecular interactions.

Landau-de Gennes Model

- The Landau–de Gennes (LdG) theory [dGP95] [LME12] [MPH13] is a continuum theory for nematic liquid crystals.
- LdG model is a variational theory with an associated energy functional, defined in terms of a macroscopic order parameter – the LdG Q–tensor.
- In *d* dimensional case, the LdG Q–tensor order parameter is a symmetric, traceless *d* × *d* matrix in the space
 S₀ := {**Q** ∈ ℝ^{d×d} | **Q** = **Q**^T, tr**Q** = 0}.

ション ふゆ マ キャット マックタン

Dimensionless LdG Model

- Take the reference domain $\tilde{\Omega} := [0, 1] \times [0, a_r]$.
- $\tilde{x} := x/L$ is the dimensionless coordinate.
- $\tilde{\mathbf{Q}}(\tilde{x}) := \mathbf{Q}(x) / s_0$ is the Q–tensor of order 1.
- The total energy can be written in terms of dimensionless variables [LME12],

$$\frac{1}{s_{0}^{2}L_{el}}I_{LdG}\left(\mathbf{Q}\right) = \int_{\tilde{\Omega}} \left(\left|\tilde{\nabla}\tilde{Q}_{11}\right|^{2} + \left|\tilde{\nabla}\tilde{Q}_{12}\right|^{2} + \frac{1}{\tilde{\epsilon}^{2}}\left(\tilde{Q}_{11}^{2} + \tilde{Q}_{12}^{2} - 1\right)^{2}\right) d\tilde{x}, \quad (12)$$

$$=: E_{el} + E_{b}. \quad (13)$$

It prefers smooth configurations.

Gay–Berne Model

Lebwohl–Lasher Model and Landau–de Gennes Model

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Multiscale Method

Multiscale Method

- Idea: Continuum models are efficient at smooth regions while discretization models are accurate near singularities.
- We study the combination of LdG (continuum) model and the LL (discretization) model.
- Key problem: How does LL model converge to LdG model? What is the relationship between them?
- We try to implement them numerically on 2D square lattice / mesh.

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Multiscale Method, Abstract Setting

Let X be a Hilbert space,

Original problem:

$$\min_{u\in X} E(u),$$

or find $u \in X$, s.t. $\langle \delta E(u), v \rangle = 0, \forall v \in X$.

Approximation problem:

 $\min_{u_{N}\in X_{N}}E_{N}\left(u_{N}\right) ,$

▲ロト ▲ 同 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

or find $u_N \in X_N$, s.t. $\langle \delta E_N(u_N), v_N \rangle = 0$, $\forall v_N \in X_N$. *N* is the DoF.

We hope $u_N \rightarrow u$.

Multiscale Method, A Priori Analysis

Inverse function theorem (IFT)

Suppose E_N has Lipschitz continuous Hessian,

$$\left|\delta^{2} E_{N}(u) - \delta^{2} E_{N}(v)\right\|_{L\left(X_{N}, X_{N}^{*}\right)} \leq M \|u - v\|_{X_{N}}.$$
(14)

► ∃ constants $c, r_N > 0$, such that, $2Mr_Nc^{-2} < 1$, and

$$\left\langle \delta^{2} E_{N}\left(\Pi_{N} u\right) v, v \right\rangle \geq c \left\| v \right\|_{X_{N}}^{2}, \quad \left\| \delta E_{N}\left(\Pi_{N} u\right) \right\|_{X_{N}^{*}} \leq r_{N}.$$
(15)

► Then $\exists ! u_N \in X_N$ s.t. $\delta E_N(u_N) = 0$, and

$$\|u_{N} - \Pi_{N} u\|_{X_{N}} \leq 2r_{N}/c = 2 \frac{\text{consistency error}}{\text{stability constant}}, \quad (16)$$

$$\left\langle \delta^{2} E_{N} \left(u_{N} \right) v, v \right\rangle \geq \left(1 - 2Mr_{N}c^{-2} \right) c \|v\|_{X_{N}}^{2}. \quad (17)$$

For a consistent numerical method, $r_N \rightarrow 0$, while the mismatch of models would introduce dominant error for r_N .

Matching Energies

- To reduce consistent error numerically: $E(u) = E_N(u_N)$.
- Determine the coefficients s₀, L_{el}, ε in LdG model corresponding to a fixed LL model L_{LL} = 1.
- We have,

$$E_{LL} = L_{LL} \sum_{i \sim j} \left(1 - (\mathbf{n}_i \cdot \mathbf{n}_j)^2 \right) =: L_{LL} E,$$
(18)
$$E_{LdG} = s_0^2 \left(L_{el} E_{el} + \frac{L^2 E_b}{\epsilon^2} \right),$$
(19)

L: discretization parameter, L_{LL} , s_0 , L_{el} , ϵ : potential parameters.

Smooth Boundary and Singularity

- For both LL and LdG model in 2D with $\mathbf{n} = (\cos \theta, \sin \theta)$.
- Sine boundary condition, which is smooth.

$$\theta(x,0) = \theta(x,1) = \alpha \sin(\pi x), \quad \theta(0,y) = \theta(1,y) = \alpha \sin(\pi y).$$
(20)

- Orthogonal boundary condition, with singularities [LME12]. $\theta(x, 0) = \theta(x, 1) = 0, \quad \theta(0, y) = \theta(1, y) = \pi/2.$ (21)
- They behave differently.

Matching Result

- ► The energies E, E_b, E_{el} is sensitive to the type of boundary conditions.
- For all the cases, $E_b \ll E \sim E_{el}$.
- ▶ When converting the discretization method to the continuum method, we let, $\tilde{Q}(\mathbf{n}) = 2\mathbf{n} \otimes \mathbf{n} \frac{\mathbf{I}}{2}$, so the integrand in the bulk energy, $(\tilde{Q}_{11}^2 + \tilde{Q}_{12}^2 \mathbf{1})^2$, is exactly zero at the molecule mesh grid, and the integral is a small number.

• We set
$$\epsilon = \infty$$
, $L_{el} = 1$, and $s_0 = 1/2$.

$$E_{LL} = E. \quad E_{LdG} = E_{el}/4. \tag{22}$$

ション ふゆ マ キャット マックタン

Finite Energy

- L : element number (LdG) / molecule number (LL) in each direction.
- The matching coefficients are good.

Logarithmic Energy

For the orthogonal boundary condition case, we have $E_{LL} \sim 2\pi \log L + \text{const}, E_{LdG} \sim 2\pi \log L + \text{const}$ numerically. This is well known as the singularity energy.

 How to define a well-posed reference energy is a problem (energy difference with respect to some reference configuration).

Reference Configuration

► On the domain [0, D₁] × [0, D₂], and for each on **x** = (x₁, x₂), we set the direction of this molecule in the reference configuration to be,

$$\mathbf{n} = \operatorname{atan2}\left(\min\left(x_2, D_2 - x_2\right), \min\left(x_1, D_1 - x_1\right)\right).$$
(23)

atan2(Y, X) is the argument of the point (X, Y).

• We have $E_{reference}(L) \sim 2\pi \log(L) + \text{const.}$

Blending Method

- Blending method is based on formulations which allow the superposition of different mechanical models [Dhi98].
- The blending function β : Ω → [0, 1] is a weight function defined on the whole region Ω.
- The blending energy is,

$$E_{blending} = \int_{\Omega} \beta(x) I_{LdG}(x) dx + \sum_{j \sim k} \left(1 - \bar{\beta}_{jk}\right) U_{LL}(n_j, n_k).$$
(24)

We denote the continuum energy density by I_{LdG} and denote the pair potential energy by U_{LL} . We choose $\bar{\beta}_{jk}$ as an average of β on the bond $j \sim k$.

We find the optimal configuration by minimizing the (relative) blending energy.

Blending Method in Atomistic\Continuum Coupling

A\C coupling for solid crystals:

- Ghost forces appear on the interface, which contribute a constant to the consistency error. Blending method is a choice to reduce the ghost forces.
- BQCE: dominant error is $N^{\frac{1}{2}-\frac{2}{d}}$. [Li, et. al. 2016]
- BGFC: dominant error is N^{-1/2 1/d} for P1 finite element and N^{-1/2 2/d} for P2 finite element, which is optimal for coupling with Calchy Born continuum model. [Ortner, Zhang, 2016].

Graded Mesh and Blending Method

- We implement blending method (LL + LdG) for 2D problems.
- We construct graded meshes which are fine near the singularities and are coarse far away from the corners.

イロト イロト イヨト イヨト

ъ

Energy on Graded Mesh

For sine boundary condition, when we use the graded mesh, the optimized energy has a zigzag-shape for meshes with different sizes. The same phenomenon appears for the relative energy for orthogonal boundary condition.

The zigzag-shape of the energy is the numerical artifact, which is due to the mesh we use, since it appears when solving Poisson equations on such meshes.

Summary

Future Work:

Modify the mesh to get a better convergence.

Remained Questions:

- What is the thermodynamic limit for a molecular model for liquid crystal with defects?
- Is the (existing) continuum model the limit of some molecular model with respect to some small parameter?
- For liquid crystal, is there any nontrivial phenomena (e.g., defects) which can be discovered by molecular model but not by continuum model?

ション ふゆ マ キャット マックタン

Thank you!

Any Question?

◆ □ ▶ ◆ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○ ○

Reference I

- Pierre Gilles de Gennes and J Prost.
 The physics of liquid crystals.
 Number 83. Oxford university press, 1995.
 - Hachmi Ben Dhia.

Multiscale mechanical problems: the arlequin method. Comptes Rendus de l'Academie des Sciences Series IIB Mechanics Physics Astronomy, 12(326):899–904, 1998.

JG Gay and BJ Berne.

Modification of the overlap potential to mimic a linear site-site potential.

The journal of chemical physics, 74(6):3316–3319, 1981.

P. A. Lebwohl and G. Lasher.

Nematic-liquid-crystal order—a monte carlo calculation. *Physical Review A*, 6(6):426–429, 1973.

Reference II

Chong Luo, Apala Majumdar, and Radek Erban. Multistability in planar liquid crystal wells. Physical Review E, 85(6):061702, 2012.

G. R. Luckhurst, R. A. Stephens, and R. W. Phippen. Computer simulation studies of anisotropic systems. xix. mesophases formed by the gay-berne model mesogen. *Liquid Crystals*, 8(4):451–464, 1990.

Apala Majumdar, Adriano Pisante, and Duvan Henao. Uniaxial versus biaxial character of nematic equilibria in three dimensions.

ション ふゆ マ キャット マックタン

arXiv preprint arXiv:1312.3358, 2013.

