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Liquid crystals

I Liquid crystals (LCs) are matter in a state between liquids and
crystals. [Wikipedia: Liquid crystal].

I Liquid crystals may flow like a liquid, but oriented in a
crystal-like way.

I Nematic phase: the rod-shaped molecules have long-range
directional order and are free to flow.

I We study different models (lattice-based Gay–Berne,
Lebwohl–Lasher, Landau–de Gennes) of nematic liquid
crystals in 1D and 2D, at zero temperature. And then, we
focus on the multiscale model.
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Gay–Berne Model

I The Gay–Berne (GB) model [GB81] is an off–lattice, pair
potential model for nematic liquid crystals.

I An empirical coarse grained model to approximate the
interaction between two rod–like molecules.

I The GB pair potential function depends on the positions and
the orientations of molecules, (x,n) ∈ Rd × Sd′ .

I The standard GB pair potential between a pair of molecules i
and j is,

UGB (ni ,nj , r) := 4ε (ni ,nj , r̂)
(
(q (ni ,nj , r))12

− (q (ni ,nj , r))6
)
.

(1)

I r := xi − xj . r := |r|. r̂ := r/r .

I ε (ni ,nj , r̂) is an energetic term. (q (ni ,nj , r))12
− (q (ni ,nj , r))6

is a Lennard–Jones type contribution.



Gay–Berne Model, Potential Energy Function

I Four parameters: µ, ν, κ′, κ.
I The energy term is,

ε (ni ,nj , r̂) := ε0 (ε3 (ni ,nj , r̂))µ (ε2 (ni ,nj))ν . (2)

I

ε3 (ni ,nj , r̂) := 1 −
χ′

2

(ni · r̂ + nj · r̂)2

1 + χ′ (ni · nj)
+

(ni · r̂ − nj · r̂)2

1 − χ′ (ni · nj)

 .
(3)

χ′ :=
(
(κ′)1/µ

− 1
)
/
(
(κ′)1/µ + 1

)
, (4)

and κ′ is the well–depth ratio of the end–to–end and
side–by–side configurations.



Gay–Berne Model, Potential Energy Function

I

ε2 (ni ,nj) :=
(
1 − χ2 (ni · nj)

2
)−1/2

, (5)

and the shape anisotropy parameter χ is,

χ :=
κ2 − 1
κ2 + 1

, (6)

and κ := σe/σs is a measure of the molecular aspect ratio
and σe σs are proportional to the length and width of the
molecules respectively. (χ = 0 for spherical particles, χ = 1
for infinitely long rods, χ = −1 for infinitely thin disks.)



Gay–Berne Model, Potential Energy Function

I The q term is,

q (ni ,nj , r) :=
σs

r − σ (ni ,nj , r̂) + σs
. (7)

I We define σs as the width of the nematic molecules, and the
shape parameter (range parameter) σ (ni ,nj , r̂) is the
intermolecular separation at which the potential is zero,

σ (ni ,nj , r̂) := σs

1 − χ2
(ni · r̂ + nj · r̂)2

1 + χ (ni · nj)
+

(ni · r̂ − nj · r̂)2

1 − χ (ni · nj)

−
1
2

.

(8)



Important Configurations

I There are four orientations of particular significance and
simplicity [LSP90]. We set ni and nj of them with r = dσs ẑ,
and d > 0 is our new variable here.
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I Important in square lattice-based systems.
I For two of the orientations, the expressions are simple,

UGB,s (d) = 4ε0
(
d̃−12 − d̃−6

) (
1 − χ2

)−ν/2
, (9)

UGB,X (d) = 4ε0
(
d̃−12 − d̃−6

)
. (10)



Important Configurations

I All the four pair energies are actually Lennard–Jones potential
energies. We show for (µ, ν, κ′, κ) = (1, 3, 5, 3).
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1D Simulation

I We setup one dimensional chain of molecules (x,n) ∈ R1 × S2

with Dirichlet boundary condition and fixed positions. We find
a phase transition by numerical experiments, which agrees
with the analysis above.
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2D Simulation

I We setup two dimensional array of molecules (x,n) ∈ R2 × S2

with Dirichlet boundary condition and fixed positions. The
optimized configurations vary with the boundary conditions.
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2D Simulation

I When we choose rectangular domains, the uniform boundary
condition is able to give us aligned configurations.
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I The optimized configuration has too much micro structures,
so GB model are not compatible with the continuum methods.
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Lebwohl–Lasher Model

I The Lebwohl–Lasher (LL) model [LL73] is a lattice–based,
nearest neighbour, pair potential model for nematic liquid
crystals.

I The LL pair potential function depends on the orientations of
molecules, n ∈ Sd−1, when the positions are fixed and
interaction ranges are determined.

I The LL pair potential energy is given by,

ULL (ni ,nj) = LLL

(
1 − (ni · nj)

2
)
. (11)

It prefers aligned configurations.
I LLL is a measure of the strength of intermolecular interactions.



Landau–de Gennes Model

I The Landau–de Gennes (LdG) theory [dGP95] [LME12]
[MPH13] is a continuum theory for nematic liquid crystals.

I LdG model is a variational theory with an associated energy
functional, defined in terms of a macroscopic order parameter
– the LdG Q–tensor.

I In d dimensional case, the LdG Q–tensor order parameter is a
symmetric, traceless d × d matrix in the space
S0 :=

{
Q ∈ Rd×d | Q = Q>, trQ = 0

}
.



Dimensionless LdG Model

I Take the reference domain Ω̃ := [0, 1] × [0, ar ].
I x̃ := x/L is the dimensionless coordinate.
I Q̃ (x̃) := Q (x) /s0 is the Q–tensor of order 1.
I The total energy can be written in terms of dimensionless

variables [LME12],

1
s2

0Lel
ILdG (Q)

=

∫
Ω̃

(∣∣∣∇̃Q̃11
∣∣∣2 +

∣∣∣∇̃Q̃12
∣∣∣2 +

1
ε̃2

(
Q̃2

11 + Q̃2
12 − 1

)2
)

dx̃, (12)

=: Eel + Eb . (13)

It prefers smooth configurations.
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Multiscale Method

I Idea: Continuum models are efficient at smooth regions while
discretization models are accurate near singularities.

I We study the combination of LdG (continuum) model and the
LL (discretization) model.

I Key problem: How does LL model converge to LdG model?
What is the relationship between them?

I We try to implement them numerically on 2D square lattice /
mesh.



Multiscale Method, Abstract Setting

Let X be a Hilbert space,
I Original problem:

min
u∈X

E (u) ,

or find u ∈ X , s.t.
〈
δE (u) , v

〉
= 0, ∀v ∈ X .

I Approximation problem:

min
uN∈XN

EN (uN) ,

or find uN ∈ XN, s.t.
〈
δEN (uN) , vN

〉
= 0, ∀vN ∈ XN. N is the

DoF.

We hope uN → u.



Multiscale Method, A Priori Analysis

Inverse function theorem (IFT)
I Suppose EN has Lipschitz continuous Hessian,∥∥∥δ2EN (u) − δ2EN (v)

∥∥∥
L(XN ,X∗N) ≤ M ‖u − v‖XN . (14)

I ∃ constants c, rN > 0, such that, 2MrNc−2 < 1, and〈
δ2EN (ΠNu) v , v

〉
≥ c ‖v‖2XN

,
∥∥∥δEN (ΠNu)

∥∥∥
X∗N
≤ rN . (15)

I Then ∃!uN ∈ XN s.t. δEN (uN) = 0, and

‖uN − ΠNu‖XN ≤ 2rN/c = 2
consistency error
stability constant

, (16)〈
δ2EN (uN) v , v

〉
≥

(
1 − 2MrNc−2

)
c ‖v‖2XN

. (17)

For a consistent numerical method, rN → 0, while the mismatch of
models would introduce dominant error for rN.



Matching Energies

I To reduce consistent error numerically: E (u) = EN (uN).
I Determine the coefficients s0, Lel , ε in LdG model

corresponding to a fixed LL model LLL = 1.
I In order to connect the LdG model with the LL model, we let

Q̃ (n) = 2n ⊗ n − I2. This is NOT unique in inducing Q̃ from n.
I We have,

ELL = LLL

∑
i∼j

(
1 − (ni · nj)

2
)

=: LLL E, (18)

ELdG = s2
0

(
LelEel +

L2Eb

ε2

)
, (19)

L : discretization parameter, LLL , s0, Lel , ε: potential
parameters.



Smooth Boundary and Singularity
I For both LL and LdG model in 2D with n = (cos θ, sin θ).
I Sine boundary condition, which is smooth.

θ (x, 0) = θ (x, 1) = α sin (πx) , θ (0, y) = θ (1, y) = α sin (πy) .
(20)

I Orthogonal boundary condition, with singularities [LME12].

θ (x, 0) = θ (x, 1) = 0, θ (0, y) = θ (1, y) = π/2. (21)

I They behave differently.
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Matching Result

I The energies E, Eb , Eel is sensitive to the type of boundary
conditions.

I For all the cases, Eb � E ∼ Eel .
I When converting the discretization method to the continuum

method, we let, Q̃ (n) = 2n ⊗ n − I
2 , so the integrand in the

bulk energy,
(
Q̃2

11 + Q̃2
12 − 1

)2
, is exactly zero at the molecule

mesh grid, and the integral is a small number.
I We set ε = ∞, Lel = 1, and s0 = 1/2.

ELL = E. ELdG = Eel/4. (22)



Finite Energy

I For sine boundary condition case,
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I L : element number (LdG) / molecule number (LL) in each
direction.

I The matching coefficients are good.



Logarithmic Energy

I For the orthogonal boundary condition case, we have
ELL ∼ 2π log L + const, ELdG ∼ 2π log L + const numerically.
This is well known as the singularity energy.
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I How to define a well-posed reference energy is a problem
(energy difference with respect to some reference
configuration).



Reference Configuration
I On the domain [0,D1] × [0,D2], and for each on x = (x1, x2),

we set the direction of this molecule in the reference
configuration to be,

n = atan2 (min (x2,D2 − x2) ,min (x1,D1 − x1)) . (23)

atan2 (Y ,X) is the argument of the point (X ,Y).
I We have Ereference (L) ∼ 2π log (L) + const.
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I The reference configuration is good. The relative energy
Ereference − Eoptimized is finite.



Blending Method

I Blending method is based on formulations which allow the
superposition of different mechanical models [Dhi98].

I The blending function β : Ω→ [0, 1] is a weight function
defined on the whole region Ω.

I The blending energy is,

Eblending =

∫
Ω
β (x) ILdG (x) dx +

∑
j∼k

(
1 − β̄jk

)
ULL (nj , nk ) .

(24)

We denote the continuum energy density by ILdG and denote
the pair potential energy by ULL . We choose β̄jk as an
average of β on the bond j ∼ k .

I We find the optimal configuration by minimizing the (relative)
blending energy.



Blending Method in Atomistic\Continuum Coupling
I A\C coupling for solid crystals:
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I Ghost forces appear on the interface, which contribute a
constant to the consistency error. Blending method is a choice
to reduce the ghost forces.

I BQCE: dominant error is N
1
2−

2
d . [Li, et. al. 2016]

I BGFC: dominant error is N−
1
2−

1
d for P1 finite element and

N−
1
2−

2
d for P2 finite element, which is optimal for coupling with

Cauchy–Born continuum model. [Ortner, Zhang, 2016].



Graded Mesh and Blending Method

I We implement blending method (LL + LdG) for 2D problems.
I We construct graded meshes which are fine near the

singularities and are coarse far away from the corners.
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Energy on Graded Mesh

I For sine boundary condition, when we use the graded mesh,
the optimized energy has a zigzag-shape for meshes with
different sizes. The same phenomenon appears for the
relative energy for orthogonal boundary condition.
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I The zigzag-shape of the energy is the numerical artifact,
which is due to the mesh we use, since it appears when
solving Poisson equations on such meshes.



Summary

Future Work:
I Modify the mesh to get a better convergence.

Remained Questions:
I What is the thermodynamic limit for a molecular model for

liquid crystal with defects?
I Is the (existing) continuum model the limit of some molecular

model with respect to some small parameter?
I For liquid crystal, is there any nontrivial phenomena (e.g.,

defects) which can be discovered by molecular model but not
by continuum model?



Thank you!

Any Question?
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